
Unit 3

Writing MapReduce Programs: A Weather Dataset, Understanding Hadoop API for MapReduce
Framework (Old and New), Basic programs of Hadoop MapReduce: Driver code, Mapper code,
Reducer code, Record Reader, Combiner, Partitioner.

1. Hadoop API for MapReduce Framework (Old and New)

Recently Hadoop new version 2.6.0 has released into Market,Actually Hadoop versions are

released in 3 stages 0.x.xx,1.x.xx and 2.x.x,Up to Hadoop 0.20 All packages are In Old API
(Mapred) From Hadoop 0.21 All packages are in New API (Mapreduce).

Example of New Mapreduce Api is org.apache.hadoop.mapreduce

Example of Old Mapreduce API is org.apache.hadoop.mapred

Diffrence New API OLD API

 New API useing Mapper and Reducer

 asClass
IN OLD API used Mapper &

Mapper & So can add a method (with a default

 Reduceer asInterface (still exist in

Reducer implementation) to an

 New API as well)

 abstract class without breaking old

 implementations of the class

Package
 new API is in old API can still be found
 theorg.apache.hadoop.mapreduce package inorg.apache.hadoop.mapred.

User Code to
JobConf, the OutputCollector, and

commnicate

use ―context‖ object to communicate with

theReporter object use for

with

mapReduce system

communicate with Map reduce

MapReduce

 System

Syaterm

Control
new API allows both mappers and reducers Controlling mappers by writing

Mapper and

 to control the execution aMapRunnable, but no

Reducer

 flow by overriding the run() method. equivalent exists for reducers.

execution

Job control is done through

 Job Control was done

JOB control through JobClient

 the JOB classin New API

 (not exists in the new API)

s 1

 jobconf objet was use for Job

 configuration.which is extension of
 Configuration class.

Job
Job Configuration done

throughConfiguration class via some of java.lang.Object

Configuration the helper methods on Job. extended by

 org.apache.hadoop.conf.Configuration

 extended by

 org.apache.hadoop.mapred.JobConf

 In the new API map outputs are

 namedpart-m-nnnnn, and reduce outputs

OutPut file are named part-r-nnnnn (where nnnnn is in the old API both map and reduce

Name an integer outputs are named part-nnnnn

 designating the part number, starting from

 zero).

reduce()

In the new API, the reduce() method passes In the Old API, the reduce() method
method

values as a java.lang.Iterable

passes values as a java.lang.Iterator

passes values

So This is the Main Differences Between Old and New MR API

2. Basic programs of Hadoop MapReduce:
 Driver code,

 Mapper code,

 Reducer code,

 RecordReader,

 Combiner,

 Partitioner

MapReduce is the programming model to work on data within the HDFS. The programming
language for MapReduce is Java. Hadoop also provides streaming where in other languages
could also be used to write MapReduce programs. All data emitted in the flow of a MapReduce
program is in the form of <Key,Value> pairs.

A MapReduce program consists of the following 3 parts :

1. Driver

2. Mapper

3. Reducer
4.
Driver
The Driver code runs on the client machine and is responsible for building the configuration of
the job and submitting it to the Hadoop Cluster. The Driver code will contain the main() method
that accepts arguments from the command line.
Some of the common libraries that are included for the Driver class :

1 import org.apache.hadoop.fs.Path;

 2

2 import org.apache.hadoop.io.*;

3 import org.apache.hadoop.mapred.*;

In most cases, the command line parameters passed to the Driver program are the paths to the
directory where containing the input files and the path to the output directory. Both these path
locations are from the HDFS. The output location should not be present before running the
program as it is created after the execution of the program. If the output location already exists
the program will exit with an error.

The next step the Driver program should do is to configure the Job that needs to be submitted to
the cluster. To do this we create an object of type JobConf and pass the name of the Driver
class. The JobConf class allows you to configure the different properties for the Mapper,
Combiner, Partitioner, Reducer, InputFormat and OutputFormat.

Sample

public class MyDriver{

public static void main(String[] args) throws Exception
{ // Create the JobConf object
JobConf conf = new JobConf(MyDriver.class);

// Set the name of the Job

conf.setJobName(―SampleJobName‖);

// Set the output Key type for the Mapper
conf.setMapOutputKeyClass(Text.class);

// Set the output Value type for the Mapper
conf.setMapOutputValueClass(IntWritable.class);

// Set the output Key type for the Reducer
conf.setOutputKeyClass(Text.class);

// Set the output Value type for the Reducer

conf.setOutputValueClass(IntWritable.class);

// Set the Mapper Class
conf.setMapperClass(MyMapper.class);

// Set the Reducer Class
conf.setReducerClass(Reducer.class);

// Set the format of the input that will be provided to the
program conf.setInputFormat(TextInputFormat.class);

