DEPARTMENT

OF

MECHANICAL ENGINEERING

(Jaipur Engineering College and Research Centre, Jaipur)

UNIT: II
Centroid \& Moment of inertia: Location of centroid and center of gravity, Moment of inertia, Parallel axis and perpendicular axis theorem, Radius of gyration, M.I of composite section, Polar moment of inertia, M.I of solid bodies.

Lifting machines: Mechanical advantage, Velocity Ratio, Efficiency of machine, Ideal machine, Ideal effort and ideal load, Reversibility of machine, Law of machine, Lifting machines; System of pulleys, Simple wheel and axle, Wheel and differential axle, Weston's differential pulley block, Worm and worm wheel, Single purchase winch crab, Double purchase winch crab, Screw jack, Differential screw jack.

リNトリーZ
－：LIFTING MACHINE：－
MACHINEL A machine may be defined as a device that receives energy in some available form and uses it for doing a perticular useful work．
Example：－An TV．engine which recieve the energy in the form of chemical and it converted into mechanical energy which can be used for．doing some work．
SIMPLE M / C ．－The devices which enables us to multiply force or to change direction of applied force so as to． lift heavy loads are termed as simple machines：ene． lover，inclined plome，pulley，screw Jock，wedge，f wheel and axle．
compoUND $\mathrm{m} / \mathrm{C}:-$ A compound m / c is a machine which is a combination of a number of simple machines．

DEFINITIONS RELATED TO LIFTING MACHINE：－
LOAD（W）：－Any weight which is lifted by the machine．
EFFORT (P) ：－A force required to loft or displace the load
SNPUT：－It is the work done on machine and is measured by the product of the effort (P) and distance（through which it has move．Its unit are $N-m$ or（joule）．

$$
\text { Input }=\text { per } \mathrm{N}-\mathrm{m} \text { or route }
$$

OUTPWT：－It is useful＇work done by the simple machine and is measured os the product of the load（W） lifted by the machine and the distance（d ）through which it moves．Its units are Nom or Joule．

$$
\text { output }=1 \times 4 \text { aTm or joule }
$$

MECHANICAL ADVANTAGE: (M.A):- This is the ratio, of weight lifted (W) to the effort applied (P).

$$
\begin{aligned}
& \text { MA. }=\frac{\text { weight Lifted }}{\text { effort applied }} \\
& \text { MAB }=\frac{L I}{P}
\end{aligned}
$$

$\rightarrow(M \cdot A \cdot>1) \rightarrow M$ echamical advantage is always greater than one. because the effort applied is generally smaller than the load lifted.

VELOCITY RATIO:- It is the ratio of the distance ($2 x$) through which the effort is applied, to the distance (4) through which the weight is lififed in the same time-

$$
\begin{aligned}
& \text { e same time } \\
& V \cdot R .=\frac{\text { Distance moved by effort (ax) }}{\text { Distance moved by loud (by) }}
\end{aligned}
$$

EFFICIENCY OF MACHINE:- It is defined as the ratio of the useful work done by the machine (output), to the total work done upon (input) it. It is expressed as a percentage.

$$
\begin{aligned}
& \eta=\frac{\text { output of machine }}{\text { soput of machine }} \\
& \eta=\frac{\omega \times 4}{p \times x}=\left(\frac{101}{p}\right) \times\left(\frac{b}{2}\right)
\end{aligned}
$$

\rightarrow No device is available in

$$
\eta=M \cdot A \cdot \times \frac{1}{V \cdot R} L L
$$ the universe whose η is 1 100%.

4DEAL MACHINE:- If the friction losses are neglected them the machine effificioncy is $100 \%(1.00)$ that means work input is equal to the cork output.

$$
\begin{aligned}
& \eta=\frac{\text { workoutput }}{\text { work input }} \\
& \Rightarrow 1.00=\frac{w \times y}{P \times D}=\frac{M \cdot A}{V \cdot R} \\
& \Rightarrow P \times M=\omega \times y
\end{aligned} \Rightarrow \frac{M}{P}=\frac{x}{y} .
$$

If $P_{\text {ideal }}$ is ideal effort then

$$
\begin{aligned}
V \cdot R_{i} & =\frac{L_{1}}{P_{i}} \\
\Rightarrow P_{i} & =\frac{L}{V \cdot R_{i}}
\end{aligned}
$$

FRICTIONAL LOSSES IN MACHINE:- A large part of the workdone upon a machine is used up in overcoming friction b / w its various parts. Thus the useful work done in lifting the load is reduced and the efficiency of machine is always less them. 1 or 100% Thus for actual machine:
output < Input
output $=$ Input - loss due to friction
Let, $p_{\text {ideal }} \rightarrow$ Ideal effort required to overcome resistance wit.
Pactual \rightarrow Acetal effort required to overcome same resistance (al).

Pfrciction \rightarrow Effort wasted in overcoming friction.

$$
\Rightarrow m \cdot A \cdot=V \cdot R \text { for condition }
$$

$$
\begin{align*}
& \frac{L_{i} I}{P}=V \cdot R \tag{1}\\
& P_{i} \text { deal }=\frac{W}{V \cdot R_{i}}
\end{align*}
$$

$$
\Rightarrow V \cdot R=\frac{H}{P_{i} \text { deal }}
$$

$$
\begin{align*}
\Rightarrow \eta & =\frac{P_{i d e a l}}{P_{\text {aefual }}}-2 \\
P_{\text {friction }} & =P_{\text {aitutual }}-P_{\text {ideal }} \\
& =\frac{b 1}{\eta} \times \frac{1}{V \cdot R}-\frac{W}{V \cdot R} \tag{-}\\
P_{\text {friction }} & =\frac{L A}{V \cdot R \cdot}\left(\frac{1}{2}-1\right)
\end{align*}
$$

Similarly

$$
\text { Viodeal }=P \times V \cdot R \text {. }
$$

and

$$
\begin{aligned}
\text { Wactual } & =P \eta \times V \cdot R . \\
\because \text { Wiforiction } & =\text { Wideal - Loctual } \\
& =P \cdot \times V \cdot R-P \times V \cdot R \cdot \times \eta \\
\text { Wfriction } & =P \times V \cdot R \cdot(1-\eta)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Pofriction }=\text { Pactial }- \text { Pideal } \\
& \text { Pactual }=\text { Pideal }+ \text { Pfriction } \\
& \eta=\frac{M \cdot A \cdot}{N \cdot R \cdot}=\left(\frac{w}{P_{\text {actual }}}\right) \times \frac{1}{V \cdot R \cdot} \\
& \Rightarrow \text { Pactual }=\frac{L A}{R} \times \frac{1}{V \cdot R}: \\
& \Rightarrow \quad \eta=\frac{\beta}{\text { Pactual }} \times \frac{\text { Pidenl }}{\text { ikT }}
\end{aligned}
$$

REVERSIBLE AND IRREVERSIBLE MACHINE:-
Let an effort P be applied through a distance It to lift a load bal through a distance yes. On removal of effort P, the following two conditions are likely to ocam (1) The workdome by the m / c is in reverse direction and the load falls. The machine is then called reversible m / c. Example. A pulley used to draw water from a well with the help of bucket, is a riversible machine becacese the bueket falls down when the effort to pull it up is removed.
(11) The load does not foll i.e. The work is not done by the m / c in the viverse direction. The machine is then said to be irreversible or self locking. Example:- A screw jock used to lift the motor car is a self locking type lifting m / c. because it holds the car at the same position even whom the application of effort is stopped.

In an irreversible machine some workdone is lost due to friction and is given by-

$$
\begin{aligned}
\text { Friction work } & =\text { Input }- \text { Output } \\
& =p_{x}-k_{y}
\end{aligned}
$$

On the removal of effort the load will not fall if the friction work is more than the output of

$$
\begin{aligned}
& \text { machine. } \\
& \text { ide. Friction work }>\text { wy } \\
& \left(P_{x}-L_{y} P_{y}\right)>H_{y} \\
& \Rightarrow p_{x}>2 u^{\prime} y \\
& \Rightarrow \frac{k l y}{p x}<\frac{1}{2} \\
& \Rightarrow \eta<1 / 2
\end{aligned}
$$

$$
\Rightarrow \eta<50 \%
$$

Thus the condition for irreversibility or selflocking of a m / c is that the iffificiency of m / c should be less than 50%. If the efficiency exceeds 50%. the m / c would be reversible.

Q
A machine with velocity ratio 25 con lift a load of 200 Non application of on effort of 20 N . comment on the riversibilen'y of machine. Also make calculations for the friction loss of machine.

Sol:- given:-

$$
\begin{gathered}
\text { gicm: } V \cdot R \cdot \frac{x}{y}=25 \\
W=200 \mathrm{~N} \\
P=20 \mathrm{~N} \\
M \cdot A \cdot \frac{w}{P}=\frac{200}{20}=10 \\
\eta=\frac{M \cdot A}{V \cdot R \cdot}=\frac{10}{25}=0.4=40 \%
\end{gathered}
$$

Since the efficiency of the m / c is less than the 40% The m / c is irreversible or self locking

Frictional floss in terms of load is-

$$
\begin{aligned}
\text { Wfriction } & =\text { Wlideod }- \text { Hactual } \\
& =P \times V \cdot R \cdot-\text { Martial } \\
& =20 \times 25-200 \\
& =300 \mathrm{~N}
\end{aligned}
$$

LAM OF MACHINE:-
The law of machine prescribes the relliationship b/w the effort applied and the load lifted.

Let, P be the eeffort required to lift the load w. The for a machine. with constant velocity ratio the law of m / c is give as - $p=m W+c$ straight line
where, $m=$ slope of straight line $=\frac{\Delta p}{\Delta u t}$
$c=$ Intercept of the line on praxis.
The relationship's has been depicted graphically as shown in figure. Both for the ideal and actual machine.
(1) For an ideal machine the straight line passes through the origin and the intercept $\angle C=0$.
(ii) For an actual m / c the straight line has an intercept C on the P-axis. The intercept represents the effort required to overcome friction. If the effort applied is less the c the the load will not be lifted.

$$
\because M \cdot A \cdot=\frac{W 1}{p}=\frac{W 1}{m b+c}=\frac{1}{m+\frac{c}{w}} .
$$

\rightarrow By increasing W the value of factor $\frac{C}{W}$ decreases, and. that in turn increases the mechanical advantage.
\rightarrow The maximum or limiting value of the mechanical. advantage will be $\frac{1}{m}$ when $\frac{c}{w}$ approaches zero.

$$
\begin{aligned}
\because \eta & =\frac{M \cdot A \cdot}{V \cdot R}=\frac{W / P}{V R}=\frac{W}{P \times V \cdot R} \\
& =\frac{W}{(m W+C) V \cdot R} \\
\eta & =\frac{1}{\left(m+\frac{C}{W}\right) V \cdot R}
\end{aligned}
$$

Here the value of $\frac{C}{W}$ decreased and that in turn increasing the (V)efficiency. The maximum value of the ($)$) efficiency will be.

$$
\eta_{\text {max }}=\frac{1}{m \times V R} \quad \text { whim } \frac{C}{W} \text { approaches Zero }
$$

Q. In an experimental test conducted on a boasting mic, it was observed that on effort of 20 kN was applied to 10 ft a load of 90 kN , where as on effort of 16 kN was required to lift a load of 70 kN . Determine the following:-
(D) Law of m / c (ID The limiting Mechanical advantage
(III) The limiting efficiency (iv) The effort required to lift a load of 15 kN .

