
Lecture Notes

Unit:4

Digital Electronics Fundamentals

Topics Covered:
Difference between analog and digital signals,
Boolean algebra, Basic and Universal Gates,
Symbols, Truth tables, logic expressions, Logic
simplification using K- map, Logic ICs, half and full
adder/subtractor, multiplexers, demultiplexers,
flip-flops, shift registers, counters, Block diagram
of microprocessor/microcontroller and their
applications.

Designed by: Vipra Bohara

Assistant Professor

JECRC, Sitapura, Jaipur.

Analog And Digital Signal

Analog and digital signals are the types of signals carrying information. The

major difference between both signals is that the analog signals that have

continuous electrical signals, while digital signals have non-continuous

electrical signals. The difference between analog and digital signal can be

observed by given figure.

Analog Signals

The analog signals were used in many systems to produce signals to carry

information. These signals are continuous in both values and time. The use of

analog signals has been declined with the arrival of digital signals. In short, to

understand the analog signals – all signals that are natural or come naturally are

analog signals.

Digital Signals

Unlike analog signals, digital signals are not continuous, but signals are discrete

in value and time. These signals are represented by binary numbers and consist

of different voltage values.

Difference Between Analog And Digital Signal

 Analog Signals And Digital Signal

Continuous signals Discrete signals

Represented by sine waves Represented by square waves

Human voice, natural sound, analog electronic
devices are few examples

Computers, optical drives, and other electronic
devices

Continuous range of values Discontinuous values

Records sound waves as they are Converts into a binary waveform.

Only be used in analog devices.
Suited for digital electronics like computers,

mobiles and more.

Boolean Algebra

Boolean Algebra is the mathematics we use to analyse digital gates and

circuits. We can use these “Laws of Boolean” to both reduce and simplify a

complex Boolean expression in an attempt to reduce the number of logic gates

required. Boolean Algebra is therefore a system of mathematics based on logic

that has its own set of rules or laws which are used to define and reduce

Boolean expressions.

The variables used in Boolean Algebra only have one of two possible values, a

logic “0” and a logic “1” but an expression can have an infinite number of

variables all labelled individually to represent inputs to the expression, For

example, variables A, B, C etc, giving us a logical expression of A + B = C, but

each variable can ONLY be a 0 or a 1.

Examples of these individual laws of Boolean, rules and theorems for Boolean

Algebra are given in the following table.

Truth Tables for the Laws of Boolean

Boolean

Expression
Description

Equivalent

Switching

Circuit

Boolean

Algebra

Law or Rule

A + 1 = 1
A in parallel with

closed = “CLOSED”

Annulment

A + 0 = A
A in parallel with

open = “A”

Identity

A . 1 = A
A in series with

closed = “A”

Identity

A . 0 = 0
A in series with

open = “OPEN”

Annulment

A + A = A
A in parallel with

A = “A”

Idempotent

A . A = A
A in series with

A = “A”

Idempotent

NOT A = A

NOT NOT A

(double negative) =

“A”

Double

Negation

A + A = 1
A in parallel with

NOT A = “CLOSED”

Complement

A . A = 0
A in series with

NOT A = “OPEN”

Complement

A+B = B+A
A in parallel with B =

B in parallel with A

Commutative

A.B = B.A
A in series with B =

B in series with A

Commutative

(𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅) = �̅�.�̅�
invert and replace

OR with AND

de Morgan’s

Theorem

(𝐴. 𝐵̅̅ ̅̅ ̅) = �̅�+�̅�
invert and replace

AND with OR

de Morgan’s

Theorem

Description of the Laws of Boolean Algebra

 Annulment Law – A term AND´ed with a “0” equals 0 or OR´ed with a “1” will

equal 1

o A . 0 = 0 A variable AND’ed with 0 is always equal to 0

o A + 1 = 1 A variable OR’ed with 1 is always equal to 1

 Identity Law – A term OR´ed with a “0” or AND´ed with a “1” will always

equal that term

o A + 0 = A A variable OR’ed with 0 is always equal to the
variable

o A . 1 = A A variable AND’ed with 1 is always equal to the
variable

 Idempotent Law – An input that is AND´ed or OR´ed with itself is equal to

that input

o A + A = A A variable OR’ed with itself is always equal to the
variable

o A . A = A A variable AND’ed with itself is always equal to the

variable

 Complement Law – A term AND´ed with its complement equals “0” and a

term OR´ed with its complement equals “1”

o A . �̅� = 0 A variable AND’ed with its complement is always

equal to 0

o A + �̅� = 1 A variable OR’ed with its complement is always

equal to 1

 Commutative Law – The order of application of two separate terms is not

important

o A . B = B . A The order in which two variables are AND’ed

makes no difference

o A + B = B + A The order in which two variables are OR’ed

makes no difference

 Double Negation Law – A term that is inverted twice is equal to the original

term

o 𝐴 = A A double complement of a variable is always equal to

the variable

 de Morgan´s Theorem – There are two “de Morgan´s” rules or theorems,

(1) Two separate terms NOR´ed together is the same as the two terms

inverted (Complement) and AND´ed for example: A+B = A . B

(2) Two separate terms NAND´ed together is the same as the two terms

inverted (Complement) and OR´ed for example: A.B = A + B

 Other algebraic Laws of Boolean not detailed above include:

 Boolean Postulates – While not Boolean Laws in their own right, these are

a set of Mathematical Laws which can be used in the simplification of Boolean

Expressions.

