JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
Year \& Sem. - B. Tech I year, Sem.-I
Subject-Engineering Chemistry
Unit - I (Numerical problems based on Lime Soda Method)
Presented by - Dr. Barkha Shrivastava
Designation - Associate Professor \& Head
Department - Chemistry

Numerical problems based on Lime Soda Method

Lime required for softening:
$=\frac{74}{100}$ [Temp. $\mathrm{Ca}^{2+}+\begin{array}{r}2 \times \text { Temp. } \mathrm{Mg}^{2+}+\mathrm{Perm} .\left(\mathrm{Mg}^{2+}+\mathrm{Fe}^{2+}+\mathrm{Al}^{3+}\right. \\ \left.+\mathrm{CO}_{2}+\mathrm{H}^{+}\left(\mathrm{HCl} \text { or } \mathrm{H}_{2} \mathrm{SO}_{4}\right)+\mathrm{HCO}_{3}\right]\end{array}$

Soda required for softening:
$=\frac{106}{100}\left[\right.$ Perm. $\left(\mathrm{Ca}^{2+}+\mathrm{Mg}^{2+}+\mathrm{Fe}^{2+}+\mathrm{Al}^{3+}\right)+\begin{array}{r}\mathrm{H}^{+}(\mathrm{HCl} \text { or } \\ \left.\left.\mathrm{H}_{2} \mathrm{SO}_{4}\right)-\mathrm{HCO}_{3}\right]\end{array}$

Example 2. Calculate the quantity of hydrated lime and soda required for soften $\mathbf{2 0 , 0 0 0}$ litre of water containing the following salts:
$\mathrm{CaCO}_{3}=10.0 \mathrm{mg} /$ litre, $\quad \mathbf{M g C O}_{\mathbf{3}}=8.4 \mathrm{mg} / \mathrm{litre}$ $\begin{array}{ll}\mathrm{CaCl}_{\mathbf{2}}=11.1 \mathrm{mg} / \mathrm{litre}, & \mathbf{M g S O}_{\mathbf{4}}=\mathbf{6} .0 \mathrm{mg} / \text { litre } \\ \mathrm{SiO}_{\mathbf{2}}=1.2 \mathrm{mg} / \text { litre. } & \end{array}$
Assuming the purity of lime as 90 percent and that of sodium carbonate 95 percent.
[Raj. Univ. 1996]
Solution: Conversion to CaCO_{3} equivalent.

S.No.	Substances	Amount	Multiplication factor	$\mathbf{C a C O}_{\mathbf{3}}$ equivalent	
1.	CaCO_{3}	$10 \mathrm{mg} / \mathrm{litre}$	$\frac{100}{100}$	$10 \times \frac{100}{100}=10 \mathrm{mg} / \mathrm{litre}$	
2.	MgCO_{3}	$8.4 \mathrm{mg} / \mathrm{litre}$	$\frac{100}{84}$	$8.4 \times \frac{100}{84}=10 \mathrm{mg} / \mathrm{litre}$	
3.	CaCl_{2}	$11.1 \mathrm{mg} / \mathrm{litre}$	$\frac{100}{111}$	$11.1 \times \frac{100}{111}=10 \mathrm{mg} / \mathrm{litre}$	
4.	MgSO_{4}	$6.0 \mathrm{mg} / \mathrm{litre}$	$\frac{100}{120}$	$6.0 \times \frac{100}{120}=5 \mathrm{mg} /$ litre	
$\mathbf{5 .}$	SiO_{2}	$1.2 \mathrm{mg} / \mathrm{litre}$	Does not impart hardness		

\therefore Lime requirement

$$
\left.\left.\begin{array}{l}
=\frac{74}{100}\left[\left(2 \times \mathrm{MgCO}_{3}\right)+\mathrm{CaCO}_{3}+\mathrm{MgSO}_{4} \text { as } \mathrm{CaCO}\right. \\
3
\end{array}\right] \text { equivalent }\right]
$$

or, lime required of given quality (i.e,, 90% of purity)

$$
=25.90 \mathrm{mg} / \text { litre } \times \frac{100}{90}=28.778 \mathrm{mg} / \text { litre }
$$

or, 20000 litre of water require

$$
\begin{aligned}
&=28.778 \times 20000 \times \frac{1 \mathrm{~kg}}{10^{6} \mathrm{mg}}=0.5755 \mathrm{~kg} \text { of lime } \\
& \therefore \quad \text { Soda required }=\frac{106}{100}\left[\mathrm{CaCl}_{2}+\mathrm{MgSO}_{4}\right. \text { as CaCO } \\
& \therefore \quad \\
&=\frac{106}{100}[10+5] \mathrm{mg} / \text { litre } \\
&=\frac{106}{100}[15] \mathrm{mg} / \text { litre } \\
&=\frac{106}{100}[15] \mathrm{mg} / \text { litre }=15.90 \mathrm{mg} / \text { litre }
\end{aligned}
$$

\therefore Sodium Carbonate required of given quantity (i.e., 95% of purity)

$$
=15.90 \mathrm{mg} / \text { litre } \times \frac{100}{95}=16.737 \mathrm{mg} / \text { litre }
$$

$20, O O O$ litre of water required $=16.737 \mathrm{mg} /$ litre $\times 20,000$ litre $\times \frac{1 \mathrm{~kg}}{10^{6} \mathrm{mg}}$
$=0.3347 \mathrm{Kg}$ of soda.

Dr. Barkha Shrivastava (Associate Prof.

If Percentage of purity is given for Lime \& Soda

Amount of Lime required = Calculated Lime x 100/ Purity \%

Amount of Soda required = Calculated Soda x 100/ Purity \%

JAIPUR ENGINEERING COLLEGE AND RESEARCH CESTRE

Dr. Barkha Shrivastava (Associate Prof.
Chemistry), JECRC, JAIPUR

