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Topic to be discussed

Elementary definition of stress and strain, stress-strain relationship

Elastic, plastic and visco-elastic behavior of common
materials in tension and compression test

Stress-strain curves, Hooke’s law, Poisson’s ratio

Elastic constants and their relations for an isotropic
hookean material, anisotropic and orthotropic materials

Tension, compression, shearing stress and strain
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Thermal stresses, composite bars, equations of static
equilibrium

Concept of free body diagram. Strain energy due to
axial loading.
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UNIT-1
Tension and compression and direct stress

Introduction

The strength of a material, whatever its nature, is defined largely by the internal
stresses, or intensities of force, in the material. A knowledge of these stresses is
essential to the safe design of a machine, aircraft, or any type of structure. Most
practical structures consist of complex arrangements of many component
members; an aircraft fuselage, for example, usually consists of an elaborate
system of interconnected sheeting, longitudinal stringers, and transverse rings.
The detailed stress analysis of such a structure is a difficult task, even when the
loading conditions are simple. The problem is complicated further because the
loads experienced by a structure are variable and sometimes unpredictable. We
shall be concerned mainly with stresses in materials under relatively simple
loading conditions; we begin with a discussion of the behaviour of a stretched
wire, and introduce the concepts of direct stress and strain.

Stretching of a steel wire

One of the simplest loading conditions of a material is that of tension, in which
the fibres of the material are stretched. Consider, for example, a long steel wire
held rigidly at its upper end, Figure 1.1, and loaded by a mass hung from the lower
end. If vertical movements of the lower end are observed during loading it will be
found that the wire is stretched by a small, but measurable, amount from its
original unloaded length. The material of the wire is composed of a large number
of small crystals which are only visible under a microscopic study; these crystals
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Figure 1.1  Stretching of a steel wire under end load.

have irregularly shaped boundaries, and largely random orientations with
respect to each other; as loads are applied to the wire, the crystal structure of the
metal is distorted.



For small loads it is found that the extension of the wire is roughly proportional to
the applied load, Figure 1.2. Thislinear relationship between load and extension
was discovered by Robert Hooke in 1678; a material showing this characteristic is
said to obey Hooke's law.

As the tensile load in the wire is increased, a stage is reached where the material
ceases to show this linear characteristic; the corresponding point on the load-
extension curve of Figure
1.2is known as the limit of proportionality. If the wire is made from a hgh-strength
steel then the load-extension curve up to the breakingpoint has the form shown in
Figure 1.2. Beyond the limit of proportionality the extension of the wire increases
non-linearly up to the elastic limit and, eventually, the breaking point.

The elastic h u t is important because it divides the load-extension curve into
two regions. For loads up to the elastic limit, the wire returns to its original
unstretched length on removal of the loads; tlusproperly of a material to recover
its original form on removal of the loads is known as elasticity; the steel wire
behaves, in fact, as a still elastic spring. When loads are applied above the elastic
limit, and are then removed, it is found that the wire recovers only part of its
extension and is stretched permanently; in tlus condition the wire is said to have
undergone an inelastic, or plastic, extension. For most materials, the limit of
proportionality and the elastic limit are assumed to have the same value.

In the case of elastic extensions, work performed in stretching the wire is stored
as strain energy in the material; this energy is recovered when the loads are
removed. During inelastic extensions, work is performed in makmg permanent
changes in the internal structure of the material; not all the work performed during
an inelastic extension is recoverable on removal of the loads; this energy reappears
in other forms, mainly as heat.

The load-extension curve of Figure is not typical of all materials; it is
reasonably typical, however, of the behaviour of brittle materials, which are
discussed more fully in Section 1.5. An important feature of most engineering
materials is that they behave elastically up to the limit of proportionality, that is,
all extensions are recoverable for loads up to this limit. The concepts of linearity
and elasticity' form the basis of the theory of small deformations in stressed
materials.
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Figure 1.2Load-extension curve for a steel wire, showing the limit of linear-elastic
behavior (or limit of proportionality) and the breaking point.