0 . 0 = 0 A 0 AND’ed with itself is always equal to 0

1 . 1 = 1 A 1 AND’ed with itself is always equal to 1

1 . 0 = 0 A 1 AND’ed with a 0 is equal to 0

0 + 0 = 0 A 0 OR’ed with itself is always equal to 0

1 + 1 = 1 A 1 OR’ed with itself is always equal to 1

1 + 0 = 1 A 1 OR’ed with a 0 is equal to 1

1̅ = 0 The Inverse (Complement) of a 1 is always equal to

0̅ = 1 The Inverse (Complement) of a 0 is always equal to 1

 Distributive Law – This law permits the multiplying or factoring out of an

expression.

o A(B + C) = A.B + A.C (OR Distributive Law)

o A + (B.C) = (A + B).(A + C) (AND Distributive Law)

 Absorptive Law – This law enables a reduction in a complicated expression

to a simpler one by absorbing like terms.

o A + (A.B) = (A.1) + (A.B) = A(1 + B) = A (OR Absorption Law)

o A(A + B) = (A + 0).(A + B) = A + (0.B) = A (AND Absorption Law)

 Associative Law – This law allows the removal of brackets from an

expression and regrouping of the variables.

o A + (B + C) = (A + B) + C = A + B + C (OR Associate Law)

o A(B.C) = (A.B)C = A . B . C (AND Associate Law)

EXAMPLE

Basic Logic Gates

Logic gates are an important concept if you are studying electronics. These are

important digital devices that are mainly based on the Boolean function. Logic

gates are used to carry out logical operations on single or multiple binary inputs

and give one binary output. In simple terms, logic gates are the electronic

circuits in a digital system.

In this lesson, we will further look at the different types of basic logic gates with

their truth table and understand what each one is designed for.

Table of Content

 Types of Basic Logic Gates

 Truth Table

 Symbolic Representation

 Logic Expressions

https://byjus.com/#types-of-basic-logic-gates

Types of Basic Logic Gates

There are several basic logic gates used in performing operations in digital

systems. The common ones are;

 OR Gate

 AND Gate

 NOT Gate

 XOR Gate

Additionally, these gates can also be found in a combination of one or two.

Therefore we get other gates such as: NAND Gate, NOR Gate, EXOR Gate,

EXNOR Gate.

OR Gate

In OR gate the output of an OR gate attains the state 1 if one or more inputs

attain the state 1.

The Boolean expression of OR gate is Y = A + B, read as Y equals A ‘OR’ B.

The truth table of a two-input OR basic gate is given as;

A B Y (OUTPUT)

0 0 0

0 1 1

1 0 1

1 1 1

AND Gate

In AND gate the output of an AND gate attains the state 1 if and only if all the

inputs are in state 1.

The Boolean expression of AND gate is Y = A.B

The truth table of a two-input AND basic gate is given as;

A B Y(OUTPUT)

0 0 0

0 1 0

1 0 0

1 1 1

NOT Gate

In NOT gate the output of a NOT gate attains the state 1 if and only if the input

does not attain the state 1.

The Boolean expression Y = A, read as Y equals NOT A.

The truth table of NOT gate is as follows;

A Y(OUTPUT)

0 1

1 0

The three gates (OR, AND and NOT), when connected in various combinations,

give us basic logic gates such as NAND, NOR gates, which are the universal

building blocks of digital circuits.

NAND Gate

This basic logic gate is the combination of AND and NOT gate.

The Boolean expression of NAND gate is Y = (A. B)

The truth table of a NAND gate is given as;

A B Y(OUTPUT)

0 0 1

0 1 1

1 0 1

1 1 0

NOR Gate

This gate is the combination of OR and NOT gate.

The Boolean expression of NOR gate is Y = (A + B)

The truth table of a NOR gate is as follows;

A B Y(OUTPUT)

0 0 1

0 1 0

1 0 0

1 1 0

Exclusive-OR gate (XOR Gate)

In XOR gate the output of a two-input XOR gate attains the state 1 if one adds

only input attains the state 1.

The Boolean expression of the XOR gate is A.B +A .B Or

The truth table of an XOR gate is;

A B Y(OUTPUT)

0 0 0

0 1 1

1 0 1

1 1 0

Exclusive-NOR Gate (XNOR Gate)

In XNOR gate the output is in state 1 when its both inputs are the same that is,

both 0 or both 1.

The Boolean expression of XNOR gate

The truth table of an XNOR gate is given below;

A B Y(OUTPUT)

0 0 1

0 1 0

1 0 0

1 1 1

De Morgan’s Theorem

First theorem – It states that the NAND gate is equivalent to a bubbled OR

gate.

(𝐴 . 𝐵) = 𝐴 + 𝐵

Second theorem – It states that the NOR gate is equivalent to a bubbled AND

gate.

(𝐴 + 𝐵) = 𝐴 . 𝐵

Important Conversions

1) The ‘NAND’ gate: From ‘AND’ and ‘NOT’ gate.

Boolean expression and truth table : Y=𝐴. 𝐵̅̅ ̅̅ ̅

A B A⋅B Y=𝐴. 𝐵̅̅ ̅̅ ̅

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

(2) The ‘NOR’ gate: From ‘OR’ and ‘NOT’ gate

Boolean expression and truth table : Y=𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅

A B A+B Y=𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

(3) The ‘XOR’ gate: From ‘NOT’, ‘AND’ and ‘OR’ gate.

The logic gate which gives high output (i.e., 1) if either input A or input B but

not both are high (i.e. 1) is called exclusive OR gate or the XOR gate. It may be

noted that if both the inputs of the XOR gate are high, then the output is low

(i.e., 0).

