Engineering Thermodynamics (3ME4-05)

Syllabus

S.No	Contents	Hours
2	Thermodynamic Properties of Fluids: Pure substance, Concept of Phase, Graphical representation of p-v-T data, Properties of steam. Steam tables, Mollier chart	4
3	Ideal Gas and Real Gas : Ideal gas, Real gas, Internal energy, enthalpy and specific heats of an ideal gas, equations of state, Dalton's law of partial pressures, Gibbs Dalton law, Thermodynamic properties of gas mixtures.	4

:	Maria Su	CR CO. C. THEIR ED. A	emergation deur musilimensionalism records interior and electrorism by a sold in more or the co	respondence to the respondence of the control of th	Di Persitan di Matematika sebagai kesahan di Alban di Kalandaran dan di Alban dan Matematikan di Alban dan Matematikan di Alban di Alban dan Matematikan di Alban di Alban dan Matematikan di Alban di Al	A VIDENCE COLUMN TO COLUMN
			when a weth in ances co	bou Pan	-) Heat -) Tempo miss syst -) When	○ · · · · · · · · · · · · · · · · · · ·
	7		when a process on processes are in such a way - that - the kinas with initial state, gt is then	boundary of a system. is known ess. A definite once or place whese some Process are takes place is known as System. System.	Heat is not a Thermodynamic property of a Thermos Tempenatuse is aim intensive property of a Thermos Astrono. Systems. Systems. Systems. Systems. Systems.	> finet Law & Thermodymanis
	1.		process or property	of a sust	whither was	There
Į,			process	or Place	Theremone and an income	on ore
			on processes ase that the final	place whese some of some is the come of th	not a theremodynamic property of a Thermodynamics see is an intensive property of a Thermodynamics the Extensive property of a Thermodynamics the Exten	Thermodynamics deals with -
			Park Park	moron of	c proper	Sheals w
			med nam	1.013 1.013	property of a property.	B COUNTRACIONA COUNTRACIONA
			April of His	# Then me chy recondes	property of a Thurmosoupers The objects to cost the	Em troloy
			Sustra	Thermostyromics	station.	Conservection
	!			Va		

Temo is called absolute Temperatuse (3) Gay - Luscac Lowi-P & T = C at Constant polume. $\frac{1}{T_1} = \frac{P_2}{T_0} = \frac{P_3}{T_0} = \frac{1}{T_0}$ be already know that from General Gas Equation. $\left| \frac{P_1 V_1}{T_1} : \frac{P_2 V_2}{T_2} : C \right|$ (4.) Joule's Low: - The change of informal energy of a Perfect gas is directly proportional to the charge in Temperatuse. 5) de xdr :) de = modr : anc (Ti-Ti).... de: mc (72-71) => Characteristic Equation of Gas:bri. will) P(==) = RT =) PVS = RT P. P. = N/ord x ms = 1 h.g. + 1 lcg - k. 1 N-im : 15]

The temperatuse at which the volume of a gos becomes

for atmospheric R: 287 J/Kg-K : 0.287 KJ/kg/K. ?) .Pv. : meT :) p = (m) RT ·· (m.s) P = SRT (5) Avogadno's baso! - Equal volumes of all gases, out same temp. and prissuse Contain equal no. of The density of overgen at Mormal Temperature and pressure (H.T.P) at 0°c and 1.013 has is 1.429 tcg/m3. : Specific volin (of 100) & oxygen at Mr.P Vs = (1.429) m3/10g. and volume of 32 lost (or 1 leg motecule corittem as 1 log-meil). $=\frac{1}{1429}$ $\approx 32 - = 22.4$ m^3 . -> Similary . it Can be proved that the volume of I lagemo of any gas at N.T.P is 22.4.m3: -> 1 gm-mote (motecular mass expressed in gm) of all gases occupies a volume of 22.4 litres at MITP: (6) Universal Gas Constant on Moras Constant: -> g+ 13 of gas is the product of the fas Constant and the mol culas mass of the gas

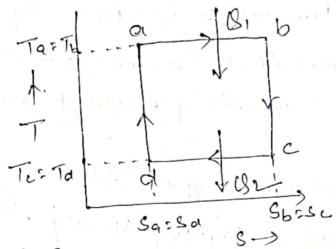
Soring Baring (br.). Sewes & All M. Sewes & M. (hr.) Sewes & M.
--

motas specific heats of a Gast- The motas on volume tric specific heat of a gas may be defined as the amount of heat repulsed to newse the Temp. of unit mote of year through one

Cm = MC

motas Specific heat at Constant volume

Q at Constant pressure 18


Com = Mcp

(6) Regnant's Law: This law states. The two specific heats of a gas (out op & ev) do not change evith the change in pressuse and Tempenature of the gas:

- Reversible and Inneventible Processes! It boths the System and surroundings Can be restored tootheir respective initial states by reversing the direction of the Process,
 - A reversible process is a quasi-Static process; a process cannot out in finitely 310 with infinitesimal gradient with the System Passing through a Continuous Series & equilibrium States.
 - The reversible processes can be proceed in either direction without violating the second Law of the mono dynamics.
- in maxim efficiemon.
- A neversible process ried & the marm work in engines and organics minmi work in devices such as refuigerentals. Pumps and Compressions.
- Comparision of Protection

 Comparision of Protection

 Comparision of Protection

Isothermal Expansion (a-b): - Heart i's Supplied to the working fluid at Constant Temp. Tanto Ti

Br = Ma-b = Pavaloge (Nb)

: ml Ta loge (Vb)

Adiabatic Expansion (b-c):
At the end of isothermal expansion

(at Point b), the heat Source is

replaced by adiabatic Cover.