What would be the mechanical advantage and η of the m / c at this moment. Take velocity ratio $=25$.

Sol! \quad !mat $+c$
(1) $20=m 90+c$

$$
16=m 70+c
$$

From chin (D) and (4)

$$
m=0.2 \text { and } c=2
$$

\therefore The law of m / c is

$$
\begin{aligned}
P & =m w+c \\
\Rightarrow P & =0-2 w+2
\end{aligned}
$$

(II) $(M A)_{\text {max }}=\frac{1}{m}=\frac{1}{0.2}=5$
(III) $\eta_{\text {max }}=\frac{1}{m \times V R}=\frac{1}{0.2 \times 25}=0.2$ or 202
(iv)

$$
\begin{aligned}
& P=0.2 \times 15+2=5 \mathrm{kN} \\
& m A=\frac{L 1}{P}=\frac{15}{5}=3 \\
& \eta=\frac{M A}{V R}=\frac{3}{25}=0.12 \text { or } 2 \%
\end{aligned}
$$

Q. An effort of $50 N$ is royuired by a machine to lift a loo a of sooner. The distance moved by the effort is 63 am and the corresponding load movemmot is 6 cm Matin calculations for ithe mechanical advantage, velocity ratio and effificioncy of the m / c.
sorn:-
given:-

$$
\begin{aligned}
& P=50 \mathrm{~N} \\
& W=500 \mathrm{~N}
\end{aligned}
$$

distance moved by the effort $=30=63 \mathrm{~cm}$
distance moved by the $10 \mathrm{ad}=y=6 \mathrm{~cm}$
\because we knows that

$$
\begin{aligned}
& \text { MA. }=\frac{L A}{P}=\frac{500}{50}=10 \\
& V \cdot R \cdot=\frac{\text { distance moved by the effort }}{\text { distance moved by the load }}=\frac{x}{y} \\
& \Rightarrow V \cdot R=\frac{63}{6}=10.5 \text { coed } \\
& \eta=\frac{M \cdot A}{V \cdot R}=\frac{10}{10.5}=0.952=95.2 \%
\end{aligned}
$$

Q. The veloce'ty ratio of the m / c is 15 and its η is 65%.Determine the load which can be raised. on application of on effort of 50 N .
501n:- given:- $V \cdot R=15, \quad \eta=65 \%=0.65, p=50 \mathrm{~N}$

$$
\left.\begin{aligned}
& \because \quad \eta=\frac{m \cdot A}{V \cdot R} \\
& \Rightarrow \quad m \cdot A=\eta \times V \cdot R . \\
& \Rightarrow \frac{b 1}{P}=0.65 \times 15 \\
& \Rightarrow \frac{W 1}{50}=9.75
\end{aligned} \right\rvert\, \Rightarrow W=9.75 \times 50
$$

J
Q. An effort of 60 N is applied to a m / c to left a load of 900 N . If the velocity ratio of the moe is 20. Determine:-
(a) Efficiency of the m / c.
(b) Frictional force in terms of effort.
(c) Frictional force in terms of 1 ad .
sorn: given:-

$$
\begin{aligned}
P & =60 \mathrm{~N} \\
x_{1} & =900 \mathrm{~N} \\
V \cdot R & =20
\end{aligned}
$$

(9) $\therefore \eta=\frac{M \cdot A_{1}}{V \cdot R_{1}}=\frac{W / P}{V \cdot R_{1}}=\frac{900 / 60}{20}=\frac{3 \phi \phi \phi}{\frac{6 \phi}{2} \times 2 \phi}=\frac{3}{4}=0.75$ or
(b)

$$
\begin{aligned}
\text { Pfriction } & =\frac{W_{1}}{V R}\left(\frac{1}{\eta_{1}}-1\right) \\
& =\frac{900}{20}\left(\frac{1}{0.75}-1\right) \\
& =15 \mathrm{~N}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\text { Weriction } & =P \times V \cdot R \cdot(1-\eta) \\
& =60 \times 20(1-0.75) \\
& =300 \mathrm{~N}
\end{aligned}
$$

Q. When cm effort of 280 N is applied to lifting m / c It was found that the 25% effort applied is lost in friction. The velocity ratio is 12 . Find the 10 ad which com be lifted and the effificioncy of the m / c at this 1 ad .
Sols: gives:- $p=280 \mathrm{~N}$

$$
\begin{aligned}
& F_{p}=25 \% \text { of } P=0.25 p \\
& V \cdot R_{1}=12 \\
& F_{P}=P-P_{L}
\end{aligned}
$$

Effort lost in friction = Actinal effort - Ideal effort

$$
\begin{aligned}
& F_{P}=P-P_{i} \\
& \Rightarrow 0.25 p=p-\frac{L A}{V \cdot R} \\
& \because P_{2}=\frac{L 1}{V \cdot R} . \\
& \Rightarrow 0.25 p=p-\frac{L}{12} \\
& \Rightarrow \frac{1.1}{12}=p-0.25 p \\
& \Rightarrow \frac{41}{12}=0.75 \mathrm{p} . \\
& \Rightarrow k 1=0.75 \mathrm{P} \times 12 \\
& \Rightarrow H^{1}=0.75 \times 280 \times 12=2520 \mathrm{NL} \\
& \eta=\frac{m \cdot A \cdot}{V \cdot R}=\frac{b r / p}{12} \\
& =\frac{L S}{P} \times \frac{1}{V \cdot R}=\frac{2520}{280} \times \frac{1}{12} \\
& =0.75 \text { or } 75 \%
\end{aligned}
$$

werpercerer ruse,
Q.(1)

In a mac it was found that the effort had to bes moved through a distance of 250 mm to left the load by 5 mm . Using this m / c a load of 40000 N was raised by an effort of 1000 N . Determine.
(I) Velocity ratio of the m / c
(II) Mechanical advantage
(III) Efficiency
(IV) Effort required to lift the 100 d under ideal condit
(vi) Effort lost in friction:.
(vi) The load which ears could have bee lofted with the given effort under ideal conditions.
(iII) Function of the m / c.

Sols:- Given:-

$$
W=40,000 \mathrm{~N}
$$

$$
P=1000 \mathrm{~N}
$$

distance moved by effort $(x)=250 \mathrm{~mm}$ distance moved by load $(y)=5 \mathrm{~mm}$

$$
\begin{array}{rl}
\text { distance moved by load } \\
\text { (1) Velocity ratio } & =\frac{\text { distance moved by effort }}{\text { distance moved by load }} \\
x & x=250
\end{array}
$$

$$
\Rightarrow V \cdot R \cdot=\frac{x}{y}=\frac{250}{5}=50
$$

(11) Mechanical Advantage $\Rightarrow \frac{\text { load lifted }}{\text { Effort applied }}$

$$
\begin{equation*}
\Rightarrow M \cdot A=\frac{W 1}{P}=\frac{40000}{1000}=40 \sim \tag{3}
\end{equation*}
$$

(III) $\eta=\frac{M \cdot A}{V \cdot R,}=\frac{40}{50}=0.8$ or 80%
(IV)

$$
\begin{aligned}
\text { Ideal effort }\left(P_{i}\right) & =\frac{\text { load lifted }}{\text { Vetreityratio }}=\frac{W}{V \cdot R} \\
& =\frac{40000}{50}=800 \mathrm{~N} L
\end{aligned}
$$

v) Effort lost in friction $=$ Actual effort - Ideal effort

$$
=1000-800=200 \mathrm{NL}
$$

(vi) Ideal load which can be lifted with an effort of room

$$
W_{1}=P(V \cdot R \cdot)=1000 \times 50=50000 \mathrm{~N} 2
$$

(vil) Friction of the mic $\begin{aligned} & =9 \text { deal } 10 \mathrm{ad}-\text { Actual load }=\text { blink } \\ F_{u l} & =50000-40000=10000 \text { (1) }\end{aligned}$ $F_{u l}=50000-40000=10000 \mathrm{NA} 2$
Q. In a lifting m / c chose velocity ratio is 40 , a load of 2000 N was lifted with an effort of 160 N . Suppose the effort is removed, will there be a reversal of the machine 2. Also find the frictional load of the m / c -
solon:- given:- $W=2000 \mathrm{~N}$

$$
\begin{aligned}
P & =160 \mathrm{~N} \\
V \cdot R & =40
\end{aligned}
$$

M / C to be reversible if the $\eta>50 \%$

$$
\therefore \quad \eta=\frac{M \cdot A}{V \cdot R}=\frac{W / P}{V \cdot R \cdot}=\frac{2000}{160 \times 40}=0.3125=31.25 \%
$$

Since the η is less than 50% the m / c is nom-reversible.
Ideal load $\left(\mid \times N_{i}\right)=P(V \cdot R \cdot)$

$$
\text { ali }=160 \times 40=6400 \mathrm{~N}
$$

Actaral load (LI) $=2000 \mathrm{~N}$

$$
\begin{aligned}
\text { Frictional load }\left(F_{W}\right)= & =1 i-W \\
& =6400-2000=4400 \mathrm{~N}
\end{aligned}
$$

LEVERS
A lever is essentially a rigid straight bar which rests on and con turn about a point called fulcrum. It enables a
 Load
small effort to overcome a large load

- The perpendicular distance of point A, at which load is applied from the fulcrum (O) is called load arm ($O A=$ a).

The perpendicular distance of point B, at which effort is applied from the fulcrum (O) is called. effort arm $(O B=B)$.
lathe the lever is in equilibrium $\Sigma M=0$
Taking moments about the fulcrum point 0

$$
\begin{aligned}
W \times a & =p \times b \\
\Rightarrow \frac{W}{P} & =\frac{b}{a} \\
\Rightarrow \frac{W}{P} & =\frac{\text { length of effort arm }}{\text { Length of load arm }}=\frac{b}{a} \text { this is known }
\end{aligned}
$$

This relation hasteen setup with the assumptions:-
(I) The lever is weightless.
(II) The friction is neglected.
"The mechanical advantage of a lever is equal to the ratio of the length of effort arm to the length of load arm:" $\quad \frac{L A}{P}=m A=\frac{b}{a}$
\rightarrow For greater mechanical advantage that is to lift a greater load with less effort. The effort arm should be as larger as possible. The ratio of length of effort arm to the length of land arm (baa) is called leverage.

CRASSJFICNTFON OF LEVERS
(1) LEVER OF FIRST KIND:-
\rightarrow Fulcrum is b/w the load and the effort

$$
\begin{equation*}
\rightarrow M-A=\frac{\text { Effort arm }}{\text { load arm }}=\frac{b}{a} \tag{LI}
\end{equation*}
$$

M.A. can be more than 1, equal to 1 or less than 1
\rightarrow M.A. is increases with movement of fulcrum towards the load.
\rightarrow When M.A. is greater than one less effort will be required to loft a heavy load the lever is then reffered to as effort multiplier lever.
\rightarrow Handle of water pump, plier, Sea-saw, scissor, extractor
(2) LEVER OF SECONA KFND:-
\rightarrow load is b/w the effort and fulcrum.