OR

Boolean expression and truth table: A.B +A .B

 Or Y=A⨁B

A B Y

0 0 0

0 1 1

1 0 1

1 1 0

For A = 0, B = 1 the value of A = 1 and B = 0

Now A.B = 0.0 = 0 and A. B = 1.1 = 1

Thus,Y= A.B +A .B = 0 + 1 = 1

(4) The Exclusive nor (XNOR) gate XOR + NOT

Truth table of Exclusive nor (XNOR)

A B Output

0 0 1

0 1 0

1 0 0

1 1 1

ASSIGNMENT:1

 Verify the Truth Table of XNOR GATE

 Show that (A.�̅� + C).(A+B).C = (A+�̅�).C

In previous topic, we have simplified the Boolean functions using Boolean

postulates and theorems. It is a time consuming process and we have to re-write

the simplified expressions after each step.

To overcome this difficulty, Karnaugh introduced a method for simplification

of Boolean functions in an easy way. This method is known as Karnaugh map

method or K-map method. It is a graphical method, which consists of 2n cells

for ‘n’ variables. The adjacent cells are differed only in single bit position.

K-Maps for 2 to 5 Variables

K-Map method is most suitable for minimizing Boolean functions of 2

variables to 5 variables. Now, let us discuss about the K-Maps for 2 to 5

variables one by one.

2 Variable K-Map

The number of cells in 2 variable K-map is four, since the number of variables

is two let Y and Z here. The following figure shows 2 variable K-Map.

 There is only one possibility of grouping 4 adjacent min terms.

 The possible combinations of grouping 2 adjacent min terms are {(m0,

m1), (m2, m3), (m0, m2) and (m1, m3)}.

3 Variable K-Map

The number of cells in 3 variable K-map is eight, since the number of variables

is three let X, Y and Z here.. The following figure shows 3 variable K-Map.

 There is only one possibility of grouping 8 adjacent min terms.

 The possible combinations of grouping 4 adjacent min terms are {(m0,

m1, m3, m2), (m4, m5, m7, m6), (m0, m1, m4, m5), (m1, m3, m5, m7),

(m3, m2, m7, m6) and (m2, m0, m6, m4)}.

 The possible combinations of grouping 2 adjacent min terms are {(m0,

m1), (m1, m3), (m3, m2), (m2, m0), (m4, m5), (m5, m7), (m7, m6), (m6,

m4), (m0, m4), (m1, m5), (m3, m7) and (m2, m6)}.

 If x= 0, then 3 variable K-map becomes 2 variable K-map.

4 Variable K-Map

The number of cells in 4 variable K-map is sixteen, since the number of

variables is four. The following figure shows 4 variable K-Map.

 There is only one possibility of grouping 16 adjacent min terms.

 Let R1, R2, R3 and R4 represents the min terms of first row, second row,

third row and fourth row respectively. Similarly, C1, C2, C3 and

C4 represents the min terms of first column, second column, third

column and fourth column respectively. The possible combinations of

grouping 8 adjacent min terms are {(R1, R2), (R2, R3), (R3, R4), (R4,

R1), (C1, C2), (C2, C3), (C3, C4), (C4, C1)}.

 If w=0, then 4 variable K-map becomes 3 variable K-map.

5 Variable K-Map

The number of cells in 5 variable K-map is thirty-two, since the number of

variables is 5. The following figure shows 5 variable K-Map.

 There is only one possibility of grouping 32 adjacent min terms.

 There are two possibilities of grouping 16 adjacent min terms. i.e.,

grouping of min terms from m0 to m15 and m16 to m31.

 If v=0, then 5 variable K-map becomes 4 variable K-map.

 In the above all K-maps, we used exclusively the min terms notation.

Similarly, you can use exclusively the Max terms notation.

Minimization of Boolean Functions using K-Maps

If we consider the combination of inputs for which the Boolean function is ‘1’,

then we will get the Boolean function, which is in standard sum of

products form after simplifying the K-map.

Similarly, if we consider the combination of inputs for which the Boolean

function is ‘0’, then we will get the Boolean function, which is in standard

product of sums form after simplifying the K-map.

Follow these rules for simplifying K-maps in order to get standard sum of

products form.

 Select the respective K-map based on the number of variables present in

the Boolean function.

 If the Boolean function is given as sum of min terms form, then place the

ones at respective min term cells in the K-map. If the Boolean function

is given as sum of products form, then place the ones in all possible cells

of K-map for which the given product terms are valid.

 Check for the possibilities of grouping maximum number of adjacent

ones. It should be powers of two. Start from highest power of two and

upto least power of two. Highest power is equal to the number of

variables considered in K-map and least power is zero.

 Each grouping will give either a literal or one product term. It is known

as prime implicant. The prime implicant is said to be essential prime

implicant, if atleast single ‘1’ is not covered with any other groupings

but only that grouping covers.

 Note down all the prime implicants and essential prime implicants. The

simplified Boolean function contains all essential prime implicants and

only the required prime implicants.

Note 1 − If outputs are not defined for some combination of inputs, then those

output values will be represented with don’t care symbol ‘x’. That means, we

can consider them as either ‘0’ or ‘1’.

Note 2 − If don’t care terms also present, then place don’t cares ‘x’ in the

respective cells of K-map. Consider only the don’t cares ‘x’ that are helpful for

grouping maximum number of adjacent ones. In those cases, treat the don’t

care value as ‘1’.

