

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE

Year & Sem – I Year & II Sem Subject – Engineering Mathematics-II Unit -Presented by – (Dr. Sunil K Srivastava, Associate Professor)

> Dr. Sunil K Srivastava (Associate Professor, Deptt. of Mathematics), JECRC, JAIPUR

VISION AND MISSION OF INSTITUTE

VISION OF INSTITUTE

To became a renowned centre of outcome based learning and work towards academic professional, cultural and social enrichment of the lives of individuals and communities.

MISSION OF INSTITUTE

- Focus on evaluation of learning, outcomes and motivate students to research aptitude by project based learning.
- Identify based on informed perception of Indian, regional and global needs, the area of focus and provide platform to gain knowledge and solutions.
- Offer opportunities for interaction between academic and industry .
- Develop human potential to its fullest extent so that intellectually capable and imaginatively gifted leaders may emerge.

- **Linear Differential Equation** : lacksquare
- A differential equation of the form \bullet

•
$$\frac{dy}{dx} + Py = Q$$
 (1)

where P and Q are functions of x alone, is called a liner differential equation of first lacksquareorder and first degree. To solve such type of differential equation, we multiply both side with $e^{\int P dx}$, known as integrating factor, then equation (1) becomes

•
$$e^{\int Pdx} \frac{dy}{dx} + Pye^{\int Pdx} = Qe^{\int Pdx}$$

• Or $\frac{d}{dx} \left\{ ye^{\int Pdx} \right\} = Qe^{\int Pdx}$

- On integrating both side, we get
- $ye^{\int Pdx} = Qe^{\int Pdx} + c,$ ullet(2)
- where c is constant of integration. The equation (2) is required solution of linear ${\color{black}\bullet}$ differential equation (1).

• **Remark**: Sometimes the equation becomes linear if we take x as dependent variable and y as independent variable. It is of the form $\frac{dy}{dx} + P_1 y =$ Q_1 , where P_1 and Q_1 are function is y alone. The integration factor in this case will be $e^{\int P_1 dy}$ and solution is given by $ye^{\int P_1 dy} = Qe^{\int P dx} + c_1$, where c_1 is constant of integration.

- Solve $\frac{dy}{dx} \frac{1}{x}y = 2x^3 + 3x + 4$ Example 1: ullet
- **Solution:** Here, the given equation is linear differential equation. Now comparing with standard form $\frac{dy}{dx} + Py = Q$, we have $P = \frac{1}{x}$, $Q = 2x^3 + 3x + 4$. •
- Now integrating factor is •

•
$$e^{-\int \frac{1}{x}dx} = e^{-\log x} = e^{-\log x^{-1}} = x^{-1} = \frac{1}{x}$$

Therefore solution is •

•
$$y\frac{1}{x} = \int (2x^3 + 3x + 4)\frac{1}{x}dx + c$$

•
$$\frac{y}{x} = \int \left(2x^2 + 3 + \frac{4}{x}\right) dx + c$$

•
$$=\frac{2x^3}{3} + 3x + 4\log x + c$$

 $y = \frac{2x^4}{3} + 3x^2 + 4x \log x + cx$, which is required solution **Or**

Dr Sunil KumarSrivastava, JECRC

- Solve $(1 + y^2)^2 dx = (\tan^{-1} y x) dy$. Example 2: •
- **Solution :** the Given equation can be written as ۲
- $\frac{dx}{dy} + \frac{x}{1+y^2} = \frac{\tan^{-1} y}{1+y^2}$ •
- Which is linear in x \bullet

• Now, integrating factor =
$$e^{\int \frac{1}{1+y^2} dy} = e^{\tan^{-1} y}$$

Therefore solution is ۲

•
$$xe^{\tan^{-1}y} = \int e^{\tan^{-1}y} \frac{\tan^{-1}y}{1+y^2} dy + c$$

• Put $e^{\tan^{-1}y} = t \Rightarrow \frac{dy}{1+y^2} = dt$

•
$$\therefore xe^t = \int te^t dt + c$$

- On integration , we get ٠
- $xe^t = te^t e^t + c$ •

Or

۲

- Or
- $x = (t 1) + ce^{-t}$ $x = (\tan^{-1} v - 1) + ce^{-\tan^{-1} y}$, which is required solution.