$\rightarrow M \cdot A \cdot=\frac{b}{a}$, M.A. is always greater than one.
\rightarrow M.A. increases by moving the load towards fulcrum.
\rightarrow since m.A. is always greater than 1., lever is known as multiplexer lever:
\rightarrow Examples-wheel-barrow, nut-cracker, lemon erveher etc.
(3) LEVER OF THIRD KIND:-
\rightarrow Effort is b/w the fulcrum and the load.
\rightarrow mA. $=\frac{b}{a}$, mA. is always less than 1,

\rightarrow M.A. con not be made greater than 1 by any movement of load point.
\rightarrow since $M \cdot A$ is always less than 1 , lever of this kind is only as speed multiplier lever. This type of levers cannot lift heavy loads but provide on increase in the speed of lifting.
\rightarrow Examples:- Fire tongs, here, human arm etc.
Fishing Rod

COMPOUND LEVER:-
A compound lever is combination of Simple levers linked with one another. Such levers are used to obtain higher mechanical advantage,

With refrence to figure:-
$A B$ is a simple lever connected to another simple lever $C D$ with the help of a link $B C$. P is the effort applied at end A to lift a load hal acting at point 1
consider the F.B.D of lever $A B$, we have:Taking moments about point (E).

$$
P \times l_{1}=Q \times l_{2}
$$

$\Rightarrow Q=\frac{P \times l_{1}}{l_{2}} Q$ is the force in link $B C$.
consider the FABD ca of lever $C D$ wee have:Taking moments about port (D).

$$
\begin{align*}
& Q \times l_{4}
\end{align*}=41 \times l_{3},
$$

From cq cq n and (II) we get

$$
\begin{aligned}
& \frac{p \times l_{1}}{l_{2}}=\frac{L 1 \times l_{3}}{l_{4}} \\
\Rightarrow \quad & \frac{L l}{p}=\frac{l_{1} \times l_{4}}{l_{2} \times l_{3}}
\end{aligned}
$$

$$
r q \cdot A \cdot \frac{L 1}{P}=\frac{l_{1}}{l_{2}} \times \frac{l_{4}}{l_{3}}
$$

Let, $\frac{l_{1}}{l_{2}}=\frac{l_{4}}{l_{3}}=10$
If only the lever $A B$ is used the mechanical advantage would be 10. By combining two levers the mechanical advantage gets increased to 10×10 $=100$.
Q. It is desired to lift 20 kN load acting at point F with the help of a system of levers as shown in fig. What effort should be applied ate and A of the lever so that load rest gets lifted. Also determine the mechanical advantage of the composite lever. Take- $l_{1}=150 \mathrm{~mm}$, $l_{2}=30 \mathrm{~mm}, l_{3}=60 \mathrm{~mm}$, and $l_{4}=300 \mathrm{~mm}$.

$$
=
$$

sol:-
For lever $A B$
faking moments about point E_{1}.

$$
\begin{align*}
& P \times l_{1} F Q \times l_{2} \\
& Q=\frac{P \times l_{1}}{l_{2}} \tag{D}
\end{align*}
$$

For lever $c \rightarrow$ taking moments about point D :

$$
\begin{align*}
& Q \times l_{4}=4 \times l_{3} \\
\Rightarrow & Q=\frac{-1 V \times l_{3}}{14} . \tag{iI}
\end{align*}
$$

From $\mathrm{cqn}^{n}(1)$ and (II) we get

$$
\begin{aligned}
& \frac{p_{\times} l_{1}}{l_{2}}=\frac{41 \times l_{3}}{\varphi_{4}} \\
\Rightarrow & P=\frac{61 \times l_{2} \times \rho_{3}}{l_{1} \times \rho_{4}}=\frac{2 \phi \times 8 \phi \times-6 \phi}{25 \phi \times 8 \phi \phi}=\frac{4}{5}=0.8 \mathrm{kN} \\
M \cdot A \cdot= & \frac{61}{\rho}=\frac{20}{0.8}=25
\end{aligned}
$$

PULLEYS:- FIXED AND MOVABLE
A pulley is cssmatially a metalic or wooden wheel which is capable of rotation about an axis. The whee has groove cut along its periphery and a rope is made to rest in the groove. whee a chain is used instead of rope, sprocket teeth are cut on the periphery of the wheel.

Pulleys are of tue type's (1) fixed pulley and (I) movable pulley.
Assumptions for pulley arrangement:-
\rightarrow The wt. of pulley is small compared to the wt. to be lifted and hence is neglected.
\rightarrow The pulley is smooth ie. the tension of the string or rope passing trough around the pulley is same throughout.
SINGLE FIXED PULLEY:-
The block or axle supporting the pulley is fixed, its position does not change when the chain or rope passing around its periphery is moved. The wt. W is attached to me and of the rope and the effort ρ is applied
 at the other and.
For the equilibrium condition
$\Sigma m=0$ (Taking moments about point 0)

$$
\begin{aligned}
& p \times \gamma-G \times \gamma=0 \\
\Rightarrow & p \times \gamma=H \times \gamma \\
\Rightarrow & p=b 1 \\
\therefore & M \cdot A=\frac{\mid x a r}{P}=1
\end{aligned}
$$

In the absence of friction

$$
\begin{aligned}
& M \cdot A=V \cdot R=1 \\
\therefore \quad & \eta=\frac{m \cdot A}{V \cdot R}=1 \text { or } 100 \%
\end{aligned}
$$

\rightarrow To change the clircation of applied force which, always easier to apply in the downward direction.
\rightarrow To raise a load in uparard direction by applying effort in downward direction.

SINGLE MOVABLE PULLEY:-
A movable pulley changes its position when the work is being done. Load to be raised is attached to the pulley itself and the axle of the pulley vises and decends with the load-

10 ad (W)
Under equilibrium conditions $\Sigma m=0$
Taking moments of all forces about the anele.

$$
\begin{aligned}
& Q \times r-p \times r+0=0 \\
\Rightarrow & Q \times r=p \times r \\
\Rightarrow & Q=P
\end{aligned}
$$

Taking mommies about point A,

$$
\begin{align*}
& \quad w \times r-p \times 2 \gamma=0 \\
& \Rightarrow \\
& \Rightarrow \quad W \times \gamma=p \times 2 \gamma \tag{II}\\
&
\end{align*} \quad p=\frac{\omega}{2}
$$

From $\mathrm{eqn}^{n} \otimes$ and

$$
\begin{aligned}
& P=Q=\frac{h l}{2} \\
M \cdot A \Rightarrow & \frac{W}{P}=2
\end{aligned}
$$

SYSTEM

A number of pulleys are so arranged that the composite system results into gain in mechanical advantage. There are essentially three systems of pulleys i.e. The first, second and third system.

```
FINST SYSTEM OF PULLEY:-
```

Figure shows first system of pulley using three pulleys.
\rightarrow 用ll the pulleys 1,2 and 3 are movable pulleys:
\rightarrow A separate rope passes around the periphery of each pulley. One and of the rope is fastened to a fixed support and the other end is connected to the axle of the next upper pulley.

\rightarrow The load is attached to the bottom most pulley where as the effort is applied to the effort and of rope which passes round the upper most pulley.
For equilibrium conditions:-

$$
\begin{aligned}
& M=2 T_{1} \\
& T_{1}=2 T_{2} \\
& T_{2}=2 T_{3} \\
& T_{1}=2 T_{2}=2 \times 2 T_{3}=4 T_{3} \\
& W=2 T_{1}=2 \times 4 T_{3}=8 T_{3} \\
& P=T_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \because M A=\frac{\ln 1}{p}=\frac{8 T_{3}}{7 / 3}=8 \\
& \Rightarrow M_{A}=2^{3} \\
& \text { Input }=p \times x \\
& \text { Output }=\text { M } ~
\end{aligned}
$$

For ideal condition there is no friction losses.

$$
\begin{aligned}
& \operatorname{gnput}=\text { output } \\
& p x=A x y \\
\Rightarrow & \frac{L A}{p}=\frac{x}{Y} \\
\Rightarrow & M \cdot A \cdot V \cdot R=2^{3}
\end{aligned}
$$

$$
\Rightarrow M \cdot A \cdot V \cdot R \cdot=2^{n} \text { where }
$$

$$
n=\text { No. of movable pulley }
$$

Q. An effort of 100 N is required. to lift a load of 2500 N by the first system of pulleys which has 5 movable pulleys, Determine:-
(i) 2 . of the mic. (II) Effort wasted in friction
(III) Load rechasted in friction:-
soln:- For a first system of pulleys

$$
\begin{gathered}
V R=2^{n} \\
V R=2^{5}=32 \\
M_{A}=\frac{W}{P}=\frac{2500}{100}=25
\end{gathered}
$$

(D) $\eta=\frac{m A}{V R}=\frac{25}{32}=0.781$ or 78.1%.
(II) Periction $=\frac{W}{V R}\left(\frac{1}{n}-1\right)=\frac{2500}{32}\left(\frac{1}{0.781}-1\right)=21.9 \mathrm{~N}$
(III)

$$
\begin{aligned}
\text { Wifriction }=\rho \times V R(1-\eta) & =100 \times 32(1-0.781) \\
& =700.8 \mathrm{~N}
\end{aligned}
$$

SECOND SYSTEM OF PULLEYS:- Figure shows an arrangement
for the second system of pulleys

\rightarrow The system has three pulleys in the upper block and two pulleys in the lower block
\rightarrow The upper block is fixed to a support and lower block is movable.
\rightarrow The weight A^{\prime} is attached to the lower block and the effort is applied at the free end of the rope.

