JECRC Foundation

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE

Year \& Sem - I Year \& II Sem
Subject -Engineering Mathematics-II
Unit -
Presented by - (Dr. Sunil K Srivastava, Associate Professor)

VISION AND MISSION OF INSTITUTE

VISION OF INSTITUTE

To became a renowned centre of outcome based learning and work towards academic professional, cultural and social enrichment of the lives of individuals and communities .

MISSION OF INSTITUTE

- Focus on evaluation of learning, outcomes and motivate students to research aptitude by project based learning.
- Identify based on informed perception of Indian, regional and global needs, the area of focus and provide platform to gain knowledge and solutions.
- Offer opportunities for interaction between academic and industry .
- Develop human potential to its fullest extent so that intellectually capable and imaginatively gifted leaders may emerge.
- Linear Differential Equation :
- A differential equation of the form
- $\frac{d y}{d x}+P y=Q$
- where P and Q are functions of x alone, is called a liner differential equation of first order and first degree. To solve such type of differential equation, we multiply both side with $e^{\int P d x}$, known as integrating factor, then equation (1) becomes
- $e^{\int P d x} \frac{d y}{d x}+P y e^{\int P d x}=Q e^{\int P d x}$
- Or

$$
\begin{equation*}
\frac{d}{d x}\left\{y e^{\int P d x}\right\}=Q e^{\int P d x} \tag{2}
\end{equation*}
$$

- On integrating both side, we get
- $y e^{\int P d x}=Q e^{\int P d x}+c$,
- where c is constant of integration. The equation (2) is required solution of linear differential equation (1).
- Remark: Sometimes the equation becomes linear if we take x as dependent variable and y as independent variable. It is of the form $\frac{d y}{d x}+P_{1} y=$ Q_{1}, where P_{1} and Q_{1} are function is y alone. The integration factor in this case will be $e^{\int P_{1} d y}$ and solution is given by $y e^{\int P_{1} d y}=Q e^{\int P d x}+c_{1}$, where c_{1} is constant of integration.
- Example 1: Solve $\frac{d y}{d x}-\frac{1}{x} y=2 x^{3}+3 x+4$
- Solution: Here, the given equation is linear differential equation. Now comparing with standard form $\frac{d y}{d x}+P y=Q$, we have $P=\frac{1}{x}, Q=2 x^{3}+3 x+4$.
- Now integrating factor is
- $e^{-\int \frac{1}{x} d x}=e^{-\log x}=e^{-\log x^{-1}}=x^{-1}=\frac{1}{x}$
- Therefore solution is
- $y \frac{1}{x}=\int\left(2 x^{3}+3 x+4\right) \frac{1}{x} d x+c$
- $\frac{y}{x}=\int\left(2 x^{2}+3+\frac{4}{x}\right) d x+c$
- $=\frac{2 x^{3}}{3}+3 x+4 \log x+c$
- Or

$$
y=\frac{2 x^{4}}{3}+3 x^{2}+4 x \log x+c x, \text { which is required solution }
$$

- Example 2: \quad Solve $\left(1+y^{2}\right)^{2} d x=\left(\tan ^{-1} y-x\right) d y$.
- Solution : the Given equation can be written as
- $\frac{d x}{d y}+\frac{x}{1+y^{2}}=\frac{\tan ^{-1} y}{1+y^{2}}$
- Which is linear in x
- Now, integrating factor $=e^{\int \frac{1}{1+y^{2}} d y}=e^{\tan ^{-1} y}$
- Therefore solution is
- $x e^{\tan ^{-1} y}=\int e^{\tan ^{-1} y} \frac{\tan ^{-1} y}{1+y^{2}} d y+c$

$$
\text { Put } \quad e^{\tan ^{-1} y}=t \Rightarrow \frac{d y}{1+y^{2}}=d t
$$

- $\quad \therefore x e^{t}=\int t e^{t} d t+c$
- On integration , we get
- $x e^{t}=t e^{t}-e^{t}+c$
- Or
- Or

$$
\begin{aligned}
& x=(t-1)+c e^{-t} \\
& x=\left(\tan ^{-1} y-1\right)+c e^{-\tan ^{-1} y}, \text { which is required solution. }
\end{aligned}
$$