Dr Sunil KumarSrivastava, JECRC

- **Equation reducible to Linear form(Bernoulli's Equation)** ٠
- The equation of the type ٠

•
$$\frac{dy}{dx} + Py = Qy^n$$

- Where P and Q are functions of x alone (or constant) and n is a constant other than zero or unity, belongs to equation reducible form. ٠ This is also called **Bernoulli's Equation**.
- To solve such type of differential equation, dividing by y^n , we get ٠

•
$$y^{-n}\frac{dy}{dx} + Py^{1-n} = Q$$

Put $y^{1-n} = v$, on differentiating with respect to x, we get •

- $(1-n)y^{-n}\frac{dy}{dx} = \frac{dv}{dx}$ ٠
- Or $y^{-n}\frac{dy}{dx} = \frac{1}{1-n}\frac{dv}{dx}$ Therefore, $\frac{1}{1-n}\frac{dv}{dx} + Pv = Q$
- ٠
- $\frac{dv}{dx} + (1-n)Pv = (1-n)Q$ Or ٠
- This is a linear equation whose integrating factor is $e^{(1-n)\int Pdx}$. Therefore solution is ٠
- $ve^{(1-n)\int Pdx} = (1-n)\int Qe^{(1-n)\int Pdx} dx + c$, where c is constant of integration. •
- Note: Do not forget to replace v by y^{-n+1} while writing the final solution. •

• Example : Solve

$$\frac{dy}{dx} = \frac{1}{xy(x^2y^2+1)}$$

• Solution: The given equation can be written as

•
$$\frac{dx}{dy} = x^3y^3 + xy$$

• Or
$$\frac{dx}{dy} - xy = x^3 y^3$$

• On dividing by
$$x^3$$
, we get

•
$$\frac{1}{x^3}\frac{dx}{dy} - \frac{y}{x^2} = y^2$$

• Put $-\frac{1}{x^2} = v$ therefore $\frac{2}{x^3}\frac{dx}{dy} = \frac{dv}{dy}$
• Then, $\frac{1}{2}\frac{dv}{dy} + vy = y^3$

Dr Sunil KumarSrivastava , JECRC

•
$$\Rightarrow \frac{dv}{dy} + 2vy = 2y^3$$
, which is linear in v, therefor

- Integrating factor = $e^{\int P dx} = e^{\int 2y dy} = e^{y^2}$
- Therefore, solution is given by

•
$$ve^{y^2} = \int 2y^3 e^{y^2} dy + c$$

- To solve , put $y^2 = t \Rightarrow 2ydy = dt$
- $\Rightarrow v e^{y^2} = (t-1)e^t + c$

•
$$\Rightarrow v e^{y^2} = (y^2 - 1)e^{y^2} + c$$

• Therefore, $-\frac{1}{x^2} = (y^2 - 1) + ce^{-y^2}$

Dr Sunil KumarSrivastava , JECRC

⁻е

- **Exact Differential Equation:** \bullet
- An exact differential equation can always be derived directly from its general solution by • differentiating without any subsequent multiplication, elimination, etc.
- Thus ordinary differential equation of the form ۲
- Mdx + Ndy = 0(1)ullet
- where M and N are functions of x and y, will be exact, if lacksquare
- $\frac{\partial M}{\partial \gamma} = \frac{\partial N}{\partial x}$ (2)
- Where total differential of f can be expressed as
- df(x, y) = Mdx + Ndyullet
- $\frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y} = Mdx + Ndy$ i.e. lacksquare
- The equation (2) is called the condition of exactness of the differential equation (1) •

Method of solving:

- Method1: ۲
- Compare the given equation with Mdx + Ndy = 0 and find M and N. •
- Compute $\frac{\partial M}{\partial y}$ and $\frac{\partial N}{\partial x}$ and check the condition of exactness. ullet
- Integrate M(x, y) with respect to x keeping y as constant and integrate those term of N(x, y) with respect to y ٠ which do not contain x.
- Write solution as $\int_{y=constant} Mdx + \int (only \ those \ tern \ of \ N, which \ not \ contain \ x) dy = c$ •
- Method 2: •
- Compare the given equation with Mdx + Ndy = 0 and find M and N.
- Compute $\frac{\partial M}{\partial v}$ and $\frac{\partial N}{\partial x}$ and check the condition of exactness. •
- Let $u = \int M dx$, then find $\frac{\partial u}{\partial y}$ and $N \frac{\partial u}{\partial y}$. ullet
- Write solution as $u + \int \left(N \frac{\partial u}{\partial y}\right) dy = c$ •
- i.e. $\int M dx + \int \left(N \frac{\partial u}{\partial y}\right) dy = c$ ullet