Therefore equilibrium of the lower block.

$$
\begin{aligned}
W & =5 T \\
\Rightarrow W & =5 P
\end{aligned} \quad T=P
$$

$$
\therefore M A=\frac{W}{p}=\frac{5 p}{p}=5
$$

For on ideal condition

$$
m A=V P=5
$$

If both the upper and lower flock are some number of pulleys then start is made from me end af the rope fixed to the lower most pulley in the upper block. Equilibrium of the lower lolock the give c

$$
\begin{aligned}
L & =6 T \\
\therefore L & =6 P \\
\therefore \quad M A & =\frac{A 1}{P}=\frac{6 P}{P}=6
\end{aligned} \quad T=P
$$

for on ital condition

$$
V R=m A=6
$$

from the result e obtained, I_{n} the second system of pulley

$$
\text { Non } V R=\text { Number of pulley }
$$

THJRD SYSTEm OF PULLEYS:-

Figure shows the arrangement. of third system of pulleys.
\rightarrow several movable pulleys are used and the topmost pulley is kept fixed.
\rightarrow There is same number of ropes as the numbers of pulleys
\rightarrow One end of each rope is connected to a block which corries the load and other end is fixed to the next lower pulley.
\rightarrow The effort is applied to the free end of the lowest pulley pone equilitoriblm of these system.

$$
\begin{aligned}
& 厶_{1}=T_{1}+T_{2}+T_{3}+T_{4} \\
& T_{1}=P \\
& T_{2}=2 T_{1}=2 \times p=2 p \\
& T_{3}=2 T_{2}=2 \times 2 p=4 p=2^{2} p \\
& T_{4}=2 T_{3}=2 \times 4 p=8 p=2^{3} p \\
& \therefore W=\left(p+2 p+2^{2} p+2^{3} p+\cdots \cdot\left(w_{1}\right)\right. \\
& \therefore M \cdot A=\frac{\mid A 1}{P}=\frac{p\left(2^{4}-1\right)}{P}=2^{4}-1
\end{aligned}
$$

In general if the are $n=n o$. of pulley

$$
\therefore m A=2^{n}-1
$$

For ideal $\quad m A=V R$

$$
\therefore y R=2^{n}-1
$$

E. In a system of pulleys with one string there are five segments of the string at the lower block. What is. the velocity ratio of the pulley arrangement $2 . I f$ a farce of 200 N is reg. to left a load of 600N, calculate the η of the system.
Soln:- Since there is only one string the arrangement corresponds to second system of pulleys.

$$
\begin{align*}
V R & =N o \cdot \text { of pulleys. } \\
V R & =5 \\
M \cdot A \cdot & =\frac{W}{P}=\frac{600}{200}=3 \tag{雨}\\
\therefore \eta & =\frac{m A}{V R}=\frac{3}{5}=0.6 \text { or } 60 \%
\end{align*}
$$

Q. For a third order pulley system having three pulleys m effort of 200 N is required to left a load of loco M. Calculate the η of the system and the effort lust in friction.
Sola:- For a third order pulley system

$$
\begin{aligned}
V R & =2^{n}-1=2^{3}-1=7 \\
m A & =\frac{L 1}{P}=\frac{1000}{200}=5 \\
\eta & =\frac{m A}{M R}=\frac{5}{7}=0.714 \text { or } 71.4 \% \\
\text { Pfriction } & =\frac{41}{1 R}\left(\frac{1}{7}-1\right) \\
& =\frac{1000}{7}\left(\frac{1}{0.714}-1\right) \\
& =57.22 \mathrm{~N}
\end{aligned}
$$

SIMPLE HEL AND AXLE:-

A simple and axle unit consists of a wheel A of larger diameter and an axle B of small dia. Both are keyed to the same spindle c. The entire assembly is mounted on ball
 bearing so that the whee and axle com be rotated. The load W to be lifted is attached to a string which is wound round the axle. Another string is wound round the wheel and the effort p is applied to it. These two strings are wound in opposite direction. which is maker the load move upward when the effort is applied downward.

The wheel and axle are keyed to the same spindle and therefore when the whee makes one revolution, the axle would also furn one revolution.

Let,
$D=$ Diameter of the wheel.
$d=$ Diameter of the axle.
In one revolution of wheel the distance traveled by the effort $=\pi$
In one revolution of exile the distance travelled. by the load $=\pi d$

$$
\therefore V R=\frac{\text { distance moved by effort }}{\text { Distance moved by load }}=\frac{\pi D}{\pi d}
$$

$$
\Rightarrow V R=\frac{D}{d}
$$

If t, and t_{2} represents the thickness of string on the wheel and axle, the

$$
V \cdot R \cdot=\frac{\partial+t_{1}}{d+t_{2}} \sim
$$

If friction fore e is neglected
For an equilibrium
condition $\quad \Sigma m=0$

$$
\begin{aligned}
& W \times \frac{d}{2}-P \times \frac{D}{2}=0 \\
\Rightarrow & \frac{4 \Gamma \times d}{2}=\frac{P \times D}{2} \\
\Rightarrow & \frac{L D}{P}=\frac{D}{d} \\
\Rightarrow & M A=X R
\end{aligned}
$$

4

Effect of friction:-
Let p^{\prime} be the effort required to lift the load ki. work input $=\rho^{\prime} \times \pi D$
work output $=4 \times \pi d$

$$
\begin{aligned}
& \eta=\frac{\text { OUtput }}{\text { Input }}=\frac{|x| \times \eta \mid}{p^{\prime} \times p D} \\
& \Rightarrow p^{\prime}=\frac{L^{\prime}}{\eta} \times \frac{d}{\partial D} \\
& m A=\frac{H}{\rho^{\prime}}=\frac{\mid \alpha}{\frac{L^{2}}{\eta} \times \frac{d}{D}}=\frac{D}{d} \times \eta \\
& \text { (Actual) }
\end{aligned}
$$

M. 4 (actual)

$$
\Rightarrow \quad m_{A}=\frac{D}{d} \times \eta
$$

DIFFERENTIAL WHEEL AND AXLE:-

The unit consist of a wheel A and two rale B ff. The wheel and the two axles are keyed to the some shaft (spindle) which is supported in ball bearing. The effort is appalied to the string which is wound round the when mother string is wound

An the the axle and

it caries the load through a pulley. The string on the wheel and smaller axle are wound in the same direction where as winding of string on the bigger axle is in the opposite direction.

When the effort p is applied in the downward direction there is unwinding of the string on the wheel and smaller axle. The string winds on the bigger axle ait the same times and the load W is lifted upward.

Distance moved. by the effort $=\pi D$
length of string that winds on bigger $a \times l e=\pi d$,
length of string that unwinds on smaller axle $=\pi d 2$
ret length of string which will get wound on bigger axle

$$
=\pi d_{1}-\pi d_{2}=
$$

Distance moved by the load $=\frac{\pi d_{1}-\pi d_{2}}{2}=\frac{\pi}{2}\left(d_{1}-d_{2}\right)$

$$
\therefore V R=\frac{\text { distance moved by effort }}{d_{\text {distance moved by load }}^{P}\left(d_{1}-d_{2}\right)}=\frac{2 D}{\left(d_{1}-d_{2}\right)}
$$

For a greater $V R$ the decade marly equal to d_{2}. DIFFERENTIAL PIJLLEE BLOCK:-

$$
W=2 T, T=\omega / 2
$$

in one revolution.
Unwinding of rope from pulleys.

$$
=\pi D
$$

Unwinding of rope from pulley B.

$$
=\pi d
$$

Net shorting of the

$$
\begin{aligned}
& =\pi D-\pi d \\
& =\pi(D-d)
\end{aligned}
$$

The shortening of the Hope is divided equally b/w two segments of the rope supporting the pulley in the lower block. Hence displacement of the load is

$$
\therefore V \cdot R=\frac{\text { distance moved by effect }}{n}=\frac{\pi \lambda}{\text { "load }} \text {. }
$$

$$
V \cdot R=\frac{2 D}{(D-d)}
$$

if friction force is neglected. taking mommy abet point 0 .

$$
\begin{aligned}
& p \times D / 2+\frac{W}{2} \times d / 2=\frac{H 1}{2} \times \frac{D}{2} \\
\Rightarrow & \frac{P D}{2}=\frac{L I}{42}(D-d) \\
\because \quad M A & =V \cdot R \\
& =\frac{H}{P}=\frac{2 D}{D-d}
\end{aligned}
$$

UN1T-2

CENTROID AND MOMENT T OF INERTIA.

CENTRE OF GRAVITY:- Centre of gravity of a body is the point through which the resultant of the distributed graveitar tonal parallel forces passes, irrespective to the position of the body.
[R]
Centre of gravity is the point where whole weight of the body is assumed to be concentrated.

$$
\begin{aligned}
\bar{x} & =\frac{\sum \omega x}{\sum \omega} \text { or } \bar{x}=\frac{\sum m u}{\sum m} \\
\bar{y} & =\frac{\sum \omega y}{\sum \omega} \text { or } \bar{y}=\frac{\sum m y}{\sum m}
\end{aligned}
$$

CENTROID:-
The entire area of the body assumed to be concentrated at a point is known as centroid.
from the "varignon theorem" moment of areas of all strips about

$$
\begin{aligned}
& y-a \times i s . \\
& =a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3} \\
& \quad \ldots \ldots=\Sigma a_{x}
\end{aligned}
$$

Moment of total Area A about the y-axis

$$
\begin{aligned}
& =A \bar{x} \\
\therefore A \bar{x}= & \sum a x \\
\Rightarrow \bar{x} & =\frac{\Sigma a x}{A} \quad \bar{x}=\frac{\sum a x}{\sum a}
\end{aligned}
$$

Similarly when the moments are taken about x-axis, we get

$$
\begin{aligned}
& A \bar{y}=\sum a y \\
& \bar{y}=\frac{\Sigma a y}{A} \quad \bar{y}=\frac{\sum a y}{\sum a}
\end{aligned}
$$

$$
\because \quad m=\rho \cdot v
$$

$$
\therefore m_{1}=\rho v_{1}, \quad m_{2}=\rho v_{2}, \quad m_{3}=\rho v_{3} \text { etc. }
$$

$$
v_{F} v_{1}+v_{2}+v_{3}+\ldots
$$

$$
\therefore \bar{u}=\frac{\sum \rho V_{u}}{\sum \rho V}=\frac{\sum V u}{\sum V}
$$

$$
\bar{y}=\frac{\sum \rho v y}{\sum \rho v}=\frac{\sum v y}{\sum v}
$$

$\rightarrow A$ body has only one centre of gravity.
\rightarrow Its location does not change even with a change in the orientation of the body.
\rightarrow If is an imaginary point which may occur inside or outside the body.

CENTROID OF A UNIFORM WIRE OF LENGTH (L)
we know that

$$
\begin{aligned}
\because \bar{x} & =\frac{\sum x d l}{\sum d l} \\
\bar{y} & =\frac{\sum y d l}{\sum d l}
\end{aligned}
$$

when the x-axis is so chooser that it passes through the centre of the wire and along its length $\bar{y}=0$

$$
\begin{aligned}
\Sigma \vec{x} d l & =\int_{6}^{l} x d x \\
& =\left[\frac{x^{2}}{2}\right]_{0}^{L}=L^{2} / 2 \\
\Sigma d l & =\int_{0}^{L} d x=[x]_{0}^{L} \\
& =L \\
\therefore \bar{x} & =\frac{L^{2} / 2}{L}=L / 2
\end{aligned}
$$

$$
\therefore \quad\left(18002661880^{\circ}\right)
$$

CENTROID OR THE TPRANGLEL
consider a rectangular
lamina -

$$
d A=x \cdot d y
$$

By Similar triangle

$$
\begin{aligned}
& \frac{x}{h-y}=\frac{b}{h} \\
\Rightarrow & x=\frac{b}{h}(h-y)
\end{aligned}
$$

\because we know that

$$
\begin{aligned}
\bar{y} & =\frac{\sum A y}{\sum A}=\frac{\int y \cdot d A}{\int d A} \\
& =\frac{\int_{0}^{Y} y \frac{b}{h}(h-y) d y}{\int_{0}^{h} \frac{b}{h}(h-y) d y} \\
& =\frac{\int_{0}^{h}\left(y b-\frac{y^{2} b}{h}\right) d y}{\int_{0}^{h}\left(b-\frac{b y}{h}\right) d y} \\
& =\frac{\left[\frac{y^{2} b}{2}-\frac{y^{3} b}{3 h}\right]_{0}^{h}}{\left[y b-\frac{y^{2} b}{2 h}\right]_{0}^{h}}
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{\left(\frac{b h^{2}}{2}-\frac{b h^{\not b}}{3 K}\right)}{\left(b h-\frac{b h^{2}}{2 h}\right)} \\
&= \frac{3 h^{2}-2 b h^{2}}{6} \\
&= \frac{2 b h-b h}{2} \\
&= \frac{b h^{2}}{b 3} \times \frac{\alpha}{b K} \\
&=
\end{aligned}
$$

CENTROID OF THE RECTANGLE:-

Area of strip

$$
d A=b x d y
$$

Area of

$$
\text { rectangle }=(b \times h)
$$

$$
\therefore \bar{y}=\frac{\int_{y \times d} d}{\int_{h} d A}
$$

$$
=\frac{\int_{h} y \cdot b d y}{b \times h}=\frac{\left[b \cdot \frac{y^{2}}{2}\right]_{0}^{h}}{b h}=\frac{\beta h^{2} / 2}{b K}
$$

$$
\Rightarrow \bar{y}=h / 2
$$

Similarly

$$
\vec{x}=b / 2
$$

So, the centroid is at $(b / 2, h / 2)$

A solid of Uniform density throughout, then cerrtoid, Centre of Gravity and. Centre of moss are (oincide. The Team Centre of Gravity splice to bodies wish such $\&$ wisent.
and Centroid coles to plane figures which have area only but so mass.
Whom thicken ie. mass al body is nit Considaid, the $C G$ and Centroid are Synonymous and faun throes serve point
Q. Find the centroid off a $100 \mathrm{~mm}+150 \mathrm{~mm} \times 38 \mathrm{~mm} m$ T-section
sol:- The section is symmetrical about y-yaxis: so
contr of gravity lies on this axis.

