RAJASTHAN TECHNICAL UNIVERSITY, KOTA

SYLLABUS

2nd Year - III Semester: B.Tech. (Mechanical Engineering)

Credit: 3

3ME4-05 : ENGINEERING THERMODYNAMICS

Max. Marks: 150 (IA:30, ETE:120) End Term Exam: 3 Hours

3L+(L+OT+OP End Term Exam: 3	
SN	Contents	Hours
1	Basic Concepts and definitions of Thermodynamics : System, Surroundings, Property, Energy, Thermodynamic Equilibrium, Process, work and modes of work.	2
	Zeroth and First Law of Thermodynamics: Zeroth of Thermodynamics, Temperature scale, First law of thermodynamics, First law analysis of some elementary processes. Steady and unsteady flow energy equations.	5
2	Second Law of Thermodynamics: Heat engine, Heat pump and refrigerator, Second law of thermodynamics, Equivalence of the Kelvin-Plank and Clausius statements. Reversible and Irreversible Processes, Carnot engine, Efficiency of a Carnot engine, Carnot principle, thermodynamic temperature scale, Clausis Inequality.	4
	Entropy : Entropy, Calculation of Entropy change, Principle of entropy increase. Temperature-Entropy diagram, Second law analysis of a control volume.	3
	Availability: Available energy, Loss in available energy, Availability Function, Irreversibility.	3
3	Thermodynamic Properties of Fluids: Pure substance, Concept of Phase, Graphical representation of p-v-T data, Properties of steam. Steam tables, Mollier chart	4
	Ideal Gas and Real Gas : Ideal gas, Real gas, Internal energy, enthalpy and specific heats of an ideal gas, equations of state, Dalton's law of partial pressures, Gibbs Dalton law, Thermodynamic properties of gas mixtures.	4
4	Thermodynamic Relations: Thermodynamic variables, Independent and dependent variables, Maxwell's thermodynamic relations, Thermodynamic relations involving entropy, Thermodynamic relations involving enthalpy and internal energy, Joule-Thomson coefficient, Clapeyron equation.	4
	Power Cycles: Otto cycle, Diesel cycle, Dual cycle, Brayton cycle and Ericsson cycle.	4
5	Vapour power cycle: Rankine cycle, effect of operating conditions on its efficiency, properties of ideal working fluid in vapour power cycle	3
	Reheat cycle, regenerative cycle, bleeding extraction cycle, feed water heating co-generation cycle.	3
	TOTAL	39

Office of Dean Academic Affairs Rajasthan Technical University, Kota