Tensile and compressive stresses

The wire of Figure was pulled by the action of a mass attached to the lower end;
in this condition the wire is in tension. Consider a cylindrical bar ab, Figure 1.3,
which has a uniform cross-section throughout its length. Suppose that at each end
of the bar the cross- section is dwided into small elements of equal area; the cross-
sections are taken normal to the longitudinal axis of the bar. To each of these
elemental areas an equal tensile load is applied normal to the cross-section and
parallel to the longitudinal axis of the bar. The bar is then uniformly stressed in
tension.

Suppose the total load on the end cross-sections is P; if an imaginary break is
made perpendicular to the axis of the bar at the section c, Figure, then equal forces
P are required at the section ¢ to maintain equilibrium of the lengths ac and cb.
This is equally true for any section across the bar, and hence on any imaginary
section perpendicular to the axis of the bar there is a total force P.

When tensile tests are carried out on steel wires of the same material, but of
different cross-sectional area, the breaking loads are found to be proportional
approximately to the respective cross-sectional areas of the wires. This is so
because the tensile strength is governed by the intensity of force on a normal
cross-section of a wire, and not by the total force. This intensity of force is known
as stress; in Figure the tensile stress (T at any normal cross-section of the bar is

where P is the total force on a cross-section and A is the area of the cross-section.



Figure 1.3 Cylindrical bar under uniform tensile stress;
there is a similar state of tensile stress over any
imaginary normal cross-section.



In Figure uniform stressing of the bar was ensured by applying equal loads to equal
small areas at the ends of the bar. In general we are not dealing with equal force
intensities of this type, and a more precise definition of stress is required. Suppose
6A is an element of area of the cross- section of the bar, Figure ; if the normal
force acting on thls element is 6P, then the tensile stress at this point of the cross-
section is defined as the limiting value of the ratio (6P/6A) as 6A becomes
infinitesimally small. Thus

¢ = Limit —= —
54—0 64 dA

Thls definition of stress is used in studying problems of non-uniform stress
distribution in materials.

P

Figure 1.4 Normal load on an element of area of the cross-section.

When the forces P in Figure 1 are reversed in direction at each end of the bar they
tend to compress the bar; the loads then give rise to compressive stresses. Tensile
and compressive stresses are together referred to as direct (or normal) stresses,
because they act perpendicularly to the surface.

Tensile and compressive strains

In the steel wire experiment of Figure we discussed the extension of the whole
wire. If we measure the extension of, say, the lowest quarter-length of the wire we
find that for a given load it is equal to a quarter of the extension of the whole wire.
In general we find that, at a given load, the ratio of the extension of any length to
that length is constant for all parts of the wire; this ratio is knownasthe tensile
strain.

Suppose the initial unstrained length of the wire is Lo, and the e is the extension
due to straining; the tensile strain E is defined as



Thls definition of strain is useful only for small distortions, in which the extension
e is small compared with the original length Lo; this definition is adequate for the
study of most engineering problems, where we are concerned with values of E of
the order 0.001, or so.

If a material is compressed the resulting strain is defined in a similar way,
except that e is the contraction of a length.

We note that strain is a Ron-dimensional quantity, being the ratio of the
extension, or contraction, of a bar to its original length.

Stress-strain curves for brittle materials

Many of the characteristics of a material can be deduced from the tensile test. In
the experiment of 1 we measured the extensions of the wire for increasing loads;
it is more convenient to compare materials in terms of stresses and strains, rather
than loads and extensions of a particular specimen of a material.