So that only calculate the \bar{y} in this question.

Let GH be the axis of refrence from the bottoms,
(1) Rectomgle $A B C D$

$$
\begin{aligned}
& a_{1}=100 \times 30=3000 \mathrm{~mm}^{2} \\
& y_{1}=\left(150-\frac{30}{2}\right)=135 \mathrm{~mm}
\end{aligned}
$$

(11) Rectangle EFGH

$$
\begin{aligned}
& a_{1}=(150-30) \times 30=3600 \mathrm{~mm}^{2} \\
& y_{1}=(150-30) / 2=60 \mathrm{~mm}
\end{aligned}
$$

\because we know that the distance of C.G. from bottom

$$
\begin{aligned}
\bar{y} & =\frac{a_{1} y_{1}+a_{2} y_{2}}{a_{1}+a_{2}} \\
\Rightarrow \bar{y} & =\frac{(3000 \times 135)+(3600 \times 60)}{3000+3600}=
\end{aligned}
$$

$$
\Rightarrow 1 \bar{y}=94.1 \mathrm{~mm}
$$

Q. Find the centred of a channel section $100 \mathrm{~mm} \times 50 \mathrm{~mm} 1$

The section is symmetrical a bout $x-x$-axis. so the centroid is leis on this axis.

$$
\therefore \bar{y}=0
$$

moly calculate the \bar{u}. -let, Fore $A G$ be the axis of reference.
(1) Rectangle $A B C E$

$$
\begin{aligned}
& a_{1}=50 \times 15=750 \mathrm{~mm}^{2} \\
& u_{1}=\frac{50}{2}=25 \mathrm{~mm}
\end{aligned}
$$

(11) Rectangle $E D F K$

$$
\begin{aligned}
& a_{2}=(100-30) \times 15=1050 \mathrm{~mm}^{2} \\
& x_{2}=\frac{15}{2}=7.5 \mathrm{~mm}
\end{aligned}
$$

(III) Rectangle FGHJ

$$
\begin{aligned}
& a_{3}=50 \times 15=750 \mathrm{~mm}^{9} \\
& u_{3}=\frac{50}{2}=25 \mathrm{~mm}
\end{aligned}
$$

\because we know that the distance of centroid from fuel $A G$.

$$
\begin{aligned}
\bar{u} & =\frac{a_{1} u_{1}+a_{2} u_{2}+a_{3} u_{3}}{a_{1}+a_{2}+a_{3}}=\frac{(750 \times 25)+(1050 \times 7.5)+(750 \times 25}{750+1050+750} \\
\Rightarrow & =17.8 \mathrm{~mm}
\end{aligned}
$$

Q. An T-section has the following dimensions in mon

Bottom flange $=300 \times 100$
Top flange $=150 \times 50$

$$
\text { web कीर }=300 \times 50
$$

$$
\text { कपरा, } 6 \text {-le" }
$$

sol:- The section is symmetrical about y-y-axis,so its contrived is lies on this axis.

$$
\therefore \quad \bar{u}=0
$$

only determine $\bar{y}=$?
(1) Rectangle $A B C D$

$$
\begin{aligned}
& a_{1}=150 \times 50=7500 \mathrm{~mm}^{2} \\
& y_{1}=\left(100+300+\frac{50}{2}\right)=425 \mathrm{~mm}^{2}
\end{aligned}
$$

(II) Rectangle EFGH

$$
\begin{aligned}
& a_{2}=300 \times 50=15000 \mathrm{~mm}^{2} \\
& y_{2}=\left(100+\frac{300}{2}\right)=250 \mathrm{~mm}
\end{aligned}
$$

(III) Rectangle JK LM

$$
\begin{aligned}
& a_{3}=300 \times 100=30000 \mathrm{~mm}^{2} \\
& y_{3}=\frac{100}{2}=50 \mathrm{~mm}
\end{aligned}
$$

know that from bottom.

$$
\begin{aligned}
\bar{y} & =\frac{a_{1} y_{1}+a_{2} y_{2}+a_{3} y_{3}}{a_{1}+a_{2}+a_{3}}=\frac{(7500 \times 425)+(15000 \times 250)+(30000 \times 50)}{7500+15000+30000} \\
\Rightarrow & \bar{y}=160.7 \mathrm{~mm}
\end{aligned}
$$

CENTROLDOF UNSYMMETRACRIL SECTION:-
Q. Find the centroid of an unequal angle section $100 \mathrm{~mm} \times 80 \mathrm{~mm} \times 20 \mathrm{~mm}$.

Sol:-
This section is not symmetrical about any axis.
\therefore we have to find out the value of \bar{x} and \bar{Y}.
(1) Rectangle (1)

$$
\begin{aligned}
& a_{1}=100 \times 20=2000 \mathrm{~mm}^{2} \\
& u_{1}=\frac{20}{2}=10 \mathrm{~mm} \\
& y_{1}=\frac{100}{2}=50 \mathrm{~mm}
\end{aligned}
$$

(II) Rectomgle-II

$$
\begin{aligned}
& a_{2}=(80-20) \times 20=1200 \mathrm{~mm}^{2} \\
& u_{2}=20+\frac{60}{2}=50 \mathrm{~mm} \\
& y_{2}=\frac{20}{2}=10 \mathrm{~mm}
\end{aligned}
$$

\because we know thant

$$
\begin{aligned}
& \bar{x}=\frac{a_{1} x_{1}+a_{2} u_{2}}{a_{1}+a_{2}}=\frac{(2000 \times 10)+(1200 \times 50)}{2000+1200}=25 \mathrm{~mm} \\
& \Rightarrow \bar{x}=25 \mathrm{~mm} \\
& \bar{y}=\frac{a_{1} y_{1}+a_{2} y_{2}}{a_{1}+a_{2}}=\frac{(2000 \times 50)+(1200 \times 10)}{2000+1200}=35 \mathrm{~mm} \\
& \Rightarrow \bar{y}=35 \mathrm{~mm}
\end{aligned}
$$

Q. A uniform Lamina shown in fry. consists of a rectangle, a circle and a triangle. Determine the controed of the laming. All dimensions are in mm i

Sol?- This section is not symmetrical about any axis therefore we hance to find out the both the values \bar{u} and \bar{y}.

(1) Rectangular portion

$$
\begin{aligned}
& a_{1}=100 \times 50=5000 \mathrm{~mm}^{2} \\
& x_{1}=25+\frac{100}{2}=75 \mathrm{~mm} \\
& y_{1}=\frac{50}{2}=25 \mathrm{~mm} \\
& \text { (11) semicircular portion } \\
& a_{2}=\frac{\pi}{2} \times r^{2}=\frac{\pi}{2} \times(25)^{2}=982 \mathrm{~mm}^{2} \\
& x_{2}=25-\frac{4 r}{3 \pi}=25-\frac{4 \times 25}{3 \pi}=14.4 \mathrm{~mm} \\
& y_{2}=\frac{d}{2}=\frac{50}{2}=25 \mathrm{~mm}
\end{aligned}
$$

(III) Triangular portion

$$
a_{3}=\frac{1}{2} \times b \times h=\frac{1}{2} \times 50 \times 50=1250 \mathrm{~mm}^{2}
$$

$$
H_{3}=50+\frac{1}{3}=50+\frac{50}{3}=66.7 \mathrm{~mm}
$$

$$
x_{3}=25+50+\frac{50}{2}=100 \mathrm{~mm}
$$

\therefore we know that

$$
\begin{aligned}
& \overline{u_{1}}=\frac{a_{1} u_{1}+a_{2} u_{2}+a_{3} u_{3}}{a_{1}+a_{2}+a_{3}}=\frac{(5000 \times 75)+(982 \times 14.4)+(1250 \times 100)}{5000+982+1250}=71.7 \mathrm{~mm} \\
& \bar{y}=\frac{a_{1} y_{1}+a_{2} y_{2}+a_{3} y_{3}}{a_{1}+a_{2}+a_{3}}=\frac{(5000 \times 25)+(982 \times(25)+(1250 \times 66.7)}{5000+982+1250}=\underbrace{32.2 \mathrm{~mm}}
\end{aligned}
$$

Q:- A rectangular Lamina $A B C D$ 20 cm 25 cm has a rectanglelar hole of $5 \mathrm{~cm} \times 6 \mathrm{~cm}$ as shown in fig. Locate the centroid of the section.