The expansion Continues adiabar

tically and neversibly upto

at Point C.

Diathermic Coves. -> (Perfect he at Corolarstos)

Adiabatic Cover->
(Perfect heat insulatos)

coook is close by the consking fluid at the expense of internal energy and its temp. falls to

2) Isothermal Compression! - (C-d): - The working fluid

exact is represent by area under the curre cod and its amount is given by:

192 = hed = Pere loge (va)

: mRT2 log (Yc)

Adiabatic Compression (d-a)!-

Proceeds adiabatically and reversible till the working fluid returns back to its initial state Point a work is done on the working fluid, the internal energy in creases and temp. is oranged to Ti.

on: Met work of ! Indet ! (31-82)

mRT, Jag - mRT2 dog = (10)

mRT, loge (Vo)

: 1- T2 x loge (vd)
T1 x loge (vd)
Tologe (vd)
T1 x loge (vd)
T2 x loge (vd)
T3 x loge (vd)
T4 vo)

for the adiabatic expansion processes (b-c) and (d-
$\frac{T_b}{T_c} : \left(\frac{V_c}{V_b}\right)^{\gamma-1} \text{and} \frac{T_o}{T_d} : \left(\frac{V_o}{V_o}\right)^{\gamma-1}$
Since, The Ta: T, and Te: Td: T2
fresu the opon des
The state of the s
) Vc Val or, (Vc): (Vb)
Now, $[7]: 1-\frac{T_2}{T_1}: \frac{T_1-T_2}{T_2}$
hollowing Comclusions!
(1) Efficiency is condependent of Source & Sink.
a the engline well
(ii) It 72 =0. One of means absence of heat sing.
which is violation of Kerim- Planck Statement
of the Second Cold
al Lici centry is directly knoporational to temp.
difference (T-T3) beston Source and Sink.

. > First law of Thermodynamics: The heat and Mechanical when a system (closed) goes to a thermodynamic Cycles the net heat transfer is equal to the net work transfes. W1-2 is always Proportional to the heat (B2-1, and the Constant of Proportionality 7 is called The Joule's Equivalent. or the mechanical equinalent of heat. (ZW) cycle = J(ED) cycle) or, (ZH) cycle & (EB) cycle. or in the form of Cyclic integral. $\int du = \int dQ.$, Mom/J.). Heat & work -> Joure. The emergy Can neither be created mor destroyed but it can be only transferred from one form to another form.

According to this law, when a System undergoes a Change of state (Thermodynamic Process), the both head throus fee and work throus fee takes place. The met energy throus fee is stored within the system and is known stored energy or To tal energy of the system.

S→ inexact differential

d → Exact differential

->. Stored Emergy is neither heat nor Work and is given in the form of onternal Emergy or Emergy of the System.

(B-W : DE)

(Joule). 1 B2 Wr

(8,-02-03) : $\Delta E + (-1,+1,+1,2-1,3+1,4)$:) (8,-02-03) : $\Delta E + (1,+1,+1,2-1,3+1,4)$ · for unit mass 21-2 - w₁₋₂ = e₂-e₁ Q1.2 - M1-2 = E2-E, Opr2 = Heat transferred to the System during the process from Point 1 to 2. Himz = Work done by the System on the Surmonely. during the Process. E, : Total energy of the System at Point 1 = P.E, +KE, +U, = mgc, + mw, + U, Ez: Total Energy of the System at Point 2. = PE2 + KE2 + U2 = mg 22 + mn ×22 + U2 Now from the above equation we get. B1-2- W1-2 = 62-61 = (PE2+KE2+U2) - (PE,+KE,+U,)

$$8_{1-2} - W_{1-2} = E_2 - E_1$$

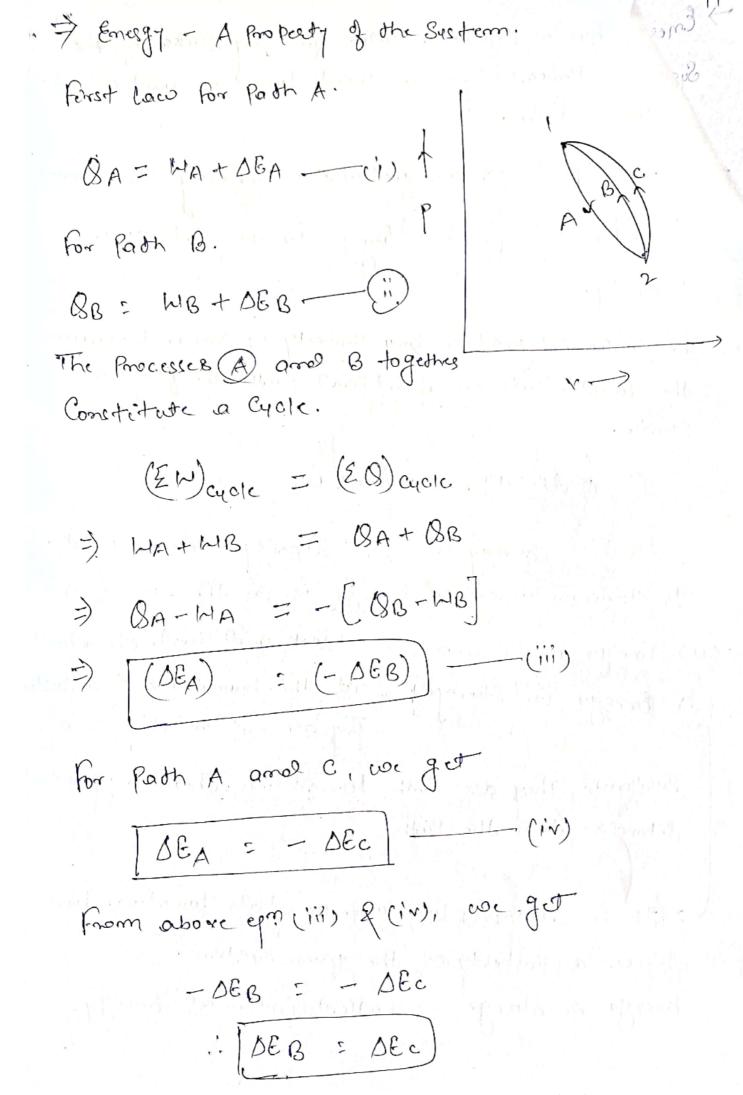
$$= (pE_2 + KE_2 + v_2) - (pE_1 + KE_1 + v_1)$$