- Equation reducible to Linear form(Bernoulli's Equation)
- The equation of the type
- $\frac{d y}{d x}+P y=Q y^{n}$
- Where P and Q are functions of x alone (or constant) and n is a constant other than zero or unity, belongs to equation reducible form. This is also called Bernoulli's Equation.
- To solve such type of differential equation, dividing by y^{n}, we get
- $y^{-n} \frac{d y}{d x}+P y^{1-n}=Q$
- Put $y^{1-n}=v$, on differentiating with respect to x , we get
- $(1-n) y^{-n} \frac{d y}{d x}=\frac{d v}{d x}$
- Or

$$
y^{-n} \frac{d y}{d x}=\frac{1}{1-n} \frac{d v}{d x}
$$

- Therefore

$$
\frac{1}{1-n} \frac{d v}{d x}+P v=Q
$$

- Or

$$
\frac{d v}{d x}+(1-n) P v=(1-n) Q
$$

- This is a linear equation whose integrating factor is $e^{(1-n) \int P d x}$. Therefore solution is
- $v e^{(1-n) \int P d x}=(1-n) \int Q e^{(1-n) \int P d x} d x+c$, where c is constant of integration.
- Note: Do not forget to replace v by y^{-n+1} while writing the final solution.
- Example: Solve $\quad \frac{d y}{d x}=\frac{1}{x y\left(x^{2} y^{2}+1\right)}$
- Solution: The given equation can be written as
- $\frac{d x}{d y}=x^{3} y^{3}+x y$
- Or

$$
\frac{d x}{d y}-x y=x^{3} y^{3}
$$

- On dividing by x^{3}, we get
- $\frac{1}{x^{3}} \frac{d x}{d y}-\frac{y}{x^{2}}=y^{2}$
- Put $-\frac{1}{x^{2}}=v$ therefore $\frac{2}{x^{3}} \frac{d x}{d y}=\frac{d v}{d y}$
- Then,

$$
\frac{1}{2} \frac{d v}{d y}+v y=y^{3}
$$

- $\Rightarrow \frac{d v}{d y}+2 v y=2 y^{3}$, which is linear in v, therefore
- Integrating factor $=e^{\int P d x}=e^{\int 2 y d y}=e^{y^{2}}$
- Therefore, solution is given by
- $v e^{y^{2}}=\int 2 y^{3} e^{y^{2}} d y+c$
- To solve, put $y^{2}=t \Rightarrow 2 y d y=d t$
- $\Rightarrow v e^{y^{2}}=(t-1) e^{t}+c$
- $\Rightarrow v e^{y^{2}}=\left(y^{2}-1\right) e^{y^{2}}+c$
- Therefore, $-\frac{1}{x^{2}}=\left(y^{2}-1\right)+c e^{-y^{2}}$
- Exact Differential Equation:
- An exact differential equation can always be derived directly from its general solution by differentiating without any subsequent multiplication, elimination, etc.
- Thus ordinary differential equation of the form
- $M d x+N d y=0$
- where M and N are functions of x and y, will be exact, if
- $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
- Where total differential of f can be expressed as
- $\quad d f(x, y)=M d x+N d y$
- i.e.

$$
\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y}=M d x+N d y
$$

- The equation (2) is called the condition of exactness of the differential equation (1)

Method of solving:

- Method1:
- Compare the given equation with $M d x+N d y=0$ and find M and N.
- Compute $\frac{\partial M}{\partial y}$ and $\frac{\partial N}{\partial x}$ and check the condition of exactness.
- Integrate $M(x, y)$ with respect to x keeping y as constant and integrate those term of $N(x, y)$ with respect to y which do not contain x.
- Write solution as $\int_{y=\text { constant }} M d x+\int($ only those tern of N, which not contain $x) d y=c$
- Method 2:
- Compare the given equation with $M d x+N d y=0$ and find M and N .
- Compute $\frac{\partial M}{\partial y}$ and $\frac{\partial N}{\partial x}$ and check the condition of exactness.
- Let $u=\int M d x$, then find $\frac{\partial u}{\partial y}$ and $N-\frac{\partial u}{\partial y}$.
- Write solution as $u+\int\left(N-\frac{\partial u}{\partial y}\right) d y=c$
- i.e. $\quad \int M d x+\int\left(N-\frac{\partial u}{\partial y}\right) d y=c$
- Example: Solve $\left(1+e^{x / y}\right) d x+e^{x / y}(1-x / y) d y$.
- Solution: Comparing the given equation with $M d x+N d y=0$, we have
- $M=1+e^{x / y} \Rightarrow \frac{\partial M}{\partial y}=-\frac{x}{y^{2}} e^{x / y}$
- and $N=e^{x / y}(1-x / y) \Longrightarrow \frac{\partial N}{\partial x}=e^{x / y}\left\{-\frac{1}{y}\right\}+e^{x / y} \cdot \frac{1}{y}\{1-x / y\}=-\frac{x}{y^{2}} e^{x / y}$
- Here, we have $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
- so the given equation is exact.
- Now