Sol $:-$
(D) For the rectangular lamina $A B C D$

$$
\begin{aligned}
& A_{1}=20 \times 25=500 \mathrm{~cm}^{2} \\
& x_{1}=\frac{20}{2}=10 \mathrm{~cm} \\
& y_{1}=\frac{25}{2}=12.5 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& A_{2}=5 \times 6=30 \mathrm{~cm}^{2} \\
& y_{2}=10+2+\frac{5}{2}=14.5 \mathrm{~cm} \\
& y_{2}=3+\frac{6}{2}=6 \mathrm{~cm}
\end{aligned}
$$

\because we know that

$$
\begin{aligned}
& \bar{x}=\frac{A_{1} x_{1}-A_{2} x_{2}}{A_{1}-A_{2}}=\frac{(500 \times 10)-(30 \times 14.5)}{500-30}=9.71 \mathrm{~cm} \\
& \Rightarrow \bar{x}=9.71 \mathrm{~cm} \\
& \bar{y}=\frac{A_{1} Y_{1}-A_{2} y_{2}}{A_{1}-A_{2}}=\frac{(500 \times 12.5)-(30 \times 6)}{500-30}=12.91 \mathrm{~cm} \\
& \Rightarrow \bar{y}=12.91 \mathrm{~cm}
\end{aligned}
$$

Q. Locate the centroid of the area shown in fog.
sol:- Total area com be considered as a rectangle
\therefore (1)ctanglt

$$
\begin{aligned}
& a_{1}=150 \times 150=22500 \mathrm{~mm}^{2} \\
& x_{1}=\frac{150}{2}=75 \mathrm{~mm} \\
& y_{1}=\frac{150}{2}=75 \mathrm{~mm}
\end{aligned}
$$

(II) Semicircle

$$
\begin{aligned}
& a_{2}=\frac{\pi}{2} r^{2}=\frac{\pi}{2} \times(50)^{2}=3925 \mathrm{~mm}^{2} \\
& x_{2}=150-\frac{4 r}{3 \pi}=150-\frac{4 \times 50}{3 \pi}=128.77 \mathrm{~mm} \\
& y_{2}=25+\frac{d}{2}=25+50=75 \mathrm{~mm}
\end{aligned}
$$

(III) Triangle

$$
\begin{aligned}
& a_{3}=\frac{1}{2} b h=\frac{1}{2} \times 50 \times 100=2500 \mathrm{~mm}^{2} \\
& x_{3}=\frac{b}{3}=\frac{50}{3}=16.67 \mathrm{~mm} \\
& y_{3}=150-\frac{h}{3}=150-\frac{100}{3}=116.67 \mathrm{~mm}
\end{aligned}
$$

\because we know that

$$
\begin{aligned}
\bar{x} & =\frac{a_{1} x_{1}-a_{2} x_{2}-a_{3} x_{3}}{a_{1}+a_{2}-a_{3}}=\frac{(22500 \times 75)-(3925 \times 128.77)-(2500 \times 16.67)}{22500-3925-2500} \\
\Rightarrow \bar{x} & =70.94 \mathrm{~mm} \\
\bar{y} & =\frac{a_{1} y_{1}-a_{2} y_{2}-a_{3} y_{3}}{a_{1}-a_{2}-a_{3}}=\frac{(22500 \times 75)-(3925 \times 75)-(2500 \times 116.67)}{22500-3925-2500} \\
\Rightarrow &
\end{aligned}
$$

MOMENT OF INERTIA (MOOT).-
\rightarrow Moment of force about a point is the product of force " F " and the perpendicular distance' x " b/w the point and the line of action of force.
moment of force $=F u$
If this moment F_{x} is further multiplied by the distance x, then a quantity $f x^{2}$ is known, as moment of moment or the second moment if force.
moment of moment $=F x \times x=f x^{2}$
If the term F is replaced by (Area) or (mass) of the body the resulting parameter is called the moment of inertia $(M O 1)$.
moment of inertia of a plane area $=A x^{2}\left(\mathrm{nnm}^{4}\right)$ form mass moment of inertia of a body $=m x^{2}\left(\mathrm{ky} \mathrm{m}^{2}\right)$ moment of inertia by integration:-
$I_{x x}=$ moment of inertia about

$$
x \text {-axis }=\Sigma(y d a) y=\Sigma y^{2} d a=\int y y^{2} d a
$$

$\mathrm{da} \rightarrow$ Area of strip.
$I_{y y} \rightarrow$ moment of inertia about

$$
y \text {-ax's }=\sum x^{2} d a=\int x^{2} d a
$$

POLAR MOMENT OF RNERTIA:- The moment of inertia of an area of passing figure with respect to an axis perpendicular to the $(u-y)$ plome and passing through a pole (z-axis) is called polar mommy of inertia and is denoted by $I_{z z}$ or J_{0}.

From figure polar moment of inertia of δ_{A} about pole O (z-axis).

$$
d g_{z z}=r^{2} d A
$$

Integrating both sides we get

$$
\begin{aligned}
& \int d t_{z z}=\int r^{2} d A \\
\Rightarrow & a_{z z}=\int\left(x^{2}+y^{2}\right) d A \\
\Rightarrow & l_{z z}=\int x^{2} d A+\int y^{2} d A
\end{aligned}
$$

$$
\Rightarrow A_{z 2}=2_{y y}+2_{x y}=
$$

RADIUS OF GYRATION OF AN AREA:-
consider an area A which has moment of inertia $I_{x x}$ with respect to the x-axis.

Let the distance from x-axis of elementry area is $k x$ and from y-axis is ky.

Then, moment of inertia of on area about x-axis

$$
f_{x x}=K_{x}^{2} \cdot A
$$

$K_{x}=\sqrt{\frac{I_{x x}}{A}}$ Radius of gyration
The distance k_{x} is known as radices of gyration of. the area with respect to x-axis.
similarly with respect fo y-axis

$$
\begin{aligned}
& L_{y y}=K_{y}^{2} \cdot A \\
& K_{y}=\sqrt{\frac{I_{y y}}{A}}
\end{aligned}
$$

Also radius of gyration offeith respect to the polar axis-

$$
\begin{aligned}
& k_{z}=\sqrt{\frac{f_{z z}}{A}} \\
& f_{z z}=\varepsilon_{x x}+L_{y y} \\
& k_{z}^{2}=k_{z}{ }^{2}+k_{y}^{2}
\end{aligned} \Rightarrow A\left(k_{z}\right)^{2}=A\left(k_{x}\right)^{2}+A\left(k_{y}\right)^{2}
$$

According to perpendicular axis theorems "The moment off inerta of a plane lamina above on axis perpendicufors to its plane posseng through amy point 0 is equal to the sum of moment off incretion about truro musuaply perfiendiculank
 axes through the same point 0 and comport lying in the plane es the lamina.
PROOF:(all three anim shang point rus)
consider an area A whose moment af inertia, with respect $f_{0} 2$-axis and y-axis are the Ix and Ivy respectively. If cm elemental area $d A$ is located af a distance off r from ' O ' sided then from figs moment of inertia of area A about x-axis $\left(2 x_{x}\right)=\int y^{2} d A$ moment of incritia of area A about 4 -axis ($\left(\mathrm{y}_{4}\right)=\int \mathrm{u}_{4}^{2} d A$
A150 moment of inertia off area M about the perpendicular z-axis through ' O ' $(l \geq:)=\int \lambda^{2} d A$

$$
\begin{aligned}
& =\int\left(x^{2}+y^{2}\right) d A \\
& =\int x^{2} d A+y^{2} d A \\
A_{\mathrm{ZZ}} & =\mathcal{L}_{y y y}+\mathscr{L}_{x x}
\end{aligned}
$$

(20×30) apply
(B) Parallel axes THERREM:-

It states that "the moment of inertia of a plane lamina about any axis lying in the plane of lamina is equals to the sum of moment of inertia about a parallel centroidal
 axis in the plane of lamina and the product of the area of the lamina and. square of the Instance b / w the two axis-

Proof:-
Let a Lamina of arca(A) has controitusit at G positioned on axis $x x^{\prime}$, another axis ($P Q$) parallel to ($2 x^{\prime}$) at h distance from u xi. Assumed coming consists of number of small olemental area ($d A$). The distance of small area ((A) from $x x^{\prime}$ is Y. Distance of the elemental area from axis $(P Q)$ is $(h \pm y)$. Thus the moment of inertia of elemental area about axis $(P Q P)$ is-

$$
=d A(h+y)^{2}
$$

moment of inertia of whole lamina about PQ, con be
mordent al complete body about Centruidel
anas.
Area ka morreal cabot serve ax ir in zero

$$
\begin{aligned}
& \lambda_{P Q}=\Sigma d_{A}(h+y)^{2} . \\
& \Rightarrow L_{P \varphi}=\Sigma d A\left(h^{2}+y^{2}+2 h y\right) \\
& \Rightarrow I_{P Q}=h^{2} \Sigma d A+4^{2} \Sigma d A+\underbrace{2 h}_{\downarrow} \sum_{D} y A \\
& \Rightarrow I_{P \varphi}=A H^{2}+I_{z Q x} \\
& {\left[\begin{array}{ll}
11 \\
O & \text { (because }
\end{array}\right]} \\
& x-x \text { axis is } \\
& {\left[\begin{array}{c}
\text { centroidal } \\
\text { axis) }
\end{array}\right.} \\
& \text { ? }
\end{aligned}
$$

\int MOMENT OF INERTIA OF DIFFERENT SHAPES:-
[1] RECTANGILLAR LAMINA:-
moment af inertia about cmtrocidal axis.-
Let the confroid G be the origin with x-axis parallel to base and 4 -axis perpendicular h to it. The differential element is chosen for integration which is parallel to base ic. u-axis. oft is ats a distance ' 4 'from the x-axis's
 and its thickness is dy.
Area of strip $=d_{A}=b d y$
As each port of strip is at the some distance y from x-axis, somomant of inertia wir.to centroidal axis u_{c}

$$
d I_{x x}=\varphi^{2} d x=\varphi^{2}(6 d y)
$$

Integrating from $-1 / 2$ to $h / 2$ we get-

$$
\begin{aligned}
& \int d I_{x x}=\int_{-h / 2}^{h / 2} y^{2} b d y \\
\Rightarrow & I_{x x}=b\left[\frac{y^{3}}{3}\right]_{-h / 2}^{h / 2}=\frac{b}{3}\left[\frac{h^{3}}{8}+\frac{h^{3}}{8}\right] \\
\Rightarrow & f_{x x}=\frac{b}{3} \times \frac{2 h^{3}}{84} \\
\Rightarrow & A_{x x}=\frac{b h^{3}}{12}
\end{aligned}
$$

To determine Ivy, consider vertical element as shown in figure. Here,

$$
\begin{aligned}
d A & =h \times d x \\
d l_{Y Y} & =x^{2} d A \\
d I_{4 Y} & =x^{2}(h d x)
\end{aligned}
$$

Integrating with in limits

$$
\begin{aligned}
& \int d L_{4 y}= \\
& \Rightarrow \int_{-b / 2}^{b / 2} x^{2} h d x \\
& \Rightarrow d_{y y}=h\left[\frac{x^{3}}{3}\right]_{-b / 2}^{b / 2} \\
& \Rightarrow I_{y y}=\frac{h}{3}\left[\frac{b^{3}}{8}+\frac{b^{3}}{8}\right] \\
& \Rightarrow I_{4 y}=\frac{h}{3} \times \frac{2 b^{3}}{84} \\
& \Rightarrow I_{4 y}=\frac{h b^{3}}{12}
\end{aligned}
$$

HOLLOW RECTANGULAR LAMINA:-

Rectongulorer Coming of length (L) and width (B) has roctenguler slot of length $(-l)$ and width (b). Area moment of inertia about controidal axis com be given as-

$$
f_{x x^{\prime}}=\frac{B t^{3}}{12}-\frac{6 l^{3}}{12}
$$

$$
I_{y 4}=\frac{L B^{3}}{12}-\frac{l b^{3}}{12}
$$

Triangular Lamina:-
consider a friongubar Lamina of base ' b ' and height ' H ', choose x-axis to concide with the base. Consider a different strip of thickness ' $f y$ ' parallel to x-axis and at a distance of ' y ' from if.