The tensile stress-struin curve for a hgh-strength steel has the form shown in
Figure 1.5. The stress at any stage is the ratio of the load of the original cross-
sectional area of the test specimen; the strain is the elongation of a unit length of
the test specimen. For stresses up to about 750 MNIm2the stress-strain curve is
linear, showing that the material obeys Hooke’s law in this range; the material is
also elastic in this range, and no permanent extensions remain after removal of the
stresses. The ratio of stress to strain for this linear region is usually about 200
GN/m2for steels; this ratio is known as Young’s modulus and is denoted by E. The
strain at the limit of proportionality is of the order 0.003, and is small compared
with strains of the order 0.100 at fracture.
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Figure 1.5:Tensile stress-strain curve for a high-strength steel.



for the linear-elastic range. If P is the total tensile load in a bar, A its cross-sectional
area, and
Lo its length, then

c P/ A

E = =
€ e/ L,

where e is the extension of the length Lo. Thus the expansion is given by

PL,
EA
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If the material is stressed beyond the linear-elastic range the limit of
proportionality is exceeded, and the strains increase non-linearly with the stresses.
Moreover, removal of the stress leaves the material with some permanent
extension; hrange is then bothnon-linear and inelastic. The maximum stress
attained may be of the order of 1500 MNIm’, and the total extension, or
elongation, at this stage may be of the order of 10%.

The curve of 5 is typical of the behaviour of brittle materials-as, for example,
area characterized by small permanent elongation at the breaking point; in the
case of metals this is usually 10%, or less.

When a material is stressed beyond the limit of proportionality and is then
unloaded, permanent deformations of the material take place. Suppose the tensile
test-specimen of 5 is stressed beyond the limit of proportionality, (point a in
Figure 1.5), to a point b on the stress- strain diagram. If the stress is now removed,
the stress-strain relation follows the curve bc; when the stress is completely
removed there is a residual strain given by the intercept Oc on the &- axis. If the
stress is applied again, the stress-strain relation follows the curve cd initially, and
finally the curve df to the breaking point. Both the unloading curve bc and the
reloading curve cd are approximately parallel to the elastic line Oa;they are
curved slightly in opposite directions. The process of unloading and reloading,
bcd, had little or no effect on the stress at the breaking point, the stress-strain
curve being interrupted by only a small amount bd, 6.

The stress-strain curves of brittle materials for tension and compression are
usually similar in form, although the stresses at the limit of proportionality and
at fracture may be very different for the twoloading conditions. Typical tensile
and compressive stress-strain curves for concrete are shown in 7; the maximum
stress attainable in tension is only about one-tenth of that in compression,
although the slopes of the stress-strain curves in the region of zero stress are
nearly equal.



Ductile materials

A brittle material is one showing relatively little elongation at fracture in the tensile
test; by contrast some materials, such as mild steel, copper, and synthetic polymers,
may be stretched appreciably before breaking. These latter materials are ductile in
character.

If tensile and compressive tests are made on a mild steel, the resulting
stress-strain curves are different in form from those of a brittle material, such
as a high-strength steel. If a tensile test



Specimen of mild steel is loaded axially, the stress-strain curve is linear and elastic
up to a point a, 8; the small strain region of 8. is reproduced to a larger scale in 3.
The ratio of stress to strain, or Young’s modulus, for the linear portion Oa is
usually about 200 GN/m2, ie, 200 x109 N/m2. The tensile stress at the point a is
of order 300 MN/m2, i.e. 300 x lo6 N/m2. If the test specimen is strained beyond
the point a, Figures 1.8 and 1.9, the stress must be reduced almost immediately to
maintain equilibrium; the reduction of stress, ab, takes place rapidly, and the form
of the curve ab is difficult to define precisely. Continued straining proceeds at a
roughly constant stress along bc. In the range of strains from a to ¢ the material is
said to yield; a is the upper yield point, and b the lower yield point. Yielding at
constant stress along bc proceeds usually to a strain about 40 times greater than
that at a; beyond the point ¢ the material strain-hardens, and stress again increases
with strain where the slope from c to d is about 1150th that from O to a . The stress
for a tensile specimen attains a maximum value at d if the stress is evaluated on
the basis of the original cross-sectional area of the bar; the stress corresponding to
the point d is known as the ultimate stress, (T, of the material. Fromd to f there is
a reduction in the nominal stress until fracture occurs at The ultimate stress in
tension is attained at a stage when necking begins; this is a reduction of area at a
relatively weak cross-section of the test specimen. It is usual to measure the
diameter of the neck after fracture, and to evaluate a true stress at fracture, based
on the breaking load and the reduced cross-sectional area at the neck. Necking and
considerable elongation before fracture are characteristics of ductile materials;
there is little or no necking at fracture for brittle materials.
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Tensile stress-strain curve for an annealed mild steel, showing the drop in stress
at Upper and lower yield points of ayielding from the upper yield point a to the
lower mild steel yield point b.