Example

Let us simplify the following Boolean function, fW,X,Y,ZW,X,Y,Z= WX’Y’ +

WY + W’YZ’ using K-map.

The given Boolean function is in sum of products form. It is having 4 variables

W, X, Y & Z. So, we require 4 variable K-map. The 4 variable K-map with

ones corresponding to the given product terms is shown in the following figure.

Here, 1s are placed in the following cells of K-map.

 The cells, which are common to the intersection of Row 4 and columns 1

& 2 are corresponding to the product term, WX’Y’.

 The cells, which are common to the intersection of Rows 3 & 4 and

columns 3 & 4 are corresponding to the product term, WY.

 The cells, which are common to the intersection of Rows 1 & 2 and

column 4 are corresponding to the product term, W’YZ’.

There are no possibilities of grouping either 16 adjacent ones or 8 adjacent

ones. There are three possibilities of grouping 4 adjacent ones. After these

three groupings, there is no single one left as ungrouped. So, we no need to

check for grouping of 2 adjacent ones. The 4 variable K-map with these

three groupings is shown in the following figure.

Here, we got three prime implicants WX’, WY & YZ’. All these prime

implicants are essential because of following reasons.

 Two ones (m8 & m9) of fourth row grouping are not covered by any

other groupings. Only fourth row grouping covers those two ones.

 Single one (m15) of square shape grouping is not covered by any other

groupings. Only the square shape grouping covers that one.

 Two ones (m2 & m6) of fourth column grouping are not covered by any

other groupings. Only fourth column grouping covers those two ones.

Therefore, the simplified Boolean function is

f = WX’ + WY + YZ’

Rules for Simplifying K-maps

Follow these rules for simplifying K-maps in order to get standard product of

sums form.

 Select the respective K-map based on the number of variables present in

the Boolean function.

 If the Boolean function is given as product of Max terms form, then place

the zeroes at respective Max term cells in the K-map. If the Boolean

function is given as product of sums form, then place the zeroes in all

possible cells of K-map for which the given sum terms are valid.

 Check for the possibilities of grouping maximum number of adjacent

zeroes. It should be powers of two. Start from highest power of two and

upto least power of two. Highest power is equal to the number of

variables considered in K-map and least power is zero.

 Each grouping will give either a literal or one sum term. It is known

as prime implicant. The prime implicant is said to be essential prime

implicant, if atleast single ‘0’ is not covered with any other groupings

but only that grouping covers.

 Note down all the prime implicants and essential prime implicants.

The simplified Boolean function contains all essential prime

implicants and only the required prime implicants.

Note − If don’t care terms also present, then place don’t cares ‘x’ in the

respective cells of K-map. Consider only the don’t cares ‘x’ that are helpful for

grouping maximum number of adjacent zeroes. In those cases, treat the don’t

care value as ‘0’.

ADDER (HALF/FULL Adder)

What is ADDER?

In electronics an adder is digital circuit that perform addition of numbers. In

modern computer adder reside in the arithmetic logic unit (ALU).

Adders are important not only in the computer but also in many types of digital

systems in which the numeric data are processed.

Types of adder:

 Half adder

 Full adder

HALF ADDER :

The half adder accepts two binary digits on its inputs and produce two binary

digits outputs, a sum bit and a carry bit.

The half adder is an example of a simple, functional digital circuit built from

two logic gates. The half adder adds inputs as one-bit binary numbers (A and

B). The output is the sum of the two bits (S) and the carry (C).

The block diagram of half adder as shown in figure below:

Note that how the same two inputs are directed to two different gates.

The inputs to the XOR gate are also the inputs to the AND gate. The input

"wires" to the XOR gate are tied to the input wires of the AND gate; thus, when

voltage is applied to the A input of the XOR gate, the A input to the AND gate

receives the same voltage.

HALF ADDER Truth Table

Using the Boolean Expression, we can draw logic diagram as follows

Limitations:

Adding of Carry is not possible in Half adder.

FULL ADDER :

The full adder accepts two inputs bits and an input carry and generates a sum

output and an output carry.

The full-adder circuit adds three one-bit binary numbers (Cin, A ,B) and

outputs two one-bit binary numbers, a sum (S) and a carry (Cout). The full-

adder is usually a component in a cascade of adders, which add 8, 16, 32, etc.

binary numbers.

The block diagram of full adder as shown in figure below:

The Circuit diagram of full adder as shown in figure below:

If you look closely, you'll see the full adder is simply two half adders joined by

an OR as given in figure below.

So We can implement a full adder circuit with the help of two half adder

circuits. The first half adder will be used to add A and B to produce a partial

Sum. The second half adder logic can be used to add Cin to the Sum produced

by the first half adder to get the final S output. If any of the half adder logic

produces a carry, there will be an output carry. Thus, Cout will be an OR

function of the half-adder Carry outputs.

FULL ADDER Truth Table

The equation obtained is,

S = A'B'Cin + AB'Cin' + ABC + A'BCin'

The equation can be simplified as,

S = B'(A'Cin+ACin') + B(AC + A'Cin')

S = B'(A xor Cin) + B (A xor Cin)'

S = A xor B xor Cin

The equation obtained is,

Cout = BCin + AB + ACin

Thus,

Using the Boolean Expression, we can draw logic diagram as follows

ASSIGNMENT:2

 Verify the Logic Diagram of Half Subtractor as:

 Verify the Logic Diagram of Full Subtractor as:

Multiplexer

The multiplexer is a device that has multiple inputs and single line output.

