

UNIT 2

Working with Big Data:

1. Google File System,

2. Hadoop Distributed File System (HDFS)

Building blocks of Hadoop

A. Namenode

B. Datanode

C. Secondary Name node

D. JobTracker

E. TaskTracker

3. Introducing and Configuring Hadoop cluster

A. Local

B. Pseudo-distributed mode

C. Fully Distributed mode

4. Configuring XML files.

1

1. The Google File System

The Google File System, a scalable distributed file system for large distributed data-

intensive applications. It provides fault tolerance while running on inexpensive

commodity hardware, and it delivers high aggregate performance to a large number of

clients.

GFS provides a familiar file system interface, though itdoes not implement a standard

API such as POSIX. Files areorganized hierarchically in directories and identified by

path-names. We support the usual operations to create, delete,open, close, read, and write

files.

Moreover, GFS has snapshot and record append operations. Snapshot creates a copy of a

file or a directory treeat low cost. Record append allows multiple clients to append data to

the same file concurrently while guaranteeing the atomicity of each individual client‟s

append

Architecture

A GFS cluster consists of a single master and multiple chunk servers and is accessed by

multiple clients, as shown in Figure .

Each of these is typically a commodity Linux machine running a user-level server

process. It is easy to run both a chunkserver and a client on the same machine, as long as

machine resources permit and the lower reliability caused by running possibly flaky

application code is acceptable.

Each of these is typically a commodity Linux machine running a user-level server

process. It is easy to run both a chunkserver and a client on the same machine, as long as

machine resources permit and the lower reliability caused by running possibly flaky

application code is acceptable.

2

Files are divided into fixed-size chunks. Each chunk is identified by an immutable and

globally unique 64 bit chunk handle assigned by the master at the time of chunk creation.

Chunkservers store chunks on local disks as Linux files and read or write chunk data

specified by a chunk handle and byte range. For reliability, each chunk is replicated on

multiple chunkservers. By default, we store three replicas, though users can designate

different replication levels for different regions of the file namespace. The master

maintains all file system metadata. This includes the namespace, access control

information, the mapping from files to chunks, and the current locations of chunks.

It also controls system-wide activities such as chunk lease management, garbage

collection of orphaned chunks, and chunk migration between chunkservers. The master

periodically communicates with each chunkserver in HeartBeat messages to give it

instructions and collect its state.

3

GFS client code linked into each application implements the file system API and

communicates with the master and chunkservers to read or write data on behalf of the

application. Clients interact with the master for metadata operations, but all data-bearing

communication goes directly to the chunkservers. We do not provide the POSIX API and

therefore need not hook into the Linux vnode layer.

Neither the client nor the chunkserver caches file data. Client caches offer little benefit

because most applications stream through huge files or have working sets too large to be

cached. Not having them simplifies the client and the overall system by eliminating cache

coherence issues.(Clients do cache metadata, however.) Chunkservers need not cache file

data because chunks are stored as local files and so Linux‟s buffer cache already

keeps frequently accessed data in memory.

Single Master

Having a single master vastly simplifies our design and enables the master to make

sophisticated chunk placementApplication and replication decisions using global

knowledge. However,we must minimize its involvement in reads and writes sothat it does

not become a bottleneck. Clients never readand write file data through the master.

Instead, a client asks the master which chunkservers it should contact.

Chunk Size

Chunk size is one of the key design parameters. We have chosen 64 MB, which is much

larger than typical file system block sizes. Each chunk replica is stored as a plain Linux

file on a chunkserver and is extended only as needed.

Lazy space allocation avoids wasting space due to internalfragmentation, perhaps the

greatest objection against such a large chunk size.

A large chunk size offers several important advantages.

First, it reduces clients‟ need to interact with the master because reads and writes on the

same chunk require only one initial request to the master for chunk location information.

4

The reduction is especially significant for our work loads because applications mostly

read and write large files sequentially.

Even for small random reads, the client can comfortably cache all the chunk location

information for a multi-TB working set. Second, since on a large chunk, a client is more

likely to perform many operations on a given chunk, it can reduce network overhead by

keeping a persistent TCP connection to the chunkserver over an extended period of time.