Compressive tests of mild steel give stress-strain curves similar to those for
tension. If we consider tensile stresses and strains as positive, and compressive
stresses and strains as negative, we can plot the tensile and compressive stress-
strain curves on the same diagram; 10 shows the stress- strain curves for an
annealed mild steel. In determining the stress-strain curves experimentally, it is
important to ensure that the bar is loaded axially; with even small eccentricities
of loading the stress distribution over any cross-section of the bar is non uniform,
and the upper yield point stress is not attained in all fibres of the material
simultaneously. For this reason the lower yield point stress is taken usually as a
more realistic definition of yielding of the material. Some ductile materials show
no clearly defined upper yield stress; for these materials the limit of
proportionality may be lower than the stress for continuous yielding. The term
yieldstress refers to the stress for continuous yielding of a material; this implies
the lower yield stress for a material in which an upper yield point exists; the yield
stress is denoted by oy.

Tensile failures of some steel bars are shown in fig; specimen (ii) is a brittle
material, showing little or no necking at the fractured section; specimens (i) and
(iii) are ductile steels showing a characteristic necking at the fractured sections.
The tensile specimens of 12 show the forms of failure in a ductile steel and a
ductile light-alloy material; the steel specimen (i) fails at a necked section in the
form ofa ‘cup and cone’; in the case of the light-alloy bar, two ‘cups’ are formed.
The compressive failure of a brittle cast iron is shown in 13. In the case of a mild
steel, failure in compression occurs in a ‘barrel-lke” fashion, as shown in fig.

The stress-strain curves discussed in the preceding paragraph refer to static tests
carried out at negligible speed. When stresses are applied rapidly the yield stress
and ultimate stresses ofmetallic materials are usually raised. At a strain rate of
100 per second the yield stress of a mild steel may be twice that at negligible
speed.

Proof stresses

Many materials show no well-defmed vyield stresses when tested in tension or
compression. A
typical stress-strain curve for an alum inium alloy is shown in fig.
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Proof stresses of analuminium-alloy material; the proof stress is
foundby drawing the line parallel to the linear-elastic
line at the appropriate proof strain.

The limit of proportionality is in the region of 300 MN/m?,but the exact position
of this limit is difficult to determine experimentally. To overcome this problem
a proof stress is defined; the 0.1% proof stress required to produce a permanent
strain of 0.001 (or 0.1%) on removal of the stress. Suppose we draw a line from
the point 0.001 on the strain axis, 15, parallel to the elastic line of the material;
the point where this line cuts the stress-strain curve defines the proof stress. The
0.2%proof stress is defined in a similar way.



Ductility measurement

The Ductility value of a material can be described as the ability of the material
to suffer plastic deformation whle still being able to resist applied loading. The
more ductile a material is the more it is said to have the ability to deform under
applied loading.

The ductility of a metal is usually measured by its percentage reduction in
cross-sectional area or by its percentage increase in length, i.e.