The select lines determine which input is connected to the output, and also

increase the amount of data that can be sent over a network within a certain

time. It is also called a data selector. In multiplexer we have 2n input lines and

1 output lines where n is the number of selection lines.

The single-pole multi-position switch is a simple example of a non-electronic

circuit of the multiplexer, and it is widely used in many electronic circuits. The

multiplexer is used to perform high-speed switching and is constructed

by electronic components.

Multiplexer Types:

Multiplexers are classified into four types:

 2-1 multiplexer (1select line)

 4-1 multiplexer (2 select lines)

 8-1 multiplexer(3 select lines)

 16-1 multiplexer (4 select lines)

https://www.elprocus.com/step-step-guide-build-electronic-circuit/
https://www.elprocus.com/basic-components-used-electronics-electrical/

4-to-1 Multiplexer

The 4X1 multiplexer comprises 4-input bits, 1- output bit, and 2- control

bits. The four input bits are namely D0, D1, D2, and D3, respectively; only one

of the input bits is transmitted to the output. The o/p ‘q’ depends on the value of

control input AB. The control bit AB decides which of the i/p data bit should

transmit the output. The following figure shows the 4X1 multiplexer circuit

diagram using AND gates. For example, when the control bits AB =00, then the

higher AND gates are allowed while remaining AND gates are restricted. Thus,

data input D0 is transmitted to the output ‘q”

If the control input is changed to 11, then all gates are restricted except the

bottom AND gate. In this case, D3 is transmitted to the output, and q=D0. If the

control input is changed to AB =11, all gates are disabled except the bottom

AND gate. In this case, D3 is transmitted to the output, and q = D3. The best

example of a 4X1 multiplexer is IC 74153. In this IC, the o/p is the same as the

i/p. Another example of a 4X1 multiplexer is IC 45352. In this IC, the o/p is

the compliment of the i/p

8-1 Multiplexer Circuit

For the combination of a selection input, the data line is connected to the output

line. The circuit shown below is an 8*1 multiplexer. The 8-to-1 multiplexer

requires 8 AND gates, one OR gate, and 3 selection lines. As an input, the

combination of selection inputs is giving to the AND gate with the

corresponding input data lines.

In a similar fashion, all the AND gates are given connection. In this 8*1

multiplexer, for any selection line input, one AND gate gives a value of 1 and

the remaining all AND gates give 0. And, finally, by using OR gates, all the

AND gates are added; and, this will be equal to the selected value.

Demultiplexer

Demultiplexer is a data distributor which takes a single input and gives several

outputs. In demultiplexer we have 1 input and 2n output lines where n is the

selection line.

The main difference between a multiplexer and a de-multiplexer is that a

multiplexer takes two or more signals and encodes them on a wire, whereas a

de-multiplexer does reverse to what the multiplexer does.

Types of Demultiplexer

Demultiplexers are classified into four types

 1-2 demultiplexer (1 select line)

 1-4 demultiplexer (2 select lines)

 1-8 demultiplexer (3 select lines)

 1-16 demultiplexer (4 select lines)

1-4 Demultiplexer

The 1-to-4 demultiplexer comprises 1- input bit, 4-output bits, and control

bits. The 1X4 demultiplexer circuit diagram is shown below.

The i/p bit is considered as Data D. This data bit is transmitted to the data bit

of the o/p lines, which depends on the AB value and the control i/p.

When the control i/p AB = 01, the upper second AND gate is permitted while

the remaining AND gates are restricted. Thus, only data bit D is transmitted to

the output, and Y1 = Data.

If the data bit D is low, the output Y1 is low. IF data bit D is high, the output Y1

is high. The value of the output Y1 depends upon the value of data bit D, the

remaining outputs are in a low state.

If the control input changes to AB = 10, then all the gates are restricted except

the third AND gate from the top. Then, data bit D is transmitted only to the

output Y2; and, Y2 = Data. . The best example of 1X4 demultiplexer is IC

74155.

8-1 Multiplexer Circuit

For the combination of a selection input, the data line is connected to the output

line. The circuit shown below is an 8*1 multiplexer. The 8-to-1 multiplexer

requires 8 AND gates, one OR gate, and 3 selection lines. As an input, the

combination of selection inputs is giving to the AND gate with the

corresponding input data lines.

In a similar fashion, all the AND gates are given connection. In this 8*1

multiplexer, for any selection line input, one AND gate gives a value of 1 and

the remaining all AND gates give 0. And, finally, by using OR gates, all the

AND gates are added; and, this will be equal to the selected value.

Flip-flop

A flip flop is an electronic circuit with two stable states that can be used to

store binary data. The stored data can be changed by applying varying

inputs. Flip-flops are fundamental building blocks of digital electronics systems

used in computers, communications, and many other types of systems. Flip-

flops are used as data storage elements. It is the basic storage element in

sequential logic.

 SR Flip-Flop

 D Flip-Flop

 JK Flip-Flop

 T Flip-Flop

SR Flip-Flop

This simple flip flop circuit has a set input (S) and a reset input (R). In this

circuit when you Set “S” as active the output Q(t) would be high and Q(t)’ will

be low. Once the outputs are established, the wiring of the circuit is maintained

until “S” or “R” go high, or power is turned off. The two outputs are the

inverse of each other.

https://electronicsforu.com/technology-trends/latest-storage-products

The following table shows the State Table of SR flip-flop.