Third, it reduces the size of the metadata stored on the master. This allows us to keep the

metadata in memory, which in turn brings other advantages .

On the other hand, a large chunk size, even with lazy space allocation, has its

disadvantages. A small file consists of a small number of chunks, perhaps just one. The

chunkservers storing those chunks may become hot spots if many clients are accessing

the same file. In practice, hot spots have not been a major issue because our applications

mostly read large multi-chunk files sequentially.

However, hot spots did develop when GFS was first used by a batch-queue system: an

executable was written to GFS as a single-chunk file and then started on hundreds of

machines at the same time.

Metadata

The master stores three major types of metadata: the file and chunk namespaces, the

mapping from files to chunks, and the locations of each chunk‟s replicas.

All metadata is kept in the master‟s memory. The first two types (namespaces and file-

to-chunk mapping) are also kept persistent by logging mutations to an operation log stored

on the master‟s local disk and replicated on remote machines. Using a log allows us to

update the master state simply, reliably, and without risking inconsistencies in the event

of a master crash. The master does not store chunk location information persistently.

Instead, it asks each chunkserver about its chunks at master startup and whenever a

chunkserver joins the cluster.

5

In-Memory Data Structures

Since metadata is stored in memory, master operations are fast. Furthermore, it is easy

and efficient for the master to periodically scan through its entire state in the background.

This periodic scanning is used to implement chunk garbage collection, re-replication in

the presence of chunkserver failures, and chunk migration to balance load and disk space

usage across chunkservers.

Consistency Model

GFS has a relaxed consistency model that supports our highly distributed applications

well but remains relatively simple and efficient to implement. We now discuss GFS‟s

guarantees and what they mean to applications.

We also highlight how GFS maintains these guarantees but leave the details to other parts

of the paper.

Guarantees by GFS

Operation Log

The operation log contains a historical record of critical metadata changes. It is central to

GFS. Not only is it the only persistent record of metadata, but it also serves as a logical

time line that defines the order of concurrent operations.

Advantages and disadvantages of large sized chunks in Google File System

Chunks size is one of the key design parameters. In GFS it is 64 MB, which is much larger than

typical file system blocks sizes. Each chunk replica is stored as a plain Linux file on a chunk

server and is extended only as needed.

Advantages

1. It reduces clients‟ need to interact with the master because reads and writes on the same chunk

require only one initial request to the master for chunk location information.

6

2. Since on a large chunk, a client is more likely to perform many operations on a given chunk, it

can reduce network overhead by keeping a persistent TCP connection to the chunk server over

an extended period of time.

3. It reduces the size of the metadata stored on the master. This allows us to keep the metadata in

memory, which in turn brings other advantages.

Disadvantages

1. Lazy space allocation avoids wasting space due to internal fragmentation.

2. Even with lazy space allocation, a small file consists of a small number of chunks, perhaps just

one. The chunk servers storing those chunks may become hot spots if many clients are accessing

the same file. In practice, hot spots have not been a major issue because the applications mostly

read large multi-chunk files sequentially. To mitigate it, replication and allowance to read from

other clients can be done.

2. Hadoop Distributed File System (HDFS) Building blocks of

Hadoop :

A. Namenode

B. Datanode

C. Secondary Name node

D. JobTracker

E. TaskTracker

Hadoop is made up of 2 parts:

1. HDFS – Hadoop Distributed File System

2. MapReduce – The programming model that is used to work on the data present in HDFS.

HDFS – Hadoop Distributed File System

HDFS is a file system that is written in Java and resides within the user space unlike traditional

file systems like FAT, NTFS, ext2, etc that reside on the kernel space. HDFS was primarily

written to store large amounts of data (terrabytes and petabytes). HDFS was built inline with

Google‟s paper on GFS.

7

MapReduce

MapReduce is the programming model that uses Java as the programming language to retrieve

data from files stored in the HDFS. All data in HDFS is stored as files. Even MapReduce was

built inline with another paper by Google.