$$= mgc_2 + mv_2^2 + v_2 - mgc_1 - mv_1^2$$

$$v_1$$

Br2-W1-2 = mg(22-21) + m (12-12) + (U2-U1)

cohen these is no charge in Portential Energy.


When These is no flow of mass ento or out of the System

In a closed or Mon- flow thermodynamic System

Thus the above equation is known as Non-flow energy equation.

=) For an isolated System for which 0_{1-2} : W_{1-2} =0
Then the above equation becomes.

This equation Shows that First Law of Thermodynamic is the law of Conservation.

- System. Hence, it is a point function and a Property of the System. of the System.
- -> The emergy & is an extensive Property. The specific Emes 97, e: E = (J/log) is an contensire Paro pecity.
- -> The Cyclic integral of any Property is term. Because the final State is identical with the invitial State.

\$ de =0. \$ dr =0.

Energy is the Capacity of doing work. In Thermodynamic Energy is in the two form.

- (9) Emergy in Transit > Work and Heat, obserbed

 (b) Emergy in Storage; at the boundries of a System

 (b) Emergy in Storage; They are not property of a

System. They are Rath function. Their magnitude depends upon the Rath

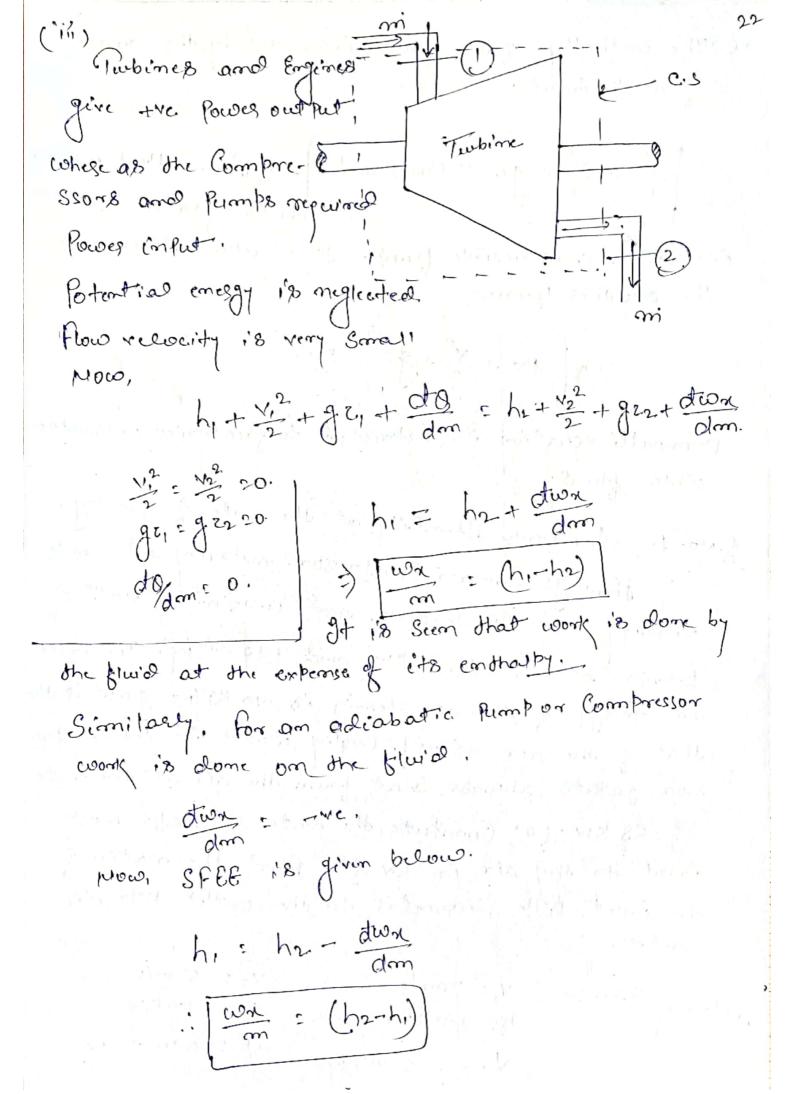
> 9t is a point function, or Storte function and hence a property of the given System. Emergy in Storge 1'8 Called internel Emergy.