- **Example:** Solve $(1 + e^{x/y})dx + e^{x/y}(1 x/y)dy$.
- Solution: Comparing the given equation with Mdx + Ndy = 0, we have

•
$$M = 1 + e^{x/y} \Longrightarrow \frac{\partial M}{\partial y} = -\frac{x}{y^2} e^{x/y}$$

• and
$$N = e^{x/y}(1 - x/y) \Longrightarrow \frac{\partial N}{\partial x} = e^{x/y}\left\{-\frac{1}{y}\right\} + e^{x/y}\cdot\frac{1}{y}\left\{1 - \frac{x}{y}\right\} = -\frac{x}{y^2}e^{x/y}$$

• Here, we have
$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

• so the given equation is exact.

• Now
$$u = \int M dx = \int (1 + e^{x/y}) dx = x + y e^{x/y}$$

- So $\frac{\partial u}{\partial y} = e^{x/y} y \cdot \frac{x}{y^2} e^{x/y} = e^{x/y} (1 x/y)$
- And $N \frac{\partial u}{\partial v} = 0$
- Hence, required solution is $\int M dx + \int \left(N \frac{\partial u}{\partial y}\right) dy = c$

• Or
$$x + ye^{x/y} + 0 = c$$

• i.e. $x + ye^{x/y} = c$ where c is arbitrary constant.

Dr Sunil KumarSrivastava , JECRC

- **Example:** Solve $(1 + e^{x/y})dx + e^{x/y}(1 x/y)dy$.
- Solution: Comparing the given equation with Mdx + Ndy = 0, we have

•
$$M = 1 + e^{x/y} \Longrightarrow \frac{\partial M}{\partial y} = -\frac{x}{y^2} e^{x/y}$$

• and
$$N = e^{x/y}(1 - x/y) \Longrightarrow \frac{\partial N}{\partial x} = e^{x/y}\left\{-\frac{1}{y}\right\} + e^{x/y}\cdot\frac{1}{y}\left\{1 - \frac{x}{y}\right\} = -\frac{x}{y^2}e^{x/y}$$

• Here, we have
$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

• so the given equation is exact.

• Now
$$u = \int M dx = \int (1 + e^{x/y}) dx = x + y e^{x/y}$$

- So $\frac{\partial u}{\partial y} = e^{x/y} y \cdot \frac{x}{y^2} e^{x/y} = e^{x/y} (1 x/y)$
- And $N \frac{\partial u}{\partial v} = 0$
- Hence, required solution is $\int M dx + \int \left(N \frac{\partial u}{\partial y}\right) dy = c$

• Or
$$x + ye^{x/y} + 0 = c$$

• i.e. $x + ye^{x/y} = c$ where c is arbitrary constant.

Dr Sunil KumarSrivastava , JECRC

- **Example:** Solve $\{y(1 + 1/x) + \cos y\}dx + (x + \log x x\sin y)dy$. ۲
- **Solution:** Comparing the given equation with Mdx + Ndy = 0, we have ۲
- $M = y(1 + 1/x) + \cos y \Longrightarrow \frac{\partial M}{\partial y} = 1 + \frac{1}{x} \sin y$ •

• and
$$N = x + \log x - x \sin y \Longrightarrow \frac{\partial N}{\partial x} = 1 + \frac{1}{x} - \sin y$$

- Here, we have $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ •
- so the given equation is exact. \bullet
- Now $u = \int (y + y/x) + \cos y \, dx = xy + y \log x + x \cos y$ (treating y as constant) ٠

• So
$$\frac{\partial u}{\partial y} = x + \log x - x \sin y$$

- $N \frac{\partial u}{\partial y} = x + \log x x\sin y x + \log x x\sin y = 0$ And ۲
- Hence, required solution is $\int M dx + \int \left(N \frac{\partial u}{\partial y}\right) dy = c$ •
- Or $xy + y \log x + x \cos y + 0 = c$
- i.e. $xy + y \log x + x \cos y = c$ where c is arbitrary constant •