Google, apart from their papers did not release their implementations of GFS and MapReduce.

However, the Open Source Community built Hadoop and MapReduce based on those papers.

The initial adoption of Hadoop was at Yahoo Inc., where it gained good momentum and went

onto be a part of their production systems. After Yahoo, many organizations like LinkedIn,

Facebook, Netflix and many more have successfully implemented Hadoop within their

organizations.

Hadoop uses HDFS to store files efficiently in the cluster. When a file is placed in HDFS it is

broken down into blocks, 64 MB block size by default. These blocks are then replicated across

the different nodes (DataNodes) in the cluster. The default replication value is 3, i.e. there will

be 3 copies of the same block in the cluster. We will see later on why we maintain replicas of the

blocks in the cluster.

A Hadoop cluster can comprise of a single node (single node cluster) or thousands of nodes.

Once you have installed Hadoop you can try out the following few basic commands to work with

HDFS:

 hadoop fs -ls

 hadoop fs -put <path_of_local> <path_in_hdfs>

 hadoop fs -get <path_in_hdfs> <path_of_local>

 hadoop fs -cat <path_of_file_in_hdfs>

 hadoop fs -rmr <path_in_hdfs>

the different components of a Hadoop Cluster are:

NameNode (Master) – NameNode, Secondary NameNode, JobTracker

DataNode 1 (Slave) – TaskTracker, DataNode

DataNode 2 (Slave) – TaskTracker, DataNode

DataNode 3 (Slave) – TaskTracker, DataNode

DataNode 4 (Slave) – TaskTracker, DataNode

DataNode 5 (Slave) – TaskTracker, DataNode

8

The above diagram depicts a 6 Node Hadoop Cluster

In the diagram you see that the NameNode, Secondary NameNode and theJobTracker are

running on a single machine. Usually in production clusters having more those 20-30 nodes, the

daemons run on separate nodes.

Hadoop follows a Master-Slave architecture. As mentioned earlier, a file in HDFS is split into

blocks and replicated across Datanodes in a Hadoop cluster. You can see that the three files A,

B and C have been split across with a replication factor of 3 across the different Datanodes.

Now let us go through each node and daemon:

NameNode

The NameNode in Hadoop is the node where Hadoop stores all the location information of the

files in HDFS. In other words, it holds the metadata for HDFS. Whenever a file is placed in the

cluster a corresponding entry of it location is maintained by the NameNode. So, for the files A, B

and C we would have something as follows in the NameNode:

File A – DataNode1, DataNode2, DataNode4

9

File B – DataNode1, DataNode3, DataNode4

File C – DataNode2, DataNode3, DataNode4

This information is required when retrieving data from the cluster as the data is spread across

multiple machines. The NameNode is a Single Point of Failure for the Hadoop Cluster.

Secondary NameNode

IMPORTANT – The Secondary NameNode is not a failover node for theNameNode.

The secondary name node is responsible for performing periodic housekeeping functions for the

NameNode. It only creates checkpoints of the file system present in the NameNode.

DataNode

The DataNode is responsible for storing the files in HDFS. It manages the file blocks within the

node. It sends information to the NameNode about the files and blocks stored in that node and

responds to the NameNode for all filesystem operations.

JobTracker

JobTracker is responsible for taking in requests from a client and assigning TaskTrackers with

tasks to be performed. The JobTracker tries to assign tasks to the TaskTracker on the

DataNode where the data is locally present (Data Locality). If that is not possible it will at least

try to assign tasks to TaskTrackers within the same rack. If for some reason the node fails the

JobTracker assigns the task to another TaskTracker where the replica of the data exists since

the data blocks are replicated across the DataNodes. This ensures that the job does not fail even

if a node fails within the cluster.

TaskTracker

TaskTracker is a daemon that accepts tasks (Map, Reduce and Shuffle) from the JobTracker.

The TaskTracker keeps sending a heart beat message to theJobTracker to notify that it is alive.

 Along with the heartbeat it also sends the free slots available within it to process

 tasks. TaskTracker starts and monitors the Map & Reduce Tasks and sends progress/status

 information back to theJobTracker.