P-V-T Relations

$$\frac{T_1}{T_2} : \frac{P_1}{P_2} \frac{Y^{-1}}{Y}$$

=) Polytropic Proces Prit relations.!-

$$\frac{1}{\sqrt{2}} = \left(\frac{\sqrt{2}}{\sqrt{1}}\right)^{m-1}$$


$$\Rightarrow \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right) : \left(\begin{array}{c} p_2 \\ p_1 \end{array}\right) \xrightarrow{m}$$

$$\rightarrow \left(\begin{array}{c} \Gamma_1 \\ \Gamma_2 \end{array}\right) : \left(\begin{array}{c} P_1 \\ P_2 \end{array}\right) \xrightarrow{m-1}$$

Heat Supplied (12,-2): -

(i) Mozzle and diffusor: - A mozzle is a device which?
increases the relocity or K.E of
fluid at the expense of its Prusuar drop.
A dikkusor in creases the Pressure of a brus
pense of its K.B. The morale is insulated.
pense of its K.B. The morale is insulated. The Steady blow energy equation is given below.
1 2 02 do - bot 1/2 + 922 + otoon
$h_1 + \frac{\sqrt{2}}{2} + gz_1 + \frac{dg}{dm} = h_2 + \frac{\sqrt{2}}{2} + gz_2 + \frac{dtoon}{dm}$
$\frac{1}{1}$
C.S (2)
$\frac{1}{m}$
Hese, dos =0, door =0, and The charge in potenti
energy is zero. Now equation becomes.
$h_1 + \frac{v_1^2}{2} = h_2 + \frac{v_2^2}{2}$
from Continuity equation.
$w = \frac{A_1 V_1}{V_1} = \frac{A_2 V_2}{V_2}$
when the injet velocity or velocity of approach is very Small as . Compased to the exist velocity. Then
1
$h_1 = h_2 + \frac{v_2^2}{2} \Rightarrow v_2^2 = 2(h_1 - h_2)$
Tarrier Manual Control of the Contro
$ V_2 = \int 2(h_1 - h_2) \text{cm/s}.$

(h,-h2) -> J/109 생기는 하십시다. 그게 되어 맛이 ... (Tkg) = (F.S) /2 = (m.a.s)/2 = (m.a.s)/2 = /cg. m/sr.xs = (m/s.). The above quation also applicable for diffusor. (ie) Throttling device! - when a fluid flows through a Constructed Passage, like o Partially opened valve, an orifice or porrous plug. These is an appreciable doop in Pressure, and the flow is said to be throtted. don =0, don =0. again chayed in PE i's very Small and that is ignored. The S.F.E.E i's given below. $h_1 + \frac{\sqrt{2}}{2} = h_2 + \frac{\sqrt{2}}{2}$ Often the pipe relocities in throttling are so low that the kie is negligible. Them h, = h2 The emotherly of Afluid before throtting is equal to the enthalpy of the fluid afters. Throttling. Scanned with CamScanner

of work imput.

inviscid incompressible fluid. It is also wretten in the another form.

$$\Delta \left[pv + \frac{v^2}{2} + gz \right] = 0.$$

Bernoulli equation is restricted to frictionless en Compre-Ssible fluid.

8.NO-1. Air Hows Steadily out the nate of 0.5 leg/s
through an air Compressor. emtering at 7 m/s
velocity, 100 KPo Pressure, and 0.95 m3/eg vorm of
leaving at 5 m/s. TookPa, and 0.19 m3/eg. The inter
maderesgy of the air leaving is 90 KV/pg greated the
that of the air entering. Cooling water in the Compressor Jackets absorbs heat from the air at the nate
of S8 KW. (4) Compute the nate of Shaft work
input to the air in KW (b) Airod the natio of
the inter pipe diametes to the outlet pipe dia.

Solin > Giren: - V, = 7 m/s

P; 100 kPa,

V; = 700 kPa

V; = 0.95 m3/kp

V; = 0.19 m3/kp

$$\omega_{1}\left(h_{1}+\frac{y_{1}^{2}}{2}+gz_{1}\right)+\frac{do}{dt}=\omega_{2}\left(h_{2}+\frac{y_{2}^{2}}{2}+gz_{2}\right)+\frac{d\omega_{1}}{dt}$$

$$\vdots \frac{d\omega_{n}}{dt}=\left[\frac{(h_{1}-h_{2})}{2}+\frac{(y_{1}^{2}-y_{2}^{2})}{2}+\frac{g(z_{1}-z_{2})}{2}\right]\omega+\frac{d\sigma}{dt}$$

$$= \left[(v_1 + P_1 v_1 - v_2 - P_2 v_2) + \left(\frac{v_1^2 - v_2^2}{2} \right) + g \left(\frac{z_1 - z_2}{2} \right) \right] \omega$$

$$+ \frac{dg}{dt}$$

$$= \left[(v_1 - v_2) + (P_1 v_1 - P_2 v_2) + (\frac{v_1^2 - v_2^2}{2}) + \frac{q(z_1 - z_2)}{2} \right] \omega + \frac{q(z_1 - z_2)}{2}$$

$$= -\left[(\upsilon_2 - \upsilon_1) + (P_2 v_2 - P_1 v_1) + \frac{v_2^2 - v_1^2}{2} + g(z_2 - z_1) \right] \omega$$

$$+ \frac{d\upsilon}{dt}$$

$$= -0.5 \log_{5} \left[90 \text{ KJ/eg.} + \left(\frac{7 \times 0.19 - 1 \times 0.95}{100} \right) 100} \right] \times 10^{-3} \times 10^{-3}$$

= -122 KW Route of coook in put = 122 km. (b) from mass balance equation. W: AIN : A2V2 $\frac{A_1}{A^2} = \frac{\sqrt{2}}{\sqrt{1}} \times \left(\frac{\sqrt{1}}{\sqrt{2}}\right) = \frac{5}{7} \left(\frac{\cos 3}{\sqrt{6.95}}\right) \left(\frac{\cos 3}{\sqrt{6.95}}\right) = \frac{5}{7} \left(\frac{\cos$ di : [3.5]. =

A Certain fixed region in Space Called a Constrol volum? through which the anoving Substance flows. This is Similar to the analysis of Eulers in fluid mechanics. The Constrol volume boundary remains fixed and i unaltered. Again, while matter usually crosses the Constrol volume boundary, no Such flow occurs across, the System boundary.