- •
- **Equation reducible to Exact form: the** differential equation which is not exact can be made exact by • multiplying it a suitable function of x and y, known as integrating factor (I.F). we now explain the rule for finding the integrating factor.
- By inspection method: By rearranging the term of given differential equation or by dividing by a suitable ۲ function of x and y, the equation thus obtained will contain several parts integrable easily. Regarding this some list of exact differential should be useful:
- $d(xy) = x \, dy + y \, dx \qquad \text{(ii)} \qquad d\left(\frac{x}{\nu}\right) = \frac{y dx x dy}{\nu^2}$ \bullet

•
$$d\left(\frac{y}{x}\right) = \frac{xdy - xdx}{x^2}$$
 (iv)

- ۲
- If the differential equation Mdx + Ndy = 0 be homogeneous equation in x any then •

•
$$I.F = \frac{1}{Mx + Ny}$$
, where $Mx + Ny \neq 0$.

•

• If the differential equation Mdx + Ndy = 0 is of the form

•
$$f_1(xy)y \, dx + f_2(xy)x \, dy = 0$$
 then

•
$$I.F = \frac{1}{Mx - Ny}$$
, where $Mx - Ny \neq 0$.

•

• If
$$\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = f(x)$$
 only then
• I.F= $e^{\int f(x) dx}$

• If
$$\frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) = f(y)$$
 only then
• I.F= $e^{\int f(y) dy}$

- If the differential equation Mdx + Ndy = 0 is of the form
- $x^a y^b (mydx + nxdy) + x^c y^d (pydx + qxdy) = 0$
- Where a , b , c , d, m , n , p , q are constants,
- Then I.F. $= x^h y^k$,
- Where h , k are obtained by the condition of exactness. i.e. $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

- Example: Solve $(xy \sin xy + \cos xy)ydx + (xy \sin xy \cos xy)x dy = 0$
- **Solution:** The given differential equation is
- $(xy\sin xy + \cos xy)ydx + (xy\sin xy \cos xy)x \, dy = 0$ (1)
- Here, we have $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$
- But (1) is a differential equation is of the form $f_1(xy)y dx + f_2(xy)x dy = 0$ then

•
$$I.F = \frac{1}{Mx - Ny}$$
, where $Mx - Ny \neq 0$.

•
$$I.F = \frac{1}{2xy\cos xy}$$
, where $Mx - Ny \neq 0$.

•

• On multiplying (1) by
$$I.F = \frac{1}{2xy \cos xy}$$
 we have

•
$$tanxy(ydx + xdy) + \frac{dx}{x} - \frac{dy}{y} = 0$$

- which must now be exact differential equation.
- therefore $tanxy d(xy) + d(\log x) d(\log y) = 0$
- integrating we have , $\log \sec xy + \log x \log y = \log c$
- or $\frac{x}{y} \sec xy = c$ is required solution where c is a constant
- Example: Solve (1 + xy)y dx + (1 xy)xdy = 0

- **Example:** Solve $(x^2y 2xy^2)dx (x^3 3x^2y) dy = 0$ ٠
- **Solution:** The given differential equation is ۲
- $(x^{2}y 2xy^{2})dx (x^{3} 3x^{2}y) dy = 0$ (1) •
- Clearly (1) is a homogeneous differential equation. Now Comparing (1) with Mdx + Ndy = 0, we have ullet

•
$$M = x^2 y - 2xy^2 \implies \frac{\partial M}{\partial y} = x^2 - 4xy$$

• and
$$N = -(x^3 - 3x^2y) \implies \frac{\partial N}{\partial x} = -(3x^2 - 6xy)$$

- Here, we have $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$ ullet
- so the given equation is not exact. ۲
- Clearly (1) is a homogeneous differential equation. ۲

• Therefore
$$Mx + Ny = x(x^2y - 2xy^2) - y(x^3 - 3x^2y) = x^2y^2 \neq 0$$

• So I.F of (1) =
$$\frac{1}{Mx+Ny} = \frac{1}{x^2y^2}$$

Dr Sunil KumarSrivastava, JECRC

• On multiplying (1) by $\frac{1}{x^2y^2}$, we have

•
$$\left(\frac{1}{y} - \frac{2}{x}\right)dx - \left(\frac{x}{y^2} - \frac{3}{y}\right)dy = 0$$

• which must now be exact differential equation.