Area of strip $=d A=1 x d y$
From the property of similar triangle we get:-

$$
\begin{aligned}
\frac{l}{b} & =\frac{h-y}{h} \\
\Rightarrow l & =\frac{h-y}{h} \cdot b
\end{aligned}
$$

Moment of inertia of the strip war. to u-axis is -

$$
\begin{aligned}
& d L_{x x}=y^{2} d_{A}=y^{2} l d y \\
& d I_{x y}=y^{2} \frac{(h-y)}{h} \cdot 6 d y
\end{aligned}
$$

Integrating from $\varphi=0$ to $\varphi=h$ we get

$$
\begin{aligned}
& \int d I_{x x}=\int_{0}^{4} y_{1}^{2} \frac{b(h-y)}{h} d y \\
& \Rightarrow I_{x x}=\frac{b}{h} \int_{0}^{0} y^{2}(h-y) d y=\frac{b}{h} \int_{0}^{h}\left(y^{2} h-y^{3}\right) d y \\
& \Rightarrow 2_{2 x}=\frac{b}{h}\left[h \frac{\varphi^{3}}{3}-\frac{\varphi^{4}}{4}\right]_{0}^{h}=\frac{b}{h}\left[\frac{h^{4}}{3}-\frac{h^{4}}{4}\right]
\end{aligned}
$$

J CIRCULAR LAMINA:-
(a) Polar moment of inertia:-
consider an annular differential element of thickness $(d r)$ situated at a distance of (r) from the centre " O " as shown in fine:-

Polar nomen of inertia of this element about o is given by

$$
\begin{aligned}
d J_{0} & =r^{2} d A \\
& =r^{2}(2 \pi r) d r
\end{aligned}
$$

Integrating from $r=0$ to $r=R$ we get,:-

$$
\begin{aligned}
& \int d J_{0}=\int_{0}^{R} 2 \pi r^{3} d r=2 \pi\left[\frac{r^{4}}{4}\right]_{0}^{R} \\
& J_{0}=2 \pi \times \frac{1}{4} \times R^{4} \\
& \Rightarrow J_{0}=\frac{\pi}{2} R^{4} \text { or } \frac{\pi}{32} D^{4} L
\end{aligned}
$$

(1) moment of inertia about centroidal axis:-

The centroidal axis in the plane of lamina coincide with diameters. Because of symmetry of the circulg area, we have.

$$
\vec{I}_{x x}=\bar{I}_{y y}
$$

Using perpendicular axis theorem at 0 we ge t

$$
\begin{aligned}
& J_{0}=I_{x x}+I_{y y} \\
& J_{0}=2 I_{x x} \\
& \Rightarrow I_{x x}=I_{y y}=\frac{J_{0}}{2} \\
& \Rightarrow I_{x x}=I_{y y}=\frac{\frac{\pi}{2} R^{4}}{2} \text { or } \frac{\frac{\pi}{32} D^{4}}{2} \\
& \Rightarrow I_{x x}=I_{4 y}=\frac{\pi}{4} R^{4} \text { or } \frac{\pi}{64} D^{4}
\end{aligned}
$$

\therefore Hollow cIrciJlar lamina:-
moment of inertia of circular lamina with a circular hole at the centre can be obtained as:-

$$
I_{G}=\frac{\pi}{34} \dot{D}^{4}-\frac{\pi}{32} d^{4}
$$

$\Rightarrow \mathscr{l}_{G}=\frac{\pi}{32}\left(-\Delta^{4}-d^{4}\right)$ about polar axis.

$$
\begin{aligned}
& I_{x x}=I_{y y} \\
& \Rightarrow I_{G} \\
& \Rightarrow I_{x x}=I_{y y} \\
&=\frac{\pi}{64}\left(D^{4}-d^{4}\right)
\end{aligned}
$$

MASS MOMENT OF INERTAA:- The mass mommsen of inertia of a body is property that measure the resistance of the body to anguiar acceleration. ie. It is a measure of inertia for rotational motion.

For a particle of mass (m) situated at a distance (r) from xis of rotation moment of inertia is defined as:-

$$
I=m r^{2}
$$

For a systiom of particles:-

$$
I=m_{1} r_{1}^{2}+m_{2} r_{2}^{2}+\ldots . .+m_{n} r_{n}^{2}
$$

$$
\Rightarrow I=\sum m_{i} r_{i}^{2}
$$

consider a rigid body of mass M. Take an element of a mass $(d m)$ at a distance (r) from the axis as shown in fig. Here (r) is the moment of arm.
moment of inertia of elemental mass about axis $z_{2 l}$ is

$$
d l_{22},=r^{2} d m
$$

For whole body

$$
\int d s_{z z^{\prime}}=\int r^{2} d m
$$

If the axis passes through centre of gravity of the body then moment of inertia of the body is denoted by IG.

Mass-moment of inertia of a body is always positive and has a unit of kgnm.

RADIUS OF GYRATION:-
Radius of gyration is the distance from a axis at which entire mass is assumed to be concentrated. Suet that moment of inertia of the actual body and concentrated mass is same.

So if I is moment of mentia of a body of mass N about a give $a x i s$ and K is radius of gyration then

$$
\begin{aligned}
1 & =m k^{2} \\
\Rightarrow k & =\sqrt{\frac{I}{m}} \quad
\end{aligned}
$$

Q. Find the moment of inertia of a rolled steel joist girder of symmetrical 1 -section shown in fig.
Sol?
Three rectangle
Upper flange $A_{1}=6 a \times a=6 a^{2}$
web $\quad A_{2}=8 a \times a=8 a^{2}$
lower flange $A_{3}=6 a \times a=6 a^{2}$
MOI about $(2 x-x)$ axis of upper flange (Using parallel axis theorem)

$$
\begin{aligned}
& =I_{u x}+A h^{2} \\
& =\frac{b h^{3}}{12}+A h^{2} \\
& =\frac{6 a \times a^{3}}{12}+6 a^{2}(4 a+a / 2)^{2} \\
& =\frac{6 a^{4}}{12}+6 a^{2}\left(\frac{9 a}{2}\right)^{2}=6 a
\end{aligned}
$$

$=G$

$$
\begin{aligned}
& =\frac{6 a^{4}}{12}+\frac{3 a^{2}}{2} \times \frac{81 a^{2}}{42}=\frac{a^{4}}{2} \\
& =\frac{-244 a^{2}}{x}=122 a^{4}
\end{aligned}
$$

MOI about $(x-x)$ axis of web \& Lb a

$$
\begin{align*}
& =\frac{b h^{3}}{12}=\frac{a \times(8 a)^{3}}{12} \\
& =9 \times \frac{52^{2} a^{3}}{1 x^{3}} \\
& =\frac{128 a^{4}}{3} \tag{in}
\end{align*}
$$

MOI about $(x-x)$ axis of lower flange (By using parallel axis theorem)

$$
=1 x x+\frac{1}{2}+x^{2}
$$

Q. The moment of inertia of a rectangular section beam about $x-x$ and y-y axis passing through the centroid are $250 \times 10^{6} \mathrm{~mm}^{4}$ and $40 \times 10^{6} \mathrm{~mm}^{4}$ respectively. Calculate the size of the section'

Sol?:- Let, 'band ' h ' be the breadth and depth respectively of the rectangular section beam

$$
\begin{align*}
& \because I_{x x}=\frac{b \mathrm{ft}^{3}}{12} \\
& \Rightarrow 250 \times 10^{6}=\frac{b h^{3}}{12} \tag{i}\\
& \text { and } I_{4 y}=\frac{h b^{3}}{12} \\
& \Rightarrow 40 \times 10^{6}=\frac{h b^{3}}{12}
\end{align*}
$$

En (1): Eqn (1) we get

$$
\begin{align*}
& \frac{250 \times 10^{6}}{40 \times 10^{6}}=\frac{15 h^{3 / 12}}{h_{b^{3}}^{2} / 2} \\
\Rightarrow & 6.25=\left(\frac{h}{b}\right)^{2} \\
\Rightarrow & \frac{h}{b}=2.5 \\
\Rightarrow & h=2.5 b
\end{align*}
$$

Put the value of h in "q" (1) we $y+t$

$$
\begin{aligned}
& \frac{b(2.5 b)^{3}}{12}=250 \times 10^{6} \\
\Rightarrow & b^{4}=\frac{250 \times 10^{6} \times 12}{(2.5)^{3}}=1.92 \times 10^{8} \\
\Rightarrow & b=117.7 \mathrm{~mm} \text { and } \\
& B=2.5 \times 117.7=294.25 \mathrm{~mm}
\end{aligned}
$$

Q: -Determine the moment of inertia of the area shown in shaded in figure. about axis (xxl) which coincides with the base As.
sol:-
moL of rectangle about its controidal axis mN .

$$
L_{m N}=\frac{b h^{3}}{12}=\frac{2 \times(2.5)^{3}}{12}=2.60 \mathrm{~cm}^{4}
$$

mol of rectangle about $(x-x)$ axis

$$
\begin{aligned}
I_{+2 \mu} & =2_{m M}+A h^{2} \\
& =(2.60)+(2 \times 2.5)(1.25)^{2} \\
& =10.4 / \mathrm{cm}^{4}
\end{aligned}
$$

MO1 of semicircle about $c>$ axis

$$
I_{c \Delta}=\frac{\pi}{8} R^{4}=\frac{\pi}{8} \times 1^{4}=0.3927
$$

moI of semicircle obout its centrocidal axis op.

$$
\begin{array}{rlrl}
I_{C D} & =L_{O P}+A h^{2} & A=\frac{\pi}{2} \times r^{2}=\frac{P}{2} \times 1^{2}=1.57 \mathrm{~cm} \\
L_{O p} & =L_{C D}-A h^{2} & h=\frac{4 r}{3 \pi}=\frac{4 \times 1}{3 \pi}=0.4244 \mathrm{~cm} \\
& =0.3927-(1.57)(0.4244)^{2} & & \\
& =0.3927-0.2827 & & \\
& =0.11 & &
\end{array}
$$

MO 2 of semi circle about $(x-x)$ axis

$$
\begin{array}{rlrl}
I_{x x_{2}} & =I_{0 \rho}+A h^{2} & h & =2.5-\frac{4 r}{3 \pi}=2.5-\frac{4 x)}{3 \pi} \\
& =0.11+(1.57)(2.0756)^{2} & & =2.5-0.4244=2.0756 \\
& =0.11+6.76=6.87 \mathrm{~cm}^{4} & &
\end{array}
$$

Now moI of shaded area about $(x-x)$ axis are.

$$
\begin{aligned}
2_{x x} & =I_{2 x_{1}}-I_{x_{2 x}} \\
& =10.41-6.87 \\
& =3.54 \mathrm{~cm}^{4} \mathrm{~L}
\end{aligned}
$$

QP Determine $2_{n y}$ and $2 y y$ of the cross-section of a cast iron beam shown in figure.