Control
The broken line represent Toubine As Shaft
Sent & the Surface of the
Control volume cotich is
Known as the Control
Surface.

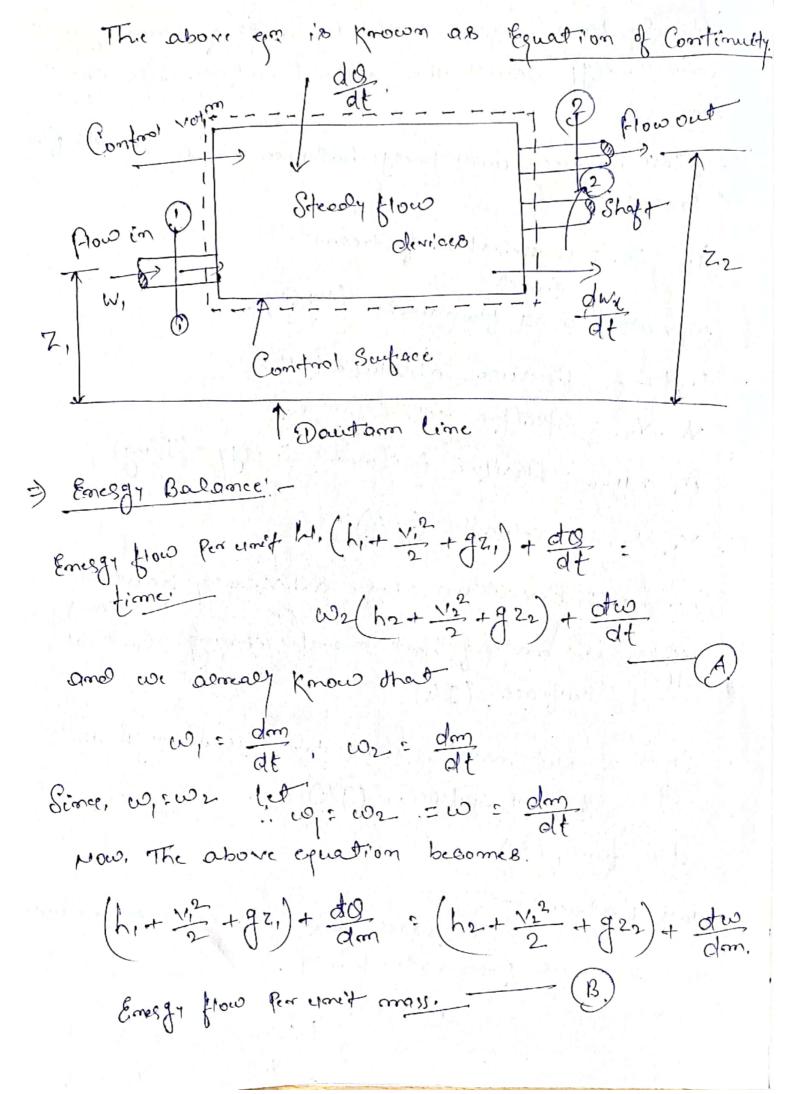
Steady Flow Processes:

Description

Steady Flow Processes:

As the fluid flows through a

Certain Control rolm, ets Thermodynamic Properties may vary along the Space Coordinates as well as with time.


It the nate of flow of mass of emergy through the Control Surface charge with time, the mass of emergy, with ime the Control votin also would charge with time.

Steady flow means that the mate of flow of mass
and Energy across the Control Surface are Const.
ant.
=> Mass balance and Energy balance in a Steady flow
frocess:
A., Az: Cross-Scation of Stream (m²) (m²) w, w2: mass flow marke (log/s)
w, w2: mass bio
p., p2 = Pressure, absolute (N/m²) Vi, V2: Specific volin (m³/leg) Construction intermed Energy (I/log)
ti, to: Specific to.
ce, que : Specific
V1, V2 = velocity (m/s)
7. 72: Elevation above arbitrary dantam (m)
do - Net nate of heat transfer through Control
do : Net nate of heat transfer through Control The Scut ace, (J/1)
dient - Met mate of work transfes through the Control Surface, (J/s)
dt Control Surface, (J/s)
de time, (S)
Mace Balace!

equal the mass flow mate leavery.

i) = A2 V2

Coanned with CamScanner

$\mathcal{Z}_{\mathcal{L}}$
The above eyn A & B as known as Steady flows
Energy equation. (SFEB).
The above equi in the form of
B-Wor = (h2-h) + \frac{\sqrt{2}^2 - \sqrt{2}}{2} + g(\frac{72^2 - \frac{7}{2}}{2})
in the different à form coe get.
do - dwn: oh + rdr + golz
one Stream
Mass balance is co, + co2 = co3+wa Ac Ma
co, + co2 = co3+604
A1V1 + A2X2 = H3 19 14
Emesej equation is given below. Per unit time.
w. (h, + 1/2+ 921) + w2 (h2+ 1/2+ 922) + off =
w3 (h3+ \\\ \frac{1}{2} + \frac{923}{2} + \text{\$\text{\$\geq}\$} + \text{\$\partial} \\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
Steady flow Energy equation applies to a wrote variety
Steady flow Enessy's equation applies to a wide variety of processes like pipe line flow, head transfes processes rechanical powers generation in engines and Turbine, Combustion processes and flow through mozzles and diffusorse
racchanical powers generation in engines and Turbine,
Combustion processes and flow through mozzles and
al ffusons=