S R Q Q’

0 0 0 1

0 1 0 1

1 0 1 0

1 1 ∞ ∞

Here, Q(t) & Q(t+1) are present state & next state respectively. So, SR flip-

flop can be used for one of these three functions such as Hold, Reset & Set

based on the input conditions, when positive transition of clock signal is

applied. The following table shows the characteristic table of SR flip-flop.

Present Inputs Present State Next State

S R Q(t) Q(t+1)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 X

1 1 1 X

By using three variable K-Map, we can get the simplified expression for next

state, Q(t+1). The three variable K-Map for next state, Q(t+1) is shown in the

following figure.

The maximum possible groupings of adjacent ones are already shown in the

figure. Therefore, the simplified expression for next state Q(t+1) is

Q(t+1) = S+R′Q(t)

JK Flip-flop

Due to the undefined state in the SR flip flop, another flip flop is required in

electronics. The JK flip flop is an improvement on the SR flip flop where

S=R=1 is not a problem.

This circuit has two inputs J & K and two outputs Q(t) & Q(t)’. The operation

of JK flip-flop is similar to SR flip-flop. Here, we considered the inputs of SR

flip-flop as S = JQ(t)’ and R = KQ(t) in order to utilize the modified SR flip-

flop for 4 combinations of inputs.

The following table shows the State Table of JK flip-flop.

J K Q(t+1)

0 0 Q(t)

0 1 0

1 0 1

1 1 Q(t)'

Here, Q(t) & Q(t+1) are present state & next state respectively. So, JK flip-flop

can be used for one of these four functions such as Hold, Reset, Set &

Complement of present state based on the input conditions, when positive

transition of clock signal is applied. The following table shows

the characteristic table of JK flip-flop.

Present Inputs Present State Next State

J K Q(t) Q(t+1)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

By using three variable K-Map, we can get the simplified expression for next

state, Q(t+1). Three variable K-Map for next state, Q(t+1) is shown in the

following figure.

The maximum possible groupings of adjacent ones are already shown in the

figure. Therefore, the simplified expression for next state Q(t+1) is

Q(t+1) = JQ(t)′+K′Q(t)

D Flip-Flop

D flip-flop operates with only positive clock transitions or negative clock

transitions. That means, the output of D flip-flop is insensitive to the changes

in the input, D except for active transition of the clock signal. The circuit

diagram of D flip-flop is shown in the following figure.

This circuit has single input D and two outputs Q(t) & Q(t)’ The outputs only

when positive transition of the clock signal is applied instead of active enable.

The following table shows the state table of D flip-flop.

D Q(t + 1)

0 0

1 1

Therefore, D flip-flop always hold the information, which is available on data

input, D of earlier positive transition of clock signal. From the above state

table, we can directly write the next state equation as

Q(t+1) = D

T Flip-Flop

T flip-flop is the simplified version of JK flip-flop. It is obtained by

connecting the same input ‘T’ to both inputs of JK flip-flop. It operates with

only positive clock transitions or negative clock transitions. The circuit

diagram of T flip-flop is shown in the following figure.

This circuit has single input T and two outputs Q(t) & Q(t)’. The operation of T

flip-flop is same as that of JK flip-flop. Here, we considered the inputs of JK

flip-flop as J = T and K = T in order to utilize the modified JK flip-flop for

2 combinations of inputs. So, we eliminated the other two combinations of

J & K, for which those two values are complement to each other in T flip-

flop.

The following table shows the state table of T flip-flop.

T Q(t+1)

0 Q(t)

1 Q(t)’

Here, Q(t) & Q(t+1) are present state & next state respectively. So, T flip-flop

can be used for one of these two functions such as Hold, & Complement of

present state based on the input conditions, when positive transition of clock

signal is applied. The following table shows the characteristic table of T flip-

flop.

Inputs Present State Next State

T Q(t) Q(t+1)

0 0 0

0 1 1

1 0 1

1 1 0

From the above characteristic table, we can directly write the next state

equation as

Q(t+1) = T′Q(t) + TQ(t)′

⇒ Q(t+1) = T⊕Q(t)

Shift Registers

One flip-flop can store one-bit of information. In order to store multiple bits

of information, we require multiple flip-flops. So the group of flip-flops group

of flip flops connected in series used to store multiple bits of data, is known

as register.

The bits stored in such registers can be made to move within the registers and

in/out of the registers by applying clock pulses. An ‘N’ bit shift register

contains ‘N’ flip-flops. The registers which will shift the bits to left are called

Shift left registers. The registers which will shift the bits to right are called

Shift right registers.

Four types of shift registers based on applying inputs and accessing of outputs.

 Serial In − Serial Out shift register

 Serial In − Parallel Out shift register

 Parallel In − Serial Out shift register

 Parallel In − Parallel Out shift register

Serial-In Serial-Out Shift Register (SISO)

This block diagram consists of three D flip-flops, which are cascaded. That

means, output of one D flip-flop is connected as the input of next D flip-flop.

All these flip-flops are synchronous with each other since, the same clock

signal is applied to each one.

In this shift register, we can send the bits serially from the input of left most D

flip-flop. Hence, this input is also called as serial input.

For every positive edge triggering of clock signal, the data shifts from one

stage to the next. So, we can receive the bits serially from the output of right

most D flip-flop. Hence, this output is also called as serial output.

Example

The working of 3-bit SISO shift register by sending the binary

information “011” from LSB to MSB serially at the input.

Let initial status of the D flip-flops from left to rightmost is Q2Q1Q0 = 000. We

can understand the working of 3-bit SISO shift register from the following

table.