$$
u=\int M d x=\int\left(1+e^{x / y}\right) d x=x+y e^{x / y}
$$

- So

$$
\frac{\partial u}{\partial y}=e^{x / y}-y \cdot \frac{x}{y^{2}} e^{x / y}=e^{x / y}(1-x / y)
$$

- And

$$
N-\frac{\partial u}{\partial y}=0
$$

- Hence, required solution is $\int M d x+\int\left(N-\frac{\partial u}{\partial y}\right) d y=c$
- Or

$$
x+y e^{x / y}+0=c
$$

- i.e.

$$
x+y e^{x / y}=c \text { where } \mathrm{c} \text { is arbitrary constant. }
$$

- Example: Solve $\left(1+e^{x / y}\right) d x+e^{x / y}(1-x / y) d y$.
- Solution: Comparing the given equation with $M d x+N d y=0$, we have
- $M=1+e^{x / y} \Rightarrow \frac{\partial M}{\partial y}=-\frac{x}{y^{2}} e^{x / y}$
- and $N=e^{x / y}(1-x / y) \Longrightarrow \frac{\partial N}{\partial x}=e^{x / y}\left\{-\frac{1}{y}\right\}+e^{x / y} \cdot \frac{1}{y}\{1-x / y\}=-\frac{x}{y^{2}} e^{x / y}$
- Here, we have $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
- so the given equation is exact.
- Now

$$
u=\int M d x=\int\left(1+e^{x / y}\right) d x=x+y e^{x / y}
$$

- So

$$
\frac{\partial u}{\partial y}=e^{x / y}-y \cdot \frac{x}{y^{2}} e^{x / y}=e^{x / y}(1-x / y)
$$

- And

$$
N-\frac{\partial u}{\partial y}=0
$$

- Hence, required solution is $\int M d x+\int\left(N-\frac{\partial u}{\partial y}\right) d y=c$
- Or

$$
x+y e^{x / y}+0=c
$$

- i.e.

$$
x+y e^{x / y}=c \text { where } \mathrm{c} \text { is arbitrary constant. }
$$

- Example: Solve $\{y(1+1 / x)+\cos y\} d x+(x+\log x-x \sin y) d y$.
- Solution: Comparing the given equation with $M d x+N d y=0$, we have
- $M=y(1+1 / x)+\cos y \Rightarrow \frac{\partial M}{\partial y}=1+\frac{1}{x}-\sin y$
- and $N=x+\log x-x \sin y \Rightarrow \frac{\partial N}{\partial x}=1+\frac{1}{x}-\sin y$
- Here, we have $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
- so the given equation is exact.
- Now $u=\int(y+y / x)+\cos y d x=x y+y \log x+x \cos y$ (treating y as constant)
- So $\frac{\partial u}{\partial y}=x+\log x-x \sin y$
- And

$$
N-\frac{\partial u}{\partial y}=x+\log x-x \sin y-x+\log x-x \sin y=0
$$

- Hence, required solution is $\int M d x+\int\left(N-\frac{\partial u}{\partial y}\right) d y=c$
- Or

$$
x y+y \log x+x \cos y+0=c
$$

- i.e. $\quad x y+y \log x+x \cos y=c$ where c is arbitrary constant
- Equation reducible to Exact form: the differential equation which is not exact can be made exact by multiplying it a suitable function of x and y, known as integrating factor (I.F). we now explain the rule for finding the integrating factor.
- By inspection method: By rearranging the term of given differential equation or by dividing by a suitable function of x and y, the equation thus obtained will contain several parts integrable easily. Regarding this some list of exact differential should be useful:
- $d(x y)=x d y+y d x$
(ii) $\quad d\left(\frac{x}{y}\right)=\frac{y d x-x d y}{y^{2}}$
- $d\left(\frac{y}{x}\right)=\frac{x d y-x d x}{x^{2}}$
-
- If the differential equation $M d x+N d y=0$ be homogeneous equation in x an y then
- $\quad I . F=\frac{1}{M x+N y}$, where $M x+N y \neq 0$.