Scanned with CamScanner

and Sinz = the Heart Supplied
Queroly Comprision. Wire: -ve,
Questy Comprision. Wirz: -ve, Olv: -ve & O1-2: -ve.
(ii) ISOCHORIC PROCESS (Gay-Cussac Law)
M. S. C.
$ \frac{P_{r}}{P_{r}} = \frac{P_{2}}{P_{2}} \leq c $ (may) (may)
coongoine by the gas
CW= FOC
W152 F P (12-1)
Chaque en internal Energy
du = mardi
Heat Supplied
SO = ole + foo
Broz = (02-01) + Wi-2
Br2 = (U2-U1) +0
B1-2 = mcr (T2-T1)

charge in emotion by $\int_{0}^{\infty} dH = \int_{0}^{\infty} du + \int_{0}^{\infty} (dv)$ $H_{2}-H_{1} = \left(U_{2}-U_{1}\right) + \left(P_{2}V_{2}-P_{1}V_{1}\right)$ $= m(T_{2}-T_{1}) + mR(T_{2}-T_{1})$ $= m(T_{2}-T_{1}) + mR(T_{2}-T_{1})$ $= m(P(T_{2}-T_{1})$ $du = mCP(T_{2}-T_{1})$ $H_{2}-H_{1} = mCP(T_{2}-T_{1})$ $\vdots \quad \left[du = H_{2}-H_{1}\right]$

At a particular pressure, Sp (8 the Specific emtropy of Saturated water.

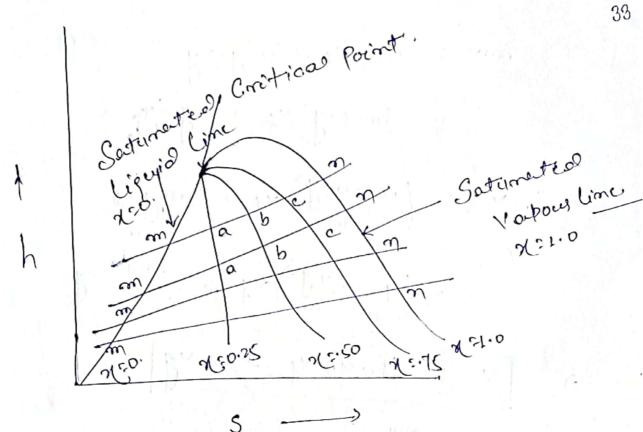
Sq is specific enteropy at softwarted vapous line.

The entropy change of the System during the phase change from liquid to varous at Constant pressure i'es given below.

[Stg = (Sg-St)]

The value of Sty decreases as the pressure increases, and becomes here at the Critical Point.

=> hf - Specific enthalty of Saturated water. hg- "hapous.


hfg: (hg-hs) = latent heat of vaporization at Constant Pressure.

As the Pressure increases, hog decreases, andothe contical Pressure hog becomes Zero.

=> Quality or Drymess Fraction:

bet 1 lag of liquid-vapous mixtuse. or leg is the mass of the vapous and (1-1) log is the mass of liquid. Then on is known as the quality or daymers fraction of

liquid - vapous mixture. where, on, = Masses of vapous of in the mixture. of varies bet o and 1. for Saturated water, when water just starts builty for Sotumated vapous, when raporization is Comple of 1. and for which the varpous is said to be dry saturated 450

lines Passing through points a, b, and c age the Constant quality time of 0.25, 0.50, and 0.75 respectively. Constant quality lines start from the Creitical Point

At point a, the mass of liquid is @ 75% and the mass of vapous is 25% of Total mass.

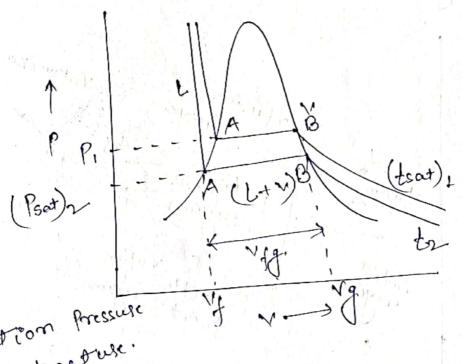
let. V be the total volumes of a liquid volpous mixtuse of quality di,

Vf = volume of Saturated liquid

vapous. rg = volume " "

m, mt and my are the Corresponded mosses

w= w++md


Similary, we obtained, that he hot nhigh S: St +n Stg

& luc. uf + xutq

- -) The internal Energy of Saturnated water at the trible Point (t= 0.01°C) is autitnowy chosen to be Zero.
- -> The entropy of saturated water is also chosen to be Keno at the tricple Point.

Phase change occurs at Constant Pressuse and Temp.

- A puse liquid at a given pressure will transform into vapour only out a particular Temp. Known as Saturation Temperatuse.
- → Scimilarly, it the Temperature 1's fixed. The liperiod will bou'l (Complemse) only at a particular fressure. Called the Saturation Pressure.

Saturation Pressure.

- -> The Pressure increases, the Southernation temperatuse also increases.
- -> Saturation State exist up to Circtical Point.

Vy - The Specific volume of the Saturated Cipuid at a geven Pressuse. 19 - The Specific volume of the Saturated vapous. 199 - Change in Speaific votume during Phase transit tion (boiling or Condensation) at the Pressuse. As pressure increases, Vfg decreases, at Critical Birt The value of vig is becomes Leno. => P-T diagram for a pure Substance. Vaporization

emp.

Sublimation

Consides 1 atm Constant Pressure

1-2 is the Solve (ice) heating

2-3 is the melting of cee at obe.