• Now
$$u = \int M dx = \int \left(\frac{1}{y} - \frac{2}{x}\right) dx = \frac{x}{y} - 2\log x$$
 (treation)

• So $\frac{\partial u}{\partial y} = -\frac{x}{y^2}$

• And
$$N - \frac{\partial u}{\partial y} = -\left(\frac{x}{y^2} - \frac{3}{y}\right) - \frac{x}{y^2} = \frac{3}{y}$$

• Hence, required solution is $\int M dx + \int \left(N - \frac{\partial u}{\partial v}\right) dy = c$

• i.e.
$$\frac{x}{y} - 2\log x + 3\log y = c$$
 where c is arbitrary of

ting y as constant)

constant.

- Example: Solve $(y^2 + 2x^2y)dx + (2x^3 xy)dy = 0$
- Solution: The given equation can be written in the form
- $(y^2dx + 2x^3dy) + y(2x^2ydx xdy) = 0$ which is of the form
- $x^a y^b (mydx + nxdy) + x^c y^d (pydx + qxdy) = 0$
- Where a , b , c , d, m , n , p , q are constants,
- so $I.F. = x^h y^k$, now them multiplying the given equation by I.F., we have
- $(x^{h}y^{k+2} + 2x^{h+2}y^{k+1})dx + (2x^{h+3}y^{k} x^{h+1}y^{k+1})dx$
- Which can exact only when the condition of exactness ulletsatisifed

$$dy = 0$$

s $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ is

•
$$\Rightarrow \frac{\partial}{\partial y} ((x^h y^{k+2} + 2x^{h+2} y^{k+1})) = \frac{\partial}{\partial x} (2x^{h+3} y^k - x^{h+1} y^{k+1})$$

• $\Rightarrow (k+2) x^h y^{k+1} + 2(k+1) x^{h+2} y^k = 2(h+3) x^{h+2} y^k$

- Now equating the coefficient of $x^h y^{k+1}$ and $x^{h+2} y^k$, we have
- (k+2) = -(h+1) and 2(k+1) = 2(h+3)
- $.\Rightarrow k = -\frac{1}{2}$ & $h = -\frac{5}{2}$ $I.F = x^{-\frac{5}{2}}y^{-\frac{1}{2}}$
 - Now multiplying the given equation by this integrating Factor I.F = $x^{-\frac{1}{2}}y^{-\frac{1}{2}}$ and applying the method we have the solution

•
$$-\frac{2}{3}x^{-\frac{3}{2}}y^{-\frac{3}{2}} + 4x^{\frac{1}{2}}y^{\frac{1}{2}} = c$$

•

-1) $-(h+1)x^hy^{k+1}$

- **Example:** Solve $(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$ ٠
- **Solution:** The given differential equation is \bullet
- $(xy^{3} + y)dx + 2(x^{2}y^{2} + x + y^{4})dy = (1)$ •
- Here, we have $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$ •
- so the given equation is not exact. ۲

• But here If
$$\frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) = \frac{1}{y} = f(y)$$
 only then
• I.F= $e^{\int f(y) dy} = y$

- On multiplying (1) by integrating factor y, we have \bullet
- $(xy^4 + y^2)dx + 2(x^2y^3 + xy + y^5)dy = 0$ •
- which must now be exact differential equation. ۲
- solution is $\int_{y=constant} Mdx + \int (only \ those \ tern \ of \ N, which \ not \ contain \ x) dy = c$ ٠
- $\int (xy^4 + y^2)dx + \int 2y^5 = c$ •
- On integration , we have $\frac{1}{2}x^2y^4 + xy^2 + \frac{1}{3}y^6 = c$ ullet
- which is required solution. ullet

Refrences

- 1.Advanced Engineering Mathematics by Prof.ERWIN KREYSZIG (Ch.10, page no. 557-580)
- 2. Advanced Engineering Mathematics by Prof.H.K Dass (Ch.14, page no.851-875)
- 3.Advanced Engineering Mathematics by B.V RAMANA (Ch.20, pageno. 20.1. 20.5)
- **4.NPTEL Lectures available on**

http://www.infocobuild.com/education/audio-video-courses/m athematics/TransformTechniquesForEngineers-IIT-Madras/lecture-47.html

JECRC Foundation

Dr. Sunil Kr Srivastav(Associate Professor, Deptt. of Mathematics), JECRC, JAIPUR