A~ A
percentage reduction in area = —(—-ETFJ x 100%
and
tage i in length = _(._L.’_:__.LF.)_ x 100%
percentage increase in length = T, 0
where

A, = initial cross-sectional area of the tensile specimen
A, = final cross-sectional area of the tensile specimen
L, = initial gauge length of the tensile specimen

L. = final gauge length of the tensile specimen

It should be emphasised that the shape of the tensile specimen plays a major
role on the measurement of the ductility and some typical relationships
between length and character for tensile specimens i.e. given in Table 1.1

Materials such ascopper and mild steel have high ductility and brittle
materials such as bronze and cast ironhave low ductility.



Place L, L,/D*

UK 4varea 3.54
USA 4.51varea 4.0
Europe 5.65varea 5.0

area = cross-sectional area

* D, = initial diameter of the tensile specimen

Working stresses

In many engineering problems the loads sustained by a component of a
machine or structure are reasonably well-defined; for example, the lower
stanchions of a tall buildmg support the weight of material forming the upper
storeys. The stresses which are present in a component, under normal
working conditions, are called the working stresses; the ratio of the yield
stress, oy,of a material to the largest working stress, ow,in the component is
the stress factor against yielding. The stress factor on yielding is then

Oy

Cw

If the material has nowell-defined yield point, it is more convenient to use the proof
stress,op; the stress factor onproof stress is then

5,

O W



Some writers refer to the stress factor defined above as a ‘safety factor’. It is
preferable, however, to avoid any reference to ‘safe’ stresses, as the degree of
safety in any practical problem is difficult to define. The present writers
prefer the term ‘stress factor’ as this defines more precisely that the worlung
stress is compared with the yield, or proof stress of the material. Another
reason for using ‘stress factor’ will become more evident after the reader has

studied Section fig.



Lateral strains due to direct stresses

When a bar of a material is stretched longitudinally-as in a tensile test-the bar
extends in the direction of the applied load. This longitudinal extension is
accompanied by a lateral contraction of the bar, as shown in 17. In the linear-
elastic range of a material the lateral strain is proportional to the longitudinal
strain; if E, is the longitudinal strain of the bar, then the lateral strain is

The constant v in this relationship is known as Poisson ‘s ratio, and for most
metals it has a value of about 0.3 in the linear-elastic range; it cannot exceed a
value of 0.5. For concrete it has a value of about 0.1. If the longitudinal strain is
tensile, the lateral strain is a contraction; for a compressed bar there is a lateral
expansion.
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The Poisson ratio effect leading to lateral contraction of a bar in tension.



With a knowledge of the lateral contraction of a stretched bar it is possible to
calculate the change in volume due to straining. The bar of 17 is assumed to have
a square cross-section of side a; Lo is the unstrained length of the bar. When
strained longitudinally an amount E, the corresponding lateral strain of
contractions is E ~ .The bar extends therefore an amount & Ao,and each side of
the cross- section contracts an amount E, Q. The volume of the bar before
stretching is

V, = a'L,

After straining the volume is
V= (a-ga) (Ly+g,Ly)

which may be written
V= aL(1-e)(1+eg) = V(1 -e) (1 +g)

If € and g, are small quantities compared to unit, we may write
(1-g)(1+g) = (1-2g)(1+g) = I +g ~28g,

ignoring squares and products of ¢, and £, The volume after straining is then
V="V(l+eg-2¢)

The volumetric strain is defined as the ratio of the change of volume to the original volume, and
is therefore

If E, = v E~ then the volumetric strain is E, (1 2v). Equation shows why v cannot be

greater- than 0.5; if it were, then under hydrostatic stress a positive volumetric strain
will compressive result, whch is impossible.



Weight and stiffness economy of materials

In some machine components and structures it is important that the weight of
material should be as small as possible. This is particularly true of aircraft,
submarines and rockets, for example, in which less structural weight leads to a

Guﬁ'

p
larger pay-load. If odt is the ultimate stress of a material in tension and p is its
density, then a measure of the strength economy is the ratio

The materials shown in Table 1.2 are compared on the basis of strength economy in
Table

1.3fromwhich it is clear that the modern fiber-reinforced composites offer distinct
savings in weight over the more common materials in engineering use.