3-4 is the liquid hearting

4-5 is the valorization of water at Loooc

5-6 is the heating in the vapous phase.

The Curve Passing through the Point 2,3 i's called fusion Curve.

The Curve Passing through the 4.5 Point is carred the vaporization Curve. (which inclinates vapority Temp. Zet ion and Conclems at ion at different Temp.

The fusion Curve, Sublimation Curve and vapored-Kertion Curve i's meet at always Trible Point. It the vapous Pressure is measured B. NO-1. Air undes goes two Processes in Serieses. Process 1-2 Expansion from 300kpa, 0.019 m3/leg. to 150 kpg, follows Pr = c.

Constant Pressure Compression in which votin 13=1, Sketch P-1 diogram and oletermine workdone for

unit mass of air in KJ/1cg.

PN = C. 12 = P, V, 300× 0.019 = 0.038 m3/1cg.

= P.N. log (V2)

: 300×0.019 × lm (0.038)

= 0 3.95 KJ/10g

bic brocess

= P2 (13-12) 1~12-3: P(dv

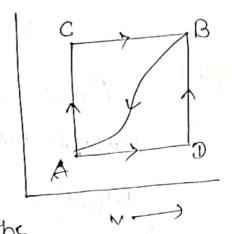
: P2 (43-42)

= 150 (0.019 - 0.038)

Price Price

- - 2.85 KJ/wg

! WE W1-2+ 1H2-3


= 3.95 + (-2.85) = 1.1 KJ/log.

18. MO-2 5 lag air exterience the three Process Cycle which is Shown on firem fig. Calculate the met work dome. Take R: 0.287 KJ/logk. p (kPa) Som Process L-2 Constant roum Proces : W1-2 20. 001 2-3 Constant Pressure Process. : 12-3 = 1 Pdv. = P (v3 - v2) = 100 (10-2) = 800 kJ 3-1 Iso thermal Process : P3 v3 = mRT3 .) 100×10 = 5×0.287 × T3 : T3 = 696.86. K. W3-! = mRTB ((1/3) = 5 x 0.287 x 696.86 x lm (2/0) -1609.43 KT ". Not work done Wmt = W1-2 + W2-3 + W3-1 = 0 +800-1609.43 = -809.43 KJ

B. NO-1. when a System is taken from the State A to B. in fig. Along the Path ACB, 80 KJ of heat flows into the System and the System does work of 30 KJ

(i) How much heat flows into the System along the Path ADIB, it he the work dome is lok!

(ii) when the System is neturned from the State B to A along

the Curred Path, the workdome on the Sustem absorbed or liberale Sustem is 20 KJ. Does the Sustem absorbed or liberate heat and how much heat is absorbed or liberate.

(iii) It the contermal energy at A (UA): 0, D (UD):40 KJ. Fired the heat absorbed in the Processes AD

Soin Given: BACB = 80 KT, WACB = 30 KJ.

(i) DADB: WADB+(UB-UA) - (i)

ever shreedy know that

BACB = WACB + (UB-UA)

?) 80 = 30 + (OB-UA)

: (UB-UA) = 80-30 = 50 KT.

Peut the value of (UB-UA) in the ep? (1), we get BADB = WADB+ (UB-UA) = 10 + 50 = 60 KT Am8. BB-A = Heat absorbed or liberested along the Curved Path BA. MB-A = -20 KJ. we already Know that BB-A: WB-A + (-UB+UA) = -20 + (VA-UB) :-20-(UB-UA):-20-50 = - 70 KJ. Ams. -ve Sign fondiaates that heat is liberated by the (iii) let BAD: Heat absorbed en the Process AD. (SDB = Heat absorbed in the process DB. MOW. MADB = WAD+ WO-B WADB = WA-D+D " WADB = WA-D = LOKT. BA-D = (UD-UA) + INA-D MOW, = (40-0) + 10 = 50 KJ Ams.