> -

- If the differential equation $M d x+N d y=0$ is of the form
- $f_{1}(x y) y d x+f_{2}(x y) x d y=0$ then
- I.F $=\frac{1}{M x-N y}$, where $M x-N y \neq 0$.
- If $\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)=f(x)$ only then
- I.F \quad I $e^{\int f(x) d x}$
- If $\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)=f(y)$ only then

$$
\text { I.F }=e^{\int f(y) d y}
$$

- If the differential equation $M d x+N d y=0$ is of the form
- $x^{a} y^{b}(m y d x+n x d y)+x^{c} y^{d}(p y d x+q x d y)=0$
- Where a , b , c, d, m,n,p,q are constants,
- Then I. F. $=x^{h} y^{k}$,
- Where h, k are obtained by the condition of exactness. i.e. $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
- Example: Solve $(x y \sin x y+\cos x y) y d x+(x y \sin x y-\cos x y) x d y=0$
- Solution: The given differential equation is
- $\quad(x y \sin x y+\cos x y) y d x+(x y \sin x y-\cos x y) x d y=0$
- Here, we have $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$
- But (1) is a differential equation is of the form $f_{1}(x y) y d x+f_{2}(x y) x d y=0$ then
- $\quad I . F=\frac{1}{M x-N y}$, where $M x-N y \neq 0$.
- I.F $=\frac{1}{2 x y \cos x y}$, where $M x-N y \neq 0$.
-
- On multiplying (1) by $I . F=\frac{1}{2 x y \cos x y}$ we have
- $\operatorname{tanxy}(y d x+x d y)+\frac{d x}{x}-\frac{d y}{y}=0$
- which must now be exact differential equation.
- therefore $\operatorname{tanxyd} d(x y)+d(\log x)-d(\log y)=0$
- integrating we have, $\log \sec x y+\log x-\log y=\log c$
- or $\frac{x}{y} \sec x y=c$ is required solution where c is a constant
- Example: Solve $(1+x y) y d x+(1-x y) x d y=0$
- Example: Solve $\left(x^{2} y-2 x y^{2}\right) d x-\left(x^{3}-3 x^{2} y\right) d y=0$
- Solution: The given differential equation is
- $\left(x^{2} y-2 x y^{2}\right) d x-\left(x^{3}-3 x^{2} y\right) d y=0$
- Clearly (1) is a homogeneous differential equation. Now Comparing (1) with $M d x+N d y=0$, we have
- $M=x^{2} y-2 x y^{2} \Rightarrow \frac{\partial M}{\partial y}=x^{2}-4 x y$
- and

$$
N=-\left(x^{3}-3 x^{2} y\right) \Rightarrow \frac{\partial N}{\partial x}=-\left(3 x^{2}-6 x y\right)
$$

- Here, we have $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$
- so the given equation is not exact.
- Clearly (1) is a homogeneous differential equation.
- Therefore $M x+N y=x\left(x^{2} y-2 x y^{2}\right)-y\left(x^{3}-3 x^{2} y\right)=x^{2} y^{2} \neq 0$
- So I.F of (1) $=\frac{1}{M x+N y}=\frac{1}{x^{2} y^{2}}$
- On multiplying (1) by $\frac{1}{x^{2} y^{2}}$, we have
- $\left(\frac{1}{y}-\frac{2}{x}\right) d x-\left(\frac{x}{y^{2}}-\frac{3}{y}\right) d y=0$
- which must now be exact differential equation.
- Now

$$
u=\int M d x=\int\left(\frac{1}{y}-\frac{2}{x}\right) d x=\frac{x}{y}-2 \log x
$$

(treating y as constant)