Sorn:- mos of the beam about $(x-x)$-axis.
$\hat{I}_{x x}=\hat{I}_{x x}$ of rectangle
$-2 \times I_{x+}$ of semicircle

$$
=\frac{6 h^{3}}{12}-2 \times \frac{\pi}{84} R^{4}
$$

$$
\Rightarrow I_{x 4}=\frac{12 \times 15^{3}}{12}-\frac{\pi}{4} \times 5^{4}=3375-490.873=2884.127 \mathrm{~cm}^{4}
$$

Mol of rectangle about (YY) axis

$$
x_{y y_{1}}=\frac{h b^{3}}{12}=\frac{15 \times 12^{2}}{12}=2160 \mathrm{~cm}^{4}
$$

mo r of semi circle about its base AB

$$
d_{A B}=\frac{\pi}{8} R^{4}=\frac{\pi}{8} \times 5^{4}=245.437
$$

mOL of semi circle about its eontroidal axis ($G G$)

$$
\begin{array}{rlrl}
I_{A B} & =2 A_{G}+A K^{2} & & A=\frac{\pi}{2} \times r^{2}=\frac{\pi}{2} \times 5^{2}=39.27 \\
\Rightarrow A_{G G} & =A_{A B}-A K^{2} & & h=\frac{4 r}{3 \pi}=\frac{4 \times 5}{3 \pi}=2.1 .22 \\
& =245.437-(89.27)(2.122)^{2} \\
& =245.437-176.828 \\
& =68.609 \mathrm{~cm}^{4} &
\end{array}
$$

mo 2 of semi circle about $(y-y)$ axis

$$
\begin{aligned}
L_{4 y z} & =2_{G G}+A h^{2} \\
& =68.609+(39.27)(\sqrt{2}-2.122)^{2} \\
& =68.609+590.576 \\
& =659.186 \mathrm{~cm}^{4}
\end{aligned}
$$

Now mol of the boom about $(y-y)$ axis

$$
I_{44}=I_{44} \text { of rectangle }-2 I_{4 y} \text { of semicircle }
$$

$$
\begin{aligned}
& =2160-(2 \times 659.186) \\
& =84\left[.628 \mathrm{~cm}^{4}\right.
\end{aligned}
$$

Q
Determine the moment of inertia of the T-section shown in f About an axis passing through the centroid and parallel to topmost fibre of the section. Proceed to determine the moment of inertia about axis of symmetry and hence find out the radius of gyration.

Sol:-
Rectangle (I)

$$
\begin{aligned}
& A_{1}=160 \times 10=1600 \mathrm{~mm}^{2} \\
& \hat{y}_{1}=150+\frac{10}{2}=155 \mathrm{~mm}^{2}
\end{aligned}
$$

Rectangle (II)

$$
\begin{aligned}
& A_{2}=150 \times 10=1500 \mathrm{~mm}^{2} \\
& y_{2}=150 \not f_{2}=75 \mathrm{~mm} \\
& \bar{y}=\frac{A_{1} y_{1}+A_{2} Y_{2}}{A_{1}+A_{2}}=\frac{(1600 \times 155)+(1500 \times 75)}{(1600+1500)}=\frac{248000+112500}{3100}
\end{aligned}
$$

$\Rightarrow \bar{y}=116.29 \mathrm{~mm}$ from bottom

$$
\bar{y}=160-116.29=43 . \dot{7} \mathrm{~mm} \text { from top. }
$$

Now we draw a $(x-2 x)$ axis on this centroid point.
Now moI about $A B$ axis of rectangle (1).

$$
l_{A B}=\frac{b h^{3}}{12}=\frac{160 \times 10^{3}}{12}=\frac{16000}{12}=1333.33
$$

How MOL about $(x-x)$ axis of rectangle (1)

$$
\begin{aligned}
I_{X Y_{1}} & =I_{A B}+A h^{2}=1333.33+\left(600 \times(38.71)^{2}\right. \\
& =1333.33+2397542.56 \\
& =2398875.9
\end{aligned}
$$

Now mOL of rectangle (2) about $P Q$ axis.

$$
\begin{aligned}
& I_{P Q}=\frac{6 h^{3}}{12}=\frac{10 \times(150)^{3}}{12}=2812500 \\
& \text { mod about }
\end{aligned}
$$

Now mod about rectangle (11) about $(x-x)$ axis

$$
\begin{aligned}
I_{X x_{2}} & =I_{P Q}+A h^{2} \\
& =2812500+1500 \times(41.29)^{2} \\
& =2812500+2557296.15 \\
& =5369796.15
\end{aligned}
$$

Now mol of whole 7 section about ($x-x$) axis.

$$
\begin{aligned}
I_{x_{x}} & =I_{2 x_{1}}+I_{x_{x_{2}}} \\
& =2398875.9+5369796.15 \\
& =7768672.05 \mathrm{~mm}^{4} \\
L_{4 y} & =\frac{h b^{3}}{12}+\frac{h b^{3}}{12} \\
& =\frac{10 \times(160)^{3}}{12}+\frac{150 \times 10^{3}}{12} \\
& =3425833 \mathrm{~mm}^{4}
\end{aligned}
$$

Radius of gyration is given by $k=\sqrt{\frac{I}{A}}$

$$
\begin{aligned}
& k_{x y}=\sqrt{\frac{L_{x y}}{A}}=50.1 \mathrm{~mm} \\
& k_{y y}=\sqrt{\frac{2_{y y}}{A}}=34.24 \mathrm{om}
\end{aligned}
$$

Q: Determine the moment of inertia of the plane area shown in figure about its controidal axis.
sol:-
(1) Rectangle

$$
\begin{aligned}
& a_{1}=8 \times 12=96 \mathrm{~cm}^{2} \\
& x_{1}=4+8 / 2=8 \mathrm{~cm} \\
& y_{1}=\frac{12}{2}=6 \mathrm{~cm}
\end{aligned}
$$

(Ii) Triangle

$$
\begin{aligned}
& a_{2}=\frac{1}{2} \times b \times h=\frac{1}{2} \times 4 \times 12=24 \mathrm{~cm}^{2} \\
& x_{2}=b-\frac{b}{3}=\frac{2 b}{3}=\frac{2 \times 4}{3}=2.67 \mathrm{~cm} \\
& y_{2}=\frac{1}{3}=\frac{12}{3}=4 \mathrm{~cm}
\end{aligned}
$$

(iII) Semicircle

$$
\begin{aligned}
a_{3} & =\frac{\pi}{2} \times r^{2}=\frac{\pi}{x} \times 2^{r}=2 \pi=6.28 \mathrm{~cm}^{2} \\
x_{3} & =4+2+4 / 2=8 \mathrm{~cm} \\
y_{3} & =12-\frac{4 r}{3 \pi}=12-\frac{4 \times 2}{3 \times \pi}=11.15 \mathrm{~cm} \\
\therefore \bar{x} & =\frac{a_{1} x_{1}+a_{2} y_{2}-a_{3} x_{3}}{a_{1}+a_{2}-a_{3}}=\frac{(96 \times 8)+(24 \times 2.67)+(6.28 \times 8)}{96+24-6.28} \\
& =\frac{768+64.08-54.84}{113.72}=6.87 \mathrm{~cm} \\
\bar{y} & =\frac{A_{1} y_{1}+A_{2} y_{2}-a_{3} y_{3}}{1,+A_{2}+A_{3}}=\frac{(96 \times 6)+(24 \times 4)-(6.28 \times 11.45)}{96+24-6.28} \\
& =\frac{576+96-70.02}{113.72}=5.29 \mathrm{~cm}
\end{aligned}
$$

MOI about horizontal centroidaf axis

$$
I_{x u}=I_{1}+I_{2}-I_{3}
$$

$$
\begin{aligned}
I_{1} & =i_{G 1}+A_{1} h_{1}^{2}=\frac{b h^{3}}{12}+A h^{2} \\
& =\frac{8 \times 12^{3}}{12}+(12 \times 8)(6-5.29)^{2} \\
& =1152+48.393 \\
& =1200.393 \mathrm{~cm}^{4}
\end{aligned}
$$

For triangle

$$
\therefore I_{\text {bose }}=\frac{6 h^{3}}{12}
$$

$$
I_{2}=A_{1} G_{2}+A_{2} h_{2}^{2}=\frac{b h^{3}}{36}-\frac{1}{2} \times b \times h
$$

$$
=\frac{4 \times 12^{3}}{36}+\frac{1}{2} \times 4 \times 12(1.29)^{2}
$$

$$
=192+39.938
$$

$$
=231.938 \mathrm{~cm}^{4}
$$

$$
\begin{aligned}
I_{3} & =I_{G_{3}}+A_{3} h_{3}^{2} \\
& =0.11 R^{4}+\frac{\pi}{2} R^{2}\left(6.71-\frac{4 \times 2}{3 \pi}\right)^{2} \\
& =0.11 R^{4}+\frac{\pi}{2} \times 2^{2}\left(67-\frac{8}{3 \times 3.141}\right)^{2} \\
& =0.11 \times 2^{4}+\frac{3.141 \times 4}{2}\left(67-\frac{8}{9.423}\right)^{2} \\
& =1.76+(6.282)(34.352) \\
& =217.562 \mathrm{~cm}^{4}
\end{aligned}
$$

$$
\begin{aligned}
\therefore I_{x 4} & =I_{1}+I_{2}-I_{3} \\
& =1200.393+231.938-217.562 \\
& =1214.769 \mathrm{~cm}^{4}
\end{aligned}
$$

$I_{\text {centroid }}=\frac{b h^{3}}{36}$

For semi circle

$$
\begin{aligned}
I_{\text {bose }} & =\frac{\pi}{8} R^{4} \\
I_{\text {controidat }} & =I_{\text {bose }}-A h^{2} \\
& =\frac{\pi}{8} R^{4}-\frac{\pi}{2} R^{2}\left(\frac{4 R}{3 \pi}\right)^{2} \\
& =\frac{\pi i}{8} R^{4}-\frac{\pi}{2} R^{2} \times \frac{816 R^{2}}{9 \pi^{2}} \\
& =\frac{\pi}{8} R^{4}-\frac{8}{9 \pi} R^{4} \\
I_{x x} & =0.11 R^{4}
\end{aligned}
$$

Mol about vertical controidal axis

$$
\begin{aligned}
I_{44} & =I_{1}+I_{2}-I_{3} \\
I_{1} & =I_{G_{1}}+A_{1} h_{1}^{2} \\
& =\frac{h b^{3}}{12}+(12 \times 8)(8-6.87)^{2} \\
& =\frac{+2 \times 8^{3}}{+2}+96(1.2769) \\
& =634.582 \mathrm{~cm}^{4}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore I_{2}=I_{G_{2}}+A_{2} h_{2}^{2} \\
& =\frac{6 b^{3}}{36}+\left(\frac{1}{2} \times 6 \times h\right)(.6 .87-8 / 3)^{2} \\
& =\frac{12 \times 4^{3}}{36}+\left(\frac{1}{2} \times 4 \times 12\right)(6.87-2.66)^{2} \\
& =\frac{12 \times 64}{36}+24(17.72) \\
& =21.333+425.378 \\
& =446.71 \mathrm{~cm}^{4} \text {. } \\
& I_{3}=\mathscr{A}_{G_{3}}+A_{3} h_{3}{ }^{2} \\
& =\frac{\pi}{8} R^{4}+\frac{1}{x} \pi \times 2^{x}(8-6.87)^{2} \\
& =\frac{3.141}{8} \times 2^{4}+2 \pi(1.13)^{2} \\
& =6.282+8.021 \\
& =14 \cdot 3 \mathrm{~cm}^{4} \\
& \therefore I_{44}=I_{4}+I_{2}-I_{3} \\
& =634.582+446 \cdot 711-14 \cdot 3 \\
& =1066.993 \mathrm{~cm}^{4} \mathrm{~L}
\end{aligned}
$$

