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UNIT-5 
 

Deflections of beams 

Introduction 

We showed that the loading actions at any section of a simply-supported beam or 

cantilever can be resolved into a bending moment and a shearing force. 

Subsequently, in unit 3 and 4, we discussed ways of estimating the stresses due to 

these bending moments and shearing forces. There is, however, another aspect of 

the problem of bending which remains to be treated, namely, the calculation of the 

stiffness of a beam. In most practical cases, it is necessary that a beam should be 

not only strong enough for its purpose, but also that it should have the requisite 

stiffness, that is, it should not deflect from its original position by more than a 

certain amount. Again, there are certain types of beams, such as those clamped by 

more than two supports and beams with their ends held in such a way that they 

must keep their original directions, for which we cannot calculate bending 

moments and shearing forces without studying the deformations of the axis of the 

beam; these problems are statically indeterminate, in fact. 

In this chapter we consider methods of finding the deflected form of a beam 

under a given system of external loads and having known conditions of support. 

 

Elastic bending of straight beams 

 
It was shown that a straight beam of uniform cross-section, when subjected to 
 end couples M applied about a principal axis, bends into a circular arc of radius R, 

given by 

where EI, which is the product of Young's modulus E and the second moment of 

area I about the relevant principal axis, is the flexural stiffness of the beam; 

equation holds only for elastic bending. 

Where a beam is subjected to shearing forces, as well as bending moments, the 

axis of the beam is no longer bent to a circular arc. To deal with this type of 

problem, we assume that equation. still defines the radius of curvature at any point 

of the beam where the bending moment is M. This implies that where the bending 

moment varies from one section of the beam to another, the radius of curvature 

also vanes from section to section, in accordance with equation . 

In the unstrained condition of the beam, Cz is the longitudinal centroidal axis, 

Figure, and Cx, Cy are the principal axes in the cross-section. The co-ordinate axes 

Cx, Cy are so arranged that the y-axis is vertically downwards. This is convenient 

as most practical loading conditions give rise to vertically downwards deflections. 

Suppose bending moments are applied about axes parallel to Cx, so that bending  



is restricted to the yz-plane, because Cx and Cy are principal axes. 

 
 

 

 

Figure Longitudinal and 

principal centroidal axis for a 

straight beam. 

 
Figure Displacements of the longitudinal 
axis of  the beam. 

 

 

Consider a short length of the unstrained beam, corresponding with D F on the axis  

Cz, Figure 5.2. In the strained condition D and F are dsplaced to D' and F', respectively, 
which lies in the yz-plane. Any point such as D on the axis Cz is displaced by an amount 
v parallel to Cy; it is also hsplaced a small, but negligible, amount parallel to Cz. 

The radius of curvature R at any section of the beam is then given by 

- 

 

We are concerned generally with only small deflections, in which v is small; this 

implies that (dv/dz) is small, and that (dv/dz)2 eligible compared with unity. Then, 

with sufficient accuracy, we may write 

 

The equations give 

 
 

 

We must now consider whether the positive or negative sign is relevant in this 

equation; we have already adopted the convention in Section 4.4 that sagging 

bending moments are positive. When a length of the beam is subjected to sagging 



bending moments, as in Figure, the value of (dv/dz)along the length diminishes 

as z increases; hence a sagging moment implies that the curvature is negative. 

Then 

 

where M is the sagging bending moment. 



 

Figure: Curvature induced by 

sagging bending moment. 

Figure: Deflected form of a beam 

    in pure bending. 

 

 

Where the beam is loaded on its axis of shear centres, so that no twisting occurs, 
M may be written in terms of shearing force F and intensity w of vertical loading 
at any section. From equation we have 

 

On substituting for M from equation , we have 

 
 

Thls relation is true if EI vanes from one section of a beam to another. Where 
El is constant along the length of a beam, 

 

As an example of the use of equation , consider the case of a uniform beam carrying 

couples 

D at its ends, Figure. The bending moment at any section is M , so the beam is 
under a constant bendmg moment. Equation gives 

 



 



where A is a constant. On integrating once more 

where B is another constant. If we measure v relative to a line CD joining the 

ends of the beam, vis zero at each end. Then v = 0, for z = 0 and z = L. 
On substituting these two conditions into equation, we have 

 

The equation may be written 

 
It is important to appreciate that equation, expressing the radius of curvature R 
in terms of v, is only true if the displacement v is small. 

 

 

Figure Distortion of a beam in pure bending. 



Elastic bending of straight beams 299 

 
We can study more accurately the pure bending of a beam by considering it to be 
deformed into the arc of a circle, Figure; as the bending moment M is constant at 
all sections of the beam, the radius of curvature R is the same for all sections. If L 
is the length between the ends, Figure, and D is the mid-point, 

 

Thus the central deflection v, is 

 
Clearly, if (L2/4R2)is negligible compared with unity we have, approximately, 

 

 



which agrees with equation . The more accurate equation shows that, when (L2/4R2) 



is not negligible, the relationship between v and M is non-linear; for all practical 
purposes this refinement is unimportant, and we find simple linear relationships 
of the type of equation are sufficiently accurate for engineering purposes. 

 

Simply-supported beam carrying a uniformly distributed load 

A beam of uniform flexural stiffness EI and span L is simply-supported at its ends, 

Figure 13.6; it carries a uniformly distributed lateral load of w per unit length, 

which induces bending in the yz plane only. Then the reactions at the ends are 

each equal to 1/2wL; if z is measured from the end C, the bending moment at a 

distance z from C is 

 

Figure Simply-supported beam carrying a uniformly supported load. 

