

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE

Year & Sem. – B. Tech I year, Sem.-I Subject –Engineering Chemistry Unit – I (Numerical problems based on Lime Soda Method) Presented by – Dr. Barkha Shrivastava Designation - Associate Professor & Head Department - Chemistry

Numerical problems based on Lime Soda Method

Lime required for softening:

 $= \frac{74}{100} \text{ [Temp. Ca}^{2+} + 2 \times \text{Temp. Mg}^{2+} + \text{Perm. (Mg}^{2+} + \text{Fe}^{2+} + \text{Al}^{3+}) + \text{CO}_2 + \text{H}^+ (\text{HCl or H}_2\text{SO}_4) + \text{HCO}_3^-\text{]}$

Soda required for softening:

 $= \frac{106}{100} [Perm. (Ca²⁺ + Mg²⁺ + Fe²⁺ + Al³⁺) + H⁺ (HCl or$ H₂SO₄) - HCO₃⁻] Example 2. Calculate the quantity of hydrated lime and soda required for soften 20,000 litre of water containing the following salts:

0

Assuming the purity of lime as 90 percent and that of sodium carbonate 95 percent. [Raj. Univ. 1996]

Solution: Conversion to CaCO₃ equivalent.

S.No.	Substances	Amount	Multiplication factor	CaCO ₃ equivalent
1.	CaCO ₃	10 mg/litre	$\frac{100}{100}$	$10 \times \frac{100}{100} = 10 \text{mg/litre}$
2.	MgCO ₃	8.4 mg/litre	$\frac{100}{84}$	$8.4 \times \frac{100}{84} = 10 \text{mg/litre}$
3.	CaC1 ₂	11.1 mg/litre	$\frac{100}{111}$	$11.1 \times \frac{100}{111} = 10 \text{mg/litre}$
4.	MgSO ₄	6.0 mg/litre	$\frac{100}{120}$	$6.0 \times \frac{100}{120} = 5 \text{mg/litre}$
5.	SiO ₂	1.2 mg/litre	Does not impart hardness	

¹ 3

.: Lime requirement

$$= \frac{74}{100} [(2 \times MgCO_3) + CaCO_3 + MgSO_4 \text{ as } CaCO_3 \text{ equivalent}]$$

= $\frac{74}{100} [2 \times 10 + 10 + 5] \text{mg/litre}$

$$=\frac{74}{100}$$
[35]mg/litre = 25.90mg/litre

or, lime required of given quality (i.e., 90% of purity)

= 25.90 mg/litre ×
$$\frac{100}{90}$$
 = 28.778 mg/litre

or, 20000 litre of water require

=
$$28.778 \times 20000 \times \frac{\text{lkg}}{10^6 \text{mg}}$$
 = 0.5755 kg of lime

Soda required =
$$\frac{106}{100}$$
 [CaCl₂ + MgSO₄ as CaCO₃, equivalent]

$$=\frac{106}{100}[10+5]mg/litre$$

$$=\frac{106}{100}$$
[15]mg/litre

$$=\frac{106}{100}$$
[15]mg/litre = 15.90mg/litre

.: Sodium Carbonate required of given quantity (i.e., 95% of purity)

. . .

101

$$= 15.90 \text{ mg/litre} \times \frac{100}{95} = 16.737 \text{ mg/litre}$$

20,000 litre of water required = 16.737 mg/litre × 20,000 litre × $\frac{\text{lkg}}{10^6 \text{ mg}}$

$$= 0.3347$$
 Kg of soda

Dr. Barkha Shrivastava (Associate Prof.

· · .

¹ 4

If Percentage of purity is given for Lime & Soda

Amount of Lime required = Calculated Lime x 100/ Purity %

Amount of Soda required = Calculated Soda x 100/ Purity %

JECRC Foundation

Dr. Barkha Shrivastava (Associate Prof. Chemistry), JECRC, JAIPUR