// Set the format of the output for the program

 3

conf.setOutputFormat(TextOutputFormat.class);

// Set the location from where the Mapper will read the input
FileInputFormat.setInputPaths(conf, new Path(args[0]));

// Set the location where the Reducer will write the output
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

// Run the job on the cluster

JobClient.runJob(conf);

}

}

Mapper

The Mapper code reads the input files as <Key,Value> pairs and emits key value pairs. The
Mapper class extends MapReduceBase and implements the Mapper interface. The Mapper
interface expects four generics, which define the types of the input and output key/value pairs.
The first two parameters define the input key and value types, the second two define the output
key and value types.
Some of the common libraries that are included for the Mapper class :

public class MyMapper extends MapReduceBase implements
Mapper<LongWritable, Text, Text, IntWritable>{

public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable>

output, Reporter reporter) throws IOException { output.collect(key,value);

}

}

}

The map() function accepts the key, value, OutputCollector and an Reporter object. The
OutputCollector is resposible for writing the intermediate data generated by the Mapper.
Reducer

The Reducer code reads the outputs generated by the different mappers as <Key,Value> pairs
and emits key value pairs. The Reducer class extends MapReduceBase and implements the
Reducer interface. The Reducer interface expects four generics, which define the types of the
input and output key/value pairs. The first two parameters define the intermediate key and value
types, the second two define the final output key and value types. The keys are
WritableComparables, the values are Writables.
Some of the common libraries that are included for the Reducer class :

?

import java.io.IOException;

import java.util.*;

import org.apache.hadoop.io.*;

 4

import org.apache.hadoop.mapred.*;
Sample

public class MyReducer extends MapReduceBase implements Reducer<Text,IntWritable,Text,IntWritable>
{ @Override
public void reduce(Text key, Iterator<IntWritable> values,

OutputCollector<Text, IntWritable> output, Reporter reporter) throws

IOException{ output.collect(key,value);
}

}

}

The reduce() function accepts the key, an iterator , OutputCollector and an Reporter object. The
OutputCollector is resposible for writing the final output result.

Combiner

A Combiner, also known as a semi-reducer, is an optional class that operates by accepting the
inputs from the Map class and thereafter passing the output key-value pairs to the Reducer class.

The main function of a Combiner is to summarize the map output records with the same key. The
output (key-value collection) of the combiner will be sent over the network to the actual Reducer
task as input.

The Combiner class is used in between the Map class and the Reduce class to reduce the volume
of data transfer between Map and Reduce. Usually, the output of the map task is large and the
data transferred to the reduce task is high.

The following MapReduce task diagram shows the COMBINER PHASE.

 5

A combiner does not have a predefined interface and it must implement the Reducer interface’s

reduce() method.

A combiner operates on each map output key. It must have the same output key-value types as
the Reducer class.

A combiner can produce summary information from a large dataset because it replaces the
original Map output.

Although, Combiner is optional yet it helps segregating data into multiple groups for Reduce
phase, which makes it easier to process.

MapReduce Combiner Implementation

The following example provides a theoretical idea about combiners. Let us assume we have the
following input text file named input.txt for MapReduce.

What do you mean by Object
What do you know about Java
What is Java Virtual Machine
How Java enabled High Performance

The important phases of the MapReduce program with Combiner are discussed below.

Record Reader

This is the first phase of MapReduce where the Record Reader reads every line from the input
text file as text and yields output as key-value pairs.

Input − Line by line text from the input file.

Output − Forms the key-value pairs. The following is the set of expected key-value pairs.

<1, What do you mean by Object>

<2, What do you know about Java>

<3, What is Java Virtual Machine>

<4, How Java enabled High Performance>

Map Phase

The Map phase takes input from the Record Reader, processes it, and produces the output as
another set of key-value pairs.

Input − The following key-value pair is the input taken from the Record Reader.

<1, What do you mean by Object>

<2, What do you know about Java>

<3, What is Java Virtual Machine>

<4, How Java enabled High Performance>

 6

The Map phase reads each key-value pair, divides each word from the value using
StringTokenizer, treats each word as key and the count of that word as value. The following code
snippet shows the Mapper class and the map function.

public static class TokenizerMapper extends Mapper<Object, Text, Text,
IntWritable> {

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value, Context context) throws IOException,
InterruptedException

{

StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens())

{

word.set(itr.nextToken());

context.write(word, one);

}

}
}
Output − The expected output is as follows −

<What,1> <do,1> <you,1> <mean,1> <by,1> <Object,1>
<What,1> <do,1> <you,1> <know,1> <about,1> <Java,1>
<What,1> <is,1> <Java,1> <Virtual,1> <Machine,1>
<How,1> <Java,1> <enabled,1> <High,1> <Performance,1>

Combiner Phase

The Combiner phase takes each key-value pair from the Map phase, processes it, and produces
the output as key-value collection pairs.