In some engineering applications, stiffness rather thanstrength is required of
materials; this is so in structures likely to buckle and components governed by

E

¥

p

deflection limitations. A measure of the stiffness economy of a material is the
ratio some values of which are shown in Table. Boron composites and carbon-
fibre composites show outstanding stiffness properties, whereas glass-fibre
composites fall more into line with the best materials already in common use.

Composite bars in tension or compression

A composite bar is one made of two materials, such as steel rods embedded in
concrete. The construction of the bar is such that constituent components extend
or contract equally under load. To illustrate the behaviour of such bars consider a
rod made of two materials, 1 and 2, 20; A,, A, are the cross-sectional areas of the
bars, and E,, E, are the values of Young's modulus. We imagine the bars to be
rigidly connected together at the ends; then for compatibility, the longitudinal
strains to be the same when the composite bar is stretched we must have

g= oL - Sz
EI EZ
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Composite bar in tension; if the bars are connected rigidly
at their ends, they suffer the same extensions.

where o, and o, are the stresses in the two bars, But from equilibrium considerations

P =o0,4 + 0, 4, !

By equations

PE, PE,
VT AE » 9
VE, + A, E, A E + A, E,




Temperature stresses

When the temperature of a body is raised, or lowered, the material expands, or
contracts. If this expansion or contraction is wholly or partially resisted, stresses
are set up in the body. Consider a long bar of a material; suppose Lo is the length
of the bar at a temperature e, and that a is the coefficient of linear expansion of the
material. The bar is now subjected to an increase 8 in temperature. If the bar is
completely free to expand, its length increases,and the length becomes Lo (1 + a8)
were compressed to a length Lo; in this case the compressive strain is

al,d
L, (1 + a8)

since a8 is small compared with unity;the corresponding stress is

c = Eg = abE

By a similar argument the tensile stress set up in a constrained bar by a fall 8in
temperature is a8

E. It is assumed that the material remains elastic.
In the case of steel a = 1.3 xper "C; the product aE is approximately 2.6 MN/m?per
IIC’
so that a change in temperature of 4°C produces a stress of approximately 10
h4N/m2if the bar is completely restrained.

Temperature stresses in composite bars

In a component or structure made wholly of one material, temperature stresses
arise only if external restraints prevent thermal expansion or contraction. In
composite bars made of materials with different rates of thermal expansion,
internal stresses can be set up by temperature changes; these stresses occur
independently of those due to external restraints.

Consider, for example, a simple composite bar consisting of two members-a
solid circular bar, 1, contained inside a circular tube, 2, 2 1. The materials of the
bar and tube have



different coefficients of linear expansion, a, and g, respectively. If the ends of the bar
and tube are attached rigidly to each other, longitudinal stresses are set up by a change
of temperature. Suppose firstly, however, that the bar and tube are quite free of each
other; if Lo is the original length of each bar, 21, the extensions due to a temperature
increase O are a, 015, and a, OL,, 21(ii). The difference in lengths of the two members
is (a, - q) Lo,; this is now eliminated by compressing the inner bar with a force P, and

ul (iii).
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Temperature stress in a composite bar.

If A, and E, are the cross-sectional area and Young's modulus, respectively, of
the inner bar, and A, and E, refer to the outer tube, then the contraction of the

PL,

e = —
E, 4,

inner bar to P is

and the extension of the outer tube due to P is

PL,
EZ AI

Then from compatibility considerations, the difference in lengths (a, - %) OL, is
eliminated completely when



On substituting for e, + e2,we have
(a, ~a) BL, = e + g

The force P is induced by the temperature change 8 if the ends of the two members
are attached rigidly to each other; from equation (1.22), P has the value

(u, - a2)9

1 1
.+
( Ey 4 Ey 4 ]
An internal load is only set up if a, is different from q.

P =
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