No of positive edge of

Clock

Serial Input Q2 Q1 Q0

0 - 0 0 0

1 1 at LSB 1 0 0

2 1 1 1 0

3 0 at MSB 0 1 1 at LSB

4 - - 0 1

5 - - - 0 at MSB

Therefore, the N-bit SISO shift register requires 2N-1 clock pulses in order

to shift ‘N’ bit information.

Serial-In Parallel-Out Shift Register (SIPO)

The shift register, which allows serial input (one bit after the other through a

single data line) and produces a parallel output is known as Serial-In Parallel-

Out shift register.

This circuit consists of three D flip-flops, which are cascaded. That means,

output of one D flip-flop is connected as the input of next D flip-flop. All these

flip-flops are synchronous with each other since, the same clock signal is

applied to each one.

Example

The working of 3-bit SIPO shift register by sending the binary

information “011” from LSB to MSB serially at the input.

Let initial status of the D flip-flops from left to rightmost is Q2Q1Q0 = 000.

Here, Q2 & Q0 are MSB & LSB respectively.

The N-bit SIPO shift register requires N clock pulses in order to shift ‘N’ bit

information.

We can understand the working of 3-bit SIPO shift register from the following

table.

No of positive edge of

Clock

Serial Input Q2MSB Q1 Q0LSB

0 - 0 0 0

1 1 at LSB 1 0 0

2 1 1 1 0

3 0 at MSB 0 1 1

Parallel-In Serial-Out Shift Register (PISO)

The shift register, which allows parallel input (data is given separately to each

flip flop and in a simultaneous manner) and produces a serial output is known

as Parallel-In Serial-Out shift register. The block diagram of 3-bit PISO shift

register is shown in the following figure.

This circuit consists of three D flip-flops, which are cascaded. That means,

output of one D flip-flop is connected as the input of next D flip-flop. All these

flip-flops are synchronous with each other since, the same clock signal is

applied to each one.

In this shift register, we can apply the parallel inputs to each D flip-flop by

making Pre-set Enable to 1. For every positive edge triggering of clock signal,

the data shifts from one stage to the next. So, we will get the serial output from

the right most D flip-flop.

Example

Let us see the working of 3-bit PISO shift register by applying the binary

information “011” in parallel through pre-set inputs.

Since the pre-set inputs are applied before positive edge of Clock, the initial

status of the D flip-flops from leftmost to rightmost will be Q2Q1Q0 = 011. We

can understand the working of 3-bit PISO shift register from the following

table.

No of positive edge of
Clock

Q2 Q1 Q0

0 0 1 1 at LSB

1 - 0 1

2 - - 0 at MSB

Thus N-bit PISO shift register requires N-1 clock pulses in order to shift ‘N’

bit information.

Parallel-In Parallel-Out Shift Register (PIPO)

The shift register, which allows parallel input (data is given separately to each

flip flop and in a simultaneous manner) and also produces a parallel output is

known as Parallel-In parallel-Out shift register.

The block diagram of 3-bit PIPO shift register is shown in the following figure.

This circuit consists of three D flip-flops, which are cascaded. That means,

output of one D flip-flop is connected as the input of next D flip-flop. All these

flip-flops are synchronous with each other since, the same clock signal is

applied to each one.

In this shift register, we can apply the parallel inputs to each D flip-flop by

making Pre-set Enable to 1. We can apply the parallel inputs through pre-set or

clear. These two are asynchronous inputs. That means, the flip-flops produce

the corresponding outputs, based on the values of asynchronous inputs. In

this case, the effect of outputs is independent of clock transition. So, we

will get the parallel outputs from each D flip-flop.

Example

Let us see the working of 3-bit PIPO shift register by applying the binary

information “011” in parallel through pre-set inputs.

Since the pre-set inputs are applied before positive edge of Clock, the initial

status of the D flip-flops from leftmost to rightmost will be Q2Q1Q0 = 011. So,

the binary information “011” is obtained in parallel at the outputs of D flip-

flops before applying positive edge of clock.

Thus the N-bit PIPO shift register doesn’t require any clock pulse in order to

shift ‘N’ bit information.

ASSIGNMENT:3

 Find difference between MUX and DE-MUX

 Applications of Flip-Flops and Shift Registers

Counters

Counter is a device which stores and displays the number of times a

particular event or process has occurred. It is a group of flip-flops with a

clock signal applied or we can say counters are used in digital electronics for

counting purpose, they can count specific event happening in the circuit. An

‘N’ bit binary counter consists of ‘N’ flip-flops. If the counter counts from 0

to 2N − 1, then it is called as binary up counter. Similarly, if the counter counts

down from 2N− 1 to 0, then it is called as binary down counter.

Counters are of two types.

 Asynchronous or ripple counters.

 Synchronous counters.

Asynchronous Counter

Asynchronous stands for the absence of synchronization or Asynchronous

stands for controlling the operation timing by sending a pulse only when the

previous operation is completed rather than sending it in regular intervals.

In asynchronous counter we don’t use universal clock, only first flip flop is

driven by main clock and the clock input of rest of the following flip flop is

driven by output of previous flip flops. Flip-flops are serially connected

together, and the clock pulse ripples through the counter. Due to the ripple clock

pulse, it’s often called a RIPPLE counter.

An Asynchronous counter can count 2n - 1 possible counting state. The T flip-

flop or JK flip-flop are being used to design asynchronous counter. We can

understand it by following diagram

https://en.wikipedia.org/wiki/Counter_(digital)

It is evident from timing diagram that Q0 is changing as soon as the rising edge

of clock pulse is encountered, Q1 is changing when rising edge of Q0 is

encountered (because Q0 is like clock pulse for second flip flop) and so on. In

this way ripples are generated through Q0,Q1,Q2,Q3 hence it is also

called RIPPLE counter.