Input − The following key-value pair is the input taken from the Map phase.

<What,1> <do,1> <you,1> <mean,1> <by,1> <Object,1>
<What,1> <do,1> <you,1> <know,1> <about,1> <Java,1>
<What,1> <is,1> <Java,1> <Virtual,1> <Machine,1>
<How,1> <Java,1> <enabled,1> <High,1> <Performance,1>

The Combiner phase reads each key-value pair, combines the common words as key and values
as collection. Usually, the code and operation for a Combiner is similar to that of a Reducer.
Following is the code snippet for Mapper, Combiner and Reducer class declaration.

job.setMapperClass(TokenizerMapper.class);

job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
Output − The expected output is as follows −

 7

<What,1,1,1> <do,1,1> <you,1,1> <mean,1> <by,1>
<Object,1> <know,1> <about,1> <Java,1,1,1> <is,1>
<Virtual,1> <Machine,1>
<How,1> <enabled,1> <High,1> <Performance,1>

Reducer Phase

The Reducer phase takes each key-value collection pair from the Combiner phase, processes it,
and passes the output as key-value pairs. Note that the Combiner functionality is same as the
Reducer.

Input − The following key-value pair is the input taken from the Combiner phase.

<What,1,1,1> <do,1,1> <you,1,1> <mean,1> <by,1>
<Object,1> <know,1> <about,1> <Java,1,1,1> <is,1>
<Virtual,1> <Machine,1>
<How,1> <enabled,1> <High,1> <Performance,1>

The Reducer phase reads each key-value pair. Following is the code snippet for the Combiner.

public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable>
{

private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values,Context context) throws
IOException, InterruptedException

{

int sum = 0;

for (IntWritable val : values)

{

sum += val.get();

}

result.set(sum);

context.write(key, result);

}
}
Output − The expected output from the Reducer phase is as follows −

<What,3> <do,2> <you,2> <mean,1> <by,1>
<Object,1> <know,1> <about,1> <Java,3> <is,1>
<Virtual,1> <Machine,1>

<How,1> <enabled,1> <High,1>
<Performance,1> Record Writer

This is the last phase of MapReduce where the Record Writer writes every key-value pair from
the Reducer phase and sends the output as text.

 8

Input − Each key-value pair from the Reducer phase along with the Output format.

Output − It gives you the key-value pairs in text format. Following is the expected output.

What 3

do 2

you 2

mean 1

by 1

Object 1

know 1

about 1

Java 3

is 1

Virtual 1

Machine 1

How 1

enabled 1

High 1

Performance 1

Example Program

The following code block counts the number of words in a program.

import java.io.IOException;

import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {

public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>

{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value, Context context) throws IOException,
InterruptedException

 9

{

StringTokenizer itr = new StringTokenizer(value.toString());

while (itr.hasMoreTokens())

{

word.set(itr.nextToken());

context.write(word, one);

}

}

}

public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable>
{

private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values, Context context) throws
IOException, InterruptedException

{

int sum = 0;

for (IntWritable val : values)

{

sum += val.get();

}

result.set(sum);

context.write(key, result);

}

}

public static void main(String[] args) throws
Exception {

Configuration conf = new Configuration();

Job job = Job.getInstance(conf, "word count");

job.setJarByClass(WordCount.class);

job.setMapperClass(TokenizerMapper.class);

job.setCombinerClass(IntSumReducer.class);

job.setReducerClass(IntSumReducer.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);

}

}

 10

MapReduce Program: To find average temperature for each
year in NCDC data set.

Big data is a framework for storage and processing of data (structured/unstructured). Please
check out the program below which draw out results out of semi-structured data from a weather
sensor. Its a MapReduce program written in java.

The aim of the program is to find the average temperature in each year of NCDC data.

This program takes a data input of multiple files where each file contains weather data of a
particular year. This weather data is shared by NCDC (National Climatic Data Center) and is
collected by weather sensors at many locations across the globe. NCDC input data can be
downloaded from

https://github.com/tomwhite/hadoop-book/tree/master/input/ncdc/all.

There is a data file for each year. Each data file contains among other things, the year and the
temperature information(which is relevant for this program).

Below is the snapshot of the data with year and temperature field highlighted in green box. This
is the snapshot of data taken from year 1901 file:

So, in a MapReduce program there are 2 most important phases –
Map Phase and Reduce Phase.

You need to have an understanding of MapReduce concepts so as to understand the intricacies of
MapReduce programming. It is one the major component of Hadoop along with HDFS. I will try
to include more posts in coming weeks around fundamentals of MapReduce.