 

 



Then from equation, 



Cantilever with a concentrated load  

 

Then equation becomes 

 

 

 

 

Cantilever with a concentrated load 

 
B uniform cantilever of flexural stiffness Eland length L carries a vertical 
concentrated load Wat the free end, Figure 13.7. The bending moment a 
distance z from the built-in end is 

 

 

 

Figure Cantilever carrying a vertical load at the remote end. 

 

 



Hence equation gives 



 

At the end z = 0, there is zero slope in the deflected form, so that dv/dz = 0; then 

equation gives 

A = 0. Furthermore, at z = 0 there is also no deflection, so that B = 0. Then 

 

 
When the cantilever is loaded at some point between the ends, at a distance a, 

say, from the built-in support, Figure, the beam between G and D carries no 
bending moments and therefore remains straight. The deflection at G can be 



deduced from equation ; for z = a, 

Figure Cantilever with a load applied between the ends. 



 
 

 

 

 

Cantilever with a uniformly distributed load 

A uniform cantilever, Figure, carries a uniformly distributed load of w per unit 

length over the whole of its length. The bending moment at a distance z from 

C is 

Then, from equation (13.5), 

 

Figure Cantilever carrying a uniformly distributed load. 





 

 

 

 



Thin shells under internal pressure 

 

Thin cylindrical shell of circular cross-section 

A problem in which combined stresses are present is that of a cylindrical shell 
under internal pressure. Suppose a long circular shell is subjected to an internal 
pressure p, which may be due to a fluid or gas enclosed w i b the cylinder, Figure. 
The internal pressure acting on the long sides of the cylinder gives rise to a 
circumferential stress in the wall of the cylinder; if the ends of the cylinder are 
closed, the pressure acting on these ends is transmitted to the walls of the cylinder, 
thus producing a longitudinal stress in the walls. 

 

 

 

 

 

 

 

 
Figure  
  Long thin cylindrical shell with Figure  Circumferential and longitudinal 

closed ends under internal 

pressure. 

stresses in a thin 
cylinderwithclosed ends 

under internal pressure. 

 

Suppose r is the mean radius of the cylinder, and that its thickness t is small 

compared with r. Consider a unit length of the cylinder remote from the closed 

ends, Figure; suppose we cut t h ~ s unit length with a diametral plane, as in 



Figure. The tensile stresses acting on the cut sections are o,, acting 

circumferentially, and 02,acting longitudinally. There is an internal pressure p on 



the inside of the half-shell. Consider equilibrium of the half-shell in a plane 
perpendcular to the axis of the cylinder, as in Figure ; the total force due to the 
internal pressure p in the direction OA is 

 

p x (2r x 1) 

 
because we are dealing with a unit length of the cylinder. This force is opposed by 
the stresses a,; for equilibrium we must have 

 

Then 

 

 

 

 

We shall call this the circumferential (or hoop) stress. 

 

 

Figure Derivation of circumferential stress. Figure Derivation of 

longitudinal stress. 

 

 

Now consider any transverse cross-section of the cylinder remote from the ends, 

Figure 6.4; 

the total longitudinal force on each closed end due to internal pressure is 

 

At any section this is resisted by the internal stresses a2,Figure 6.4. For equilibrium 

we must have 



 



 
 

 

 

 

 

 

Figure Stresses acting on an element of the wall 

of a circular cylindrical shell with closed 

ends under internal pressure. 

 

 

 

 

(ii) (iii) 



 
 

Since p is negligible compared with G,;again, in the plane of Sigma and p, the 
maximum shearing stress is 

 

 

The greatest of these maximum shearing stresses is given by equation (6.3); it 

occurs on a plane at 45" to the tangent and parallel to the longitudinal axis of the 

cylinder, Figure 6.5(iii). 

The circumferential and longitudinal stresses are accompanied by direct 
strains. If the material of the cylinder is elastic, the corresponding strains are 
given by 

 

 

 

The circumference of the cylinder increases therefore by a small amount 2πre,; 

the increase in mean radius is therefore 'E, The increase in length of a unit length 

of the cylinder is E,, so the change in internal volume of a unit length of the 

cylinder is 



 

 



Thin spherical shell 

We consider next a thin spherical shell of means radius r, and thickness t, which 
is subjected to an internal pressure p . Consider any diameter plane through the 

shell, Figure ; the total force normal to this plane due t o p acting on a hemisphere 

is 

 

Figure Membrane stresses in a thin spherical shell under internal pressure. 

 

 

This is opposed by a tensile stress (I in the walls of the shell. By symmetry (I is 

the same at all points of the shell; for equilibrium of the hemisphere we must have 

 

This gives 

 

 

At any point of the shell the direct stress (I has the same magnitude in all directions 

in the plane  of the surface of the shell; the state of stress is shown in Figure (ii). 

A s p is small compared with (I, the maximum shearing stress occurs on planes at 

45' to the tangent plane at any point. 
I f the shell remains elastic, the circumference of the sphere in any diametral 

plane is strained an amount 
 



 



Equation is intended for determining membrane stresses in a perfect thin-walled 

spherical shell. If, however, the spherical shell is fabricated, so that its joint is 

weaker than the remainder of the shell, then equation takes on the following 

modified form: 

 

 

 

 

Cylindrical shell with hemispherical ends 

 

Some pressure vessels are fabricated with hemispherical ends; this has the 

advantage of reducing the bending stresses in the cylinder when the ends are flat. 

Suppose the thicknesses t, and t2 of the cylindrical section and the hemispherical 

end, respectively , are proportioned so that the radial expansion is the same for 

both cylinder and hemisphere; in this way we eliminate bending stresses at the 

junction of the two parts. 

 

 

 

 

 

Figure Cylindrical shell with hemispherical ends, so 

Designed as to minimize the effects of bending stresses. 

 

From equations, the circumferential strain in the cylinder is 

 

 

 



and from equation the circumferential strain in the hemisphere is 
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