Synchronous Counter

Unlike the asynchronous counter, synchronous counter has one global clock

which drives each flip flop so output changes in parallel. The one advantage of

synchronous counter over asynchronous counter is, it can operate on higher

frequency than asynchronous counter as it does not have cumulative delay

because of same clock is given to each flip flop. We can understand it by

following diagram

From circuit diagram we see that Q0 bit gives response to each falling edge of

clock while Q1 is dependent on Q0, Q2 is dependent on Q1 and Q0, Q3 is

dependent on Q2,Q1 and Q0.

Microprocessor and Microcontroller

At the basic level, a microprocessor and micro controller exist for performing

some operations they are fetching instructions from the memory and executing

this instruction (arithmetic or logic operations) and the result of these

executions are used to serve to output devices.

Microprocessors in most cases will begin with Intel 8085

and Microcontrollers with Intel 8051 from the MCS 51 micro controller

family,

Microprocessor

A microprocessor is a controlling unit of a micro-computer wrapped inside a

small chip. It performs Arithmetic Logical Unit (ALU) operations and

communicates with the other devices connected with it. It is a single Integrated

Circuit in which several functions are combined.

Microprocessor that has many support devices like Read-only memory, Read-

Write memory, Serial interface, Timer, Input/Output ports, etc. All these

support devices are interfaced to the microprocessor via a system bus. So one

point is clear now, all support devices in a microprocessor-based system are

external. The system bus is composed of an address bus, data bus, and control

bus.

Microcontroller

A microcontroller is a chip optimized to control electronic devices. It is stored

in a single integrated circuit which is dedicated to performing a particular task

and executes one specific application.

It is specially designed circuits for embedded applications and is widely used in

automatically controlled electronic devices. It contains memory, processor, and

programmable I/O.

All the support devices like Read-only memory, Read-Write memory, Timer,

Serial interface, I/O ports are internal. There is no need for interfacing these

support devices and this saves a lot of time for the individual who creates the

system

Difference between Microcontroller vs Microprocessor

8051 Microcontroller

• It houses 8 bit CPU and 4 KByte ROM used for code or program storage

• 128 Byte RAM to store data or variables used in program

• 32 Input/Output lines with 4 ports (8 lines per port)

• 2 Timers used for putting delay & setting baud rate for data communication.

• 1 Serial Port with one TxD and RxD line used for serial communication with

external devices.

• 6 Interrupt Sources and Clock oscillator circuit runs at 12MHz frequency.

https://www.rfwireless-world.com/Terminology/microcontroller-versus-microprocessor.html

8085 Microprocessor

• It is 8 bit size processor developed as single chip using N-MOS.

• It has multiplexed address and data bus on 8 lines AD0 to AD7.

• The maximum clock frequency used in 8085 is 3 MHz.

• It has 40 pins and runs at 5V power supply.

• There are 5 hardware interrupts viz. TRAP, INTR, RST5.5, RST6.5, RST7.5

• It has about 74 programming instructions with 4 addressing modes.

• It does not house memory, but it has 16 address lines which can access 64K

bytes (216) of externally connected memory.

• It has 8 bit lines which can address 256 (~28) ports connected externally.

• It has two serial lines viz. SID and SOD. These can be connected with serial

peripherals.

• It consists of ACC, one flag register, 6 general purpose registers and two

special registers (SP-Stack Pointer, PC-Program Counter).

ASSIGNMENT:4

 Find applications of Microcontroller and Microprocessor

 What is Asynchronous up and down counter, Explain?

Designed by: Vipra Bohara

Assistant Professor

JECRC, Sitapura, Jaipur.

https://www.rfwireless-world.com/Terminology/microcontroller-versus-microprocessor.html

	Analog And Digital Signal
	Analog Signals
	Digital Signals

	Difference Between Analog And Digital Signal
	Boolean Algebra
	Truth Tables for the Laws of Boolean
	Description of the Laws of Boolean Algebra

	Basic Logic Gates
	Table of Content

	Types of Basic Logic Gates
	OR Gate
	AND Gate
	NOT Gate
	NAND Gate
	NOR Gate
	Exclusive-OR gate (XOR Gate)
	Exclusive-NOR Gate (XNOR Gate)
	De Morgan’s Theorem
	Important Conversions

	K-Maps for 2 to 5 Variables
	2 Variable K-Map
	3 Variable K-Map
	4 Variable K-Map
	5 Variable K-Map

	ADDER (HALF/FULL Adder)
	Multiplexer
	Demultiplexer
	8-1 Multiplexer Circuit

	Flip-flop
	SR Flip-Flop
	This simple flip flop circuit has a set input (S) and a reset input (R). In this circuit when you Set “S” as active the output Q(t) would be high and Q(t)’ will be low. Once the outputs are established, the wiring of the circuit is maintained until “S...
	The following table shows the State Table of SR flip-flop.
	JK Flip-flop
	D Flip-Flop
	T Flip-Flop

	Shift Registers
	Serial-In Serial-Out Shift Register (SISO)
	Example
	Serial-In Parallel-Out Shift Register (SIPO)
	Example (1)
	Parallel-In Serial-Out Shift Register (PISO)
	Example (2)
	Parallel-In Parallel-Out Shift Register (PIPO)
	Example (3)

	Counters
	Microprocessor and Microcontroller