Continuing with our current program:

· For writing any MapReduce program, firstly, you need to figure out the data flow, like in this
example am taking just the year and temperature information in the map phase and passing it on
to the reduce phase. So Map phase in my example is essentially a data preparation phase. Reduce
phase on the other hand is more of a data aggregation one.

· Secondly, decide on the types for the key/value pairs—MapReduce program uses lists and

(key/value) pairs as its main data primitives. So you need to decide the types for key/value

pairs—K1, V1, K2, V2, K3, and V3 for the input, intermediate, and output key/value pairs. In

 11

this example, am taking LongWritable and Text as (K1,V1) for input and Text and IntWritable
as both for (K2,V2) and (K3,V3)

Map Phase: I will be pulling out the year and temperature data from the log data that is there in
the file, as shown in the above snapshot.

Reduce Phase: The data that is generated by the mapper(s) is fed to the reducer, which is another
java program. This program takes all the values associated with a particular key and find the
average temperature for that key. So, a key in our case is the year and value is a set of
IntWritable objects which represent all the captured temperature information for that year.

I will be writing a java class, each for a Map and Reduce phase and one driver class to create a
job with configuration information.

So, in this particular example I will be writing 3 java classes:

AverageMapper.java

AverageReducer.java

AverageDriver.java

Let me share the code of all the 3 classes, along with the explanation of working of each class:

AverageMapper.java

import org.apache.hadoop.io.*;

import org.apache.hadoop.mapreduce.*;

import java.io.IOException;

public class AverageMapper extends Mapper <LongWritable, Text, Text,
IntWritable> {

public static final int MISSING = 9999;

public void map(LongWritable key, Text value, Context context) throws IOException,
InterruptedException

{

String line = value.toString();

String year = line.substring(15,19);

int temperature;
if (line.charAt(87)=='+')

temperature = Integer.parseInt(line.substring(88, 92));

else

temperature = Integer.parseInt(line.substring(87, 92));

String quality = line.substring(92, 93);

if(temperature != MISSING && quality.matches("[01459]"))
context.write(new Text(year),new IntWritable(temperature));

}

 12

}

Let us get into the details of our AverageMapper class. I need to extend generic class Mapper
with four formal data types: input key, input value, output key, output value. The key for the
Map phase is the offset of the beginning of the line from the beginning of the file, but as we have
no need for it, we can ignore it. The input value would be temperature and output key would be
year and output value will be temperature, an integer. The data is fed to the map function one
line or record at a time. The map() function converts it into the string and read the year and
temperature part from the applicable index value. Also, map() function creates a Context object
which is the output object from map(). It contains year value as Text and temperature value as
IntWritable.

AverageReducer.java

import org.apache.hadoop.mapreduce.*;

import java.io.IOException;

public class AverageReducer extends Reducer <Text, IntWritable,Text, IntWritable >

{
public void reduce(Text

key, Iterable<IntWritable> values,

Context

context) throws

IOException,

InterruptedException

{

int max_temp = 0;

int count = 0;

for (IntWritable value : values)

{

max_temp += value.get();

count+=1;

}

context.write(key, new IntWritable(max_temp/count));

}

}

Now coming to Reduce Class. Again, four formal data types: input key, input value, output key,
output value is specified for this class. The input type and value of reduce function should match
output key and value of the map function: Text and IntWritable objects. The reduce() function
iterates through all the values and find the sum and count of the values, and finally the average
temperature value from that.

AverageDriver.java

import org.apache.hadoop.io.*;

import org.apache.hadoop.fs.*;

import org.apache.hadoop.mapreduce.*;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

 13

public class AverageDriver

{

public static void main (String[] args) throws
Exception {

if (args.length != 2)

{

System.err.println("Please Enter the input and output
parameters"); System.exit(-1);

}

Job job = new Job();
job.setJarByClass(AverageDriver.class);

job.setJobName("Max temperature");

FileInputFormat.addInputPath(job,new Path(args[0]));
FileOutputFormat.setOutputPath(job,new Path (args[1]));

job.setMapperClass(AverageMapper.class);

job.setReducerClass(AverageReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

System.exit(job.waitForCompletion(true)?0:1);

}

}

A Job object forms the specification of the job and gives you control over how the job will be
run. Hadoop has a special feature of data locality, wherein the code for the program is send to the
data instead of other way around. So, Hadoop distributes the jar file of the program across the
cluster. we pass the name of the class in setJarByClass() method which hadoop can use to locate
the jar file containing this class. We need to specify input and output paths. Input path can
specify the file or directory which will be used as an input to the program and output path is a
directory which will be created by Reducer. If the directory already exists it leads to an error.
Then we specify the map and reduce types to use via setMapperClass() and setReducerClass().
Next we set the output types for the map and reduce functions. waitForCompletion() method
submits the job and waits for it to finish. It return 0 or 1, indicating success or failure of the job.

 14