Scanned with CamScanner

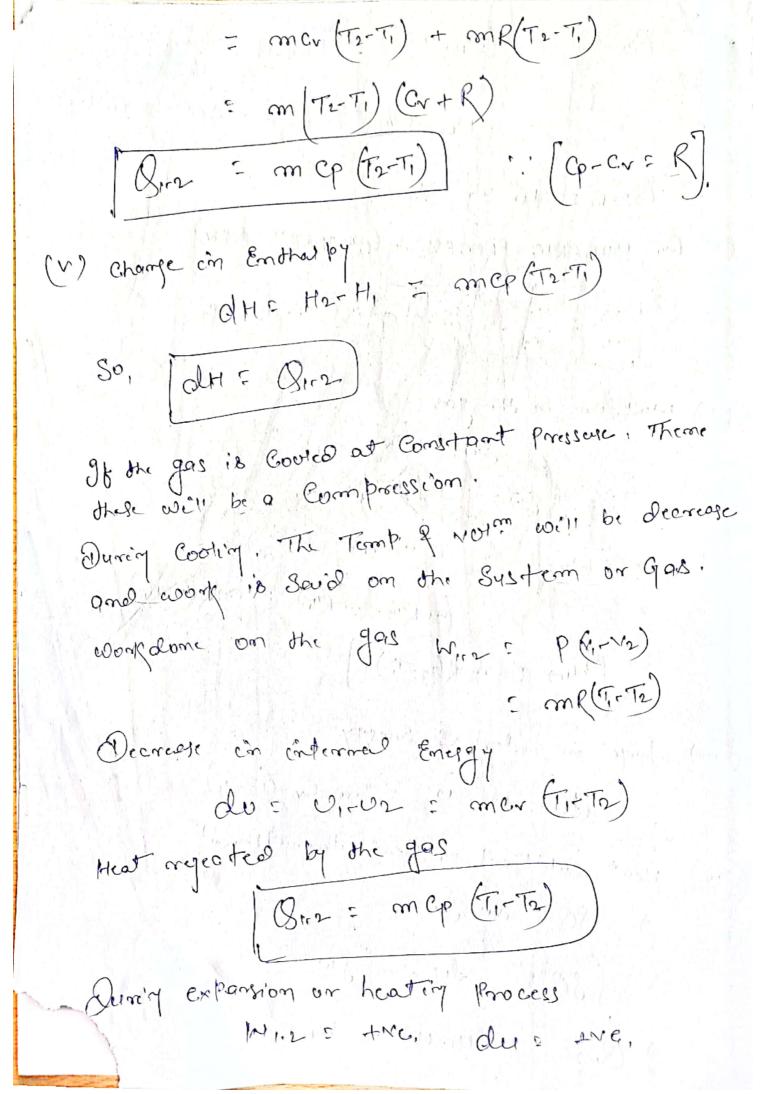
$$B_{0}-B = (U_{8}-U_{0}) + H_{0}-B$$

$$= U_{3}-U_{0} = 50-40 = 10 \text{ KT}$$

80-B: 10 KJ Ams.

CO FOR ISOBARIC PROCESS: - (CHARLE'S CAN)

(ii) workdome by the gas


12 : P(12-V1)

: (mRT2- mRTi): mR(T2-Ti)

(iii) charge en insternal Emergy

du = 02-0, = m ev (12-17)

(iv) Heat Supplied or Heat transferred

1 lag fice at -50c to Steam at 250°C.

Cpice = 2.093 KJ log.K (i) The emtmoby increases when heated from -50c to 0°c

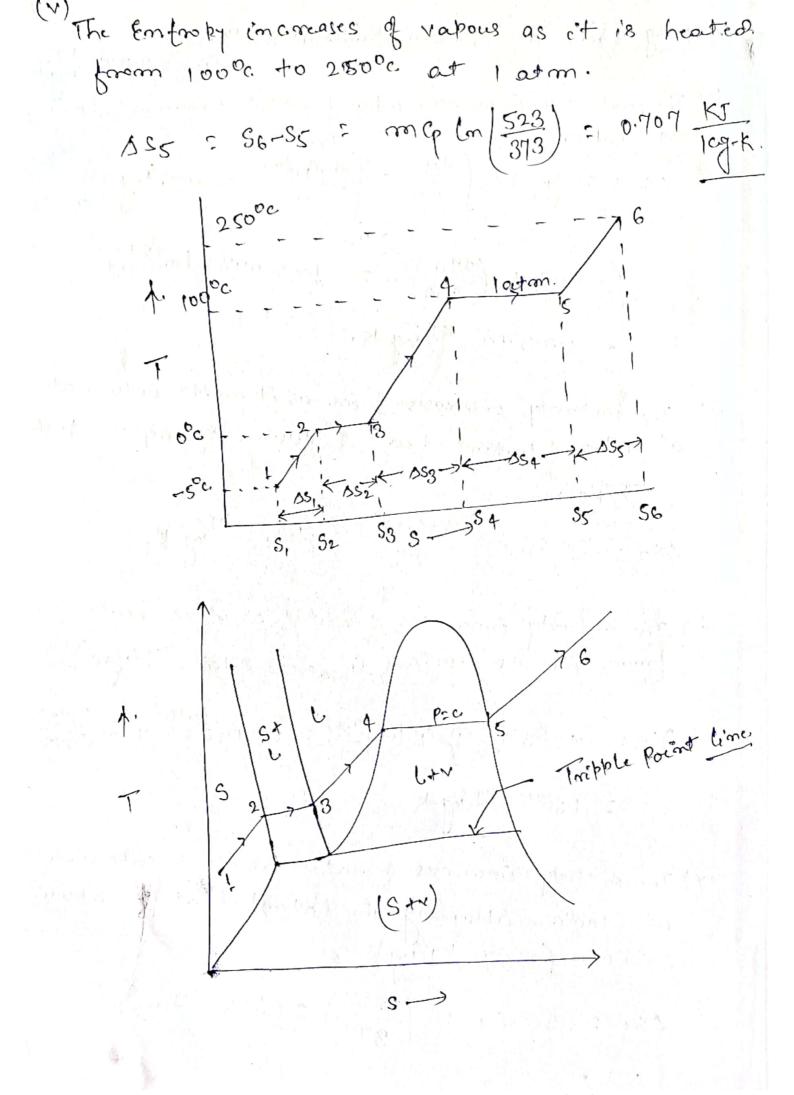
 $\Delta S_1 : S_2 - S_1 : \int \frac{dQ}{T} : \int \frac{m \operatorname{Cp} dT}{T} = m \operatorname{Cp} (\log T) \frac{T^2}{T}$

 $= mcp lm \left(\frac{273}{268} \right) = 1 \times 2.093 \times lm \left(\frac{273}{268} \right)$

= 0.0398 KJ/109-18.

(ii) The entropy increases of ice as it multo into water at 0°c. Chartent heart of fusion of ice = 334.96

DS2 = S3-S2 = 334.96 = 1.23 kg/kg-k.


(iii) The entropy increases & wastes as it is heated from one to 1000c (. Chooses = 4.187 KJ/logk).

153: Sq-53: mcp lm (373) : 1×2093× lm (373)

= 1.307 KJ/log.K

(iv) The entropy concreases of water as it is vaporized at 100°c, absorbing the latent heat of vapori-Zation (2257 KJ/leg)

DS4 = S5-S4 = (2257) = 6.05 KJ/cg·K.