- So $\frac{\partial u}{\partial y}=-\frac{x}{y^{2}}$
- And $\quad N-\frac{\partial u}{\partial y}=-\left(\frac{x}{y^{2}}-\frac{3}{y}\right)-\frac{x}{y^{2}}=\frac{3}{y}$
- Hence, required solution is $\int M d x+\int\left(N-\frac{\partial u}{\partial y}\right) d y=c$
- i.e. $\frac{x}{y}-2 \log x+3 \log y=c$ where c is arbitrary constant.
- Example: Solve $\left(y^{2}+2 x^{2} y\right) d x+\left(2 x^{3}-x y\right) d y=0$
- Solution: The given equation can be written in the form
- $\left(y^{2} d x+2 x^{3} d y\right)+y\left(2 x^{2} y d x-x d y\right)=0$ which is of the form
- $x^{a} y^{b}(m y d x+n x d y)+x^{c} y^{d}(p y d x+q x d y)=0$
- Where a , b , c, d, m,n,p,q are constants,
- so I. F. $=x^{h} y^{k}$, now them multiplying the given equation by I.F., we have
- $\left(x^{h} y^{k+2}+2 x^{h+2} y^{k+1}\right) d x+\left(2 x^{h+3} y^{k}-x^{h+1} y^{k+1}\right) d y=0$
- Which can exact only when the condition of exactness $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$ is satisifed
- $\Rightarrow \frac{\partial}{\partial y}\left(\left(x^{h} y^{k+2}+2 x^{h+2} y^{k+1}\right)=\frac{\partial}{\partial x}\left(2 x^{h+3} y^{k}-x^{h+1} y^{k+1}\right)\right.$
- $\Rightarrow(k+2) x^{h} y^{k+1}+2(k+1) x^{h+2} y^{k}=2(h+3) x^{h+2} y^{k}-(h+1) x^{h} y^{k+1}$
- Now equating the coefficient of $x^{h} y^{k+1}$ and $x^{h+2} y^{k}$, we have
- $(k+2)=-(h+1) \quad$ and $\quad 2(k+1)=2(h+3)$
- . $\Rightarrow k=-\frac{1}{2}$

$$
\& \quad h=-\frac{5}{2}
$$

$$
\text { I.F }=x^{-\frac{5}{2}} y^{-\frac{1^{2}}{2}}
$$

- Now multiplying the given equation by this integrating Factor I.F $=x^{-\frac{5}{2}} y^{-\frac{1}{2}}$ and applying the method we have the solution
- $-\frac{2}{3} x^{-\frac{3}{2}} y^{-\frac{3}{2}}+4 x^{\frac{1}{2}} y^{\frac{1}{2}}=c$
- Example: Solve $\left(x y^{3}+y\right) d x+2\left(x^{2} y^{2}+x+y^{4}\right) d y=0$
- Solution: The given differential equation is
- $\left(x y^{3}+y\right) d x+2\left(x^{2} y^{2}+x+y^{4}\right) d y=$
- Here, we have $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$
- so the given equation is not exact.
- But here If $\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)=\frac{1}{y}=f(y)$ only then

$$
\text { I.F }=e^{\int f(y) d y}=y
$$

- On multiplying (1) by integrating factor y, we have
- $\left(x y^{4}+y^{2}\right) d x+2\left(x^{2} y^{3}+x y+y^{5}\right) d y=0$
- which must now be exact differential equation.
- solution is $\int_{y=\text { constant }} M d x+\int$ (only those tern of N, which not contain $\left.x\right) d y=c$
- $\int\left(x y^{4}+y^{2}\right) d x+\int 2 y^{5}=c$
- On integration, we have $\frac{1}{2} x^{2} y^{4}+x y^{2}+\frac{1}{3} y^{6}=c$
- which is required solution.

Refrences

1.Advanced Engineering Mathematics by Prof.ERWIN KREYSZIG (Ch.10,page no.557-580)
2. Advanced Engineering Mathematics by Prof.H.K Dass (Ch.14,page no.851875)
3.Advanced Engineering Mathematics by B.V RAMANA
(Ch.20,pageno.20.1.20.5)
4.NPTEL Lectures available on
http://www.infocobuild.com/education/audio-video-courses/m athematics/TransformTechniquesForEngineers-IIT-Madras/lecture47.html

JECRC Foundation

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE

Thank