 All the above daemons run within have their own JVMs.

 A typical (simplified) flow in Hadoop is a follows:

1. A Client (usaually a MapReduce program) submits a job to theJobTracker.

2. The JobTracker get information from the NameNode on the location of the data within

 the DataNodes. The JobTracker places the client program (usually a jar file along with the

 10

configuration file) in the HDFS. Once placed, JobTracker tries to assign tasks to TaskTrackers

on the DataNodes based on data locality.

3. The TaskTracker takes care of starting the Map tasks on the DataNodesby picking up the

client program from the shared location on the HDFS.

4. The progress of the operation is relayed back to the JobTracker by theTaskTracker.

5. On completion of the Map task an intermediate file is created on the local filesystem of the

TaskTracker.

6. Results from Map tasks are then passed on to the Reduce task.

7. The Reduce tasks works on all data received from map tasks and writes the final output to

HDFS.

8. After the task complete the intermediate data generated by theTaskTracker is deleted.

A very important feature of Hadoop to note here is, that, the program goes to where the data is

and not the way around, thus resulting in efficient processing of data.

3. Introducing and Configuring Hadoop cluster

A. Local

B. Pseudo-distributed mode

C. Fully Distributed mode

Hadoop is supported by GNU/Linux platform and its flavors. Therefore, we have to install a

Linux operating system for setting up Hadoop environment.

Pre-installation Setup

Before installing Hadoop into the Linux environment, we need to set up Linux using ssh

(Secure Shell). Follow the steps given below for setting up the Linux environment.

Creating a User

At the beginning, it is recommended to create a separate user for Hadoop to isolate Hadoop file

system from Unix file system. Follow the steps given below to create a user:

 Open the root using the command “su”.

 Create a user from the root account using the command “useradd username”.

 Now you can open an existing user account using the command “su username”.

11

Open the Linux terminal and type the following commands to create a user.

$ su

password:

useradd hadoop

passwd hadoop

New passwd:

Retype new passwd

SSH Setup and Key Generation

SSH setup is required to do different operations on a cluster such as starting, stopping,

distributed daemon shell operations. To authenticate different users of Hadoop, it is required to

provide public/private key pair for a Hadoop user and share it with different users.

The following commands are used for generating a key value pair using SSH. Copy the public

keys form id_rsa.pub to authorized_keys, and provide the owner with read and write

permissions to authorized_keys file respectively.

$ ssh-keygen -t rsa

$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys $

chmod 0600 ~/.ssh/authorized_keys

Installing Java

Java is the main prerequisite for Hadoop. First of all, you should verify the existence of java in

your system using the command “java -version”. The syntax of java version command is

given below.

$ java -version

If everything is in order, it will give you the following output.

java version "1.7.0_71"

Java(TM) SE Runtime Environment (build 1.7.0_71-b13)

Java HotSpot(TM) Client VM (build 25.0-b02, mixed mode)

If java is not installed in your system, then follow the steps given below for installing java.

12

Step 1

Download java (JDK <latest version> - X64.tar.gz) by visiting the following

linkhttp://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads1880260.html.

Then jdk-7u71-linux-x64.tar.gz will be downloaded into your system. Step 2

Generally you will find the downloaded java file in Downloads folder. Verify it and extract the

jdk-7u71-linux-x64.gz file using the following commands.

$ cd Downloads/

$ ls

jdk-7u71-linux-x64.gz

$ tar zxf jdk-7u71-linux-x64.gz

$ ls

jdk1.7.0_71 jdk-7u71-linux-x64.gz

Step 3

To make java available to all the users, you have to move it to the location “/usr/local/”. Open

root, and type the following commands.

$ su

password:

mv jdk1.7.0_71 /usr/local/

exit

Step 4

For setting up PATH and JAVA_HOME variables, add the following commands to ~/.bashrc

file.

export JAVA_HOME=/usr/local/jdk1.7.0_71

export PATH=$PATH:$JAVA_HOME/bin

Now apply all the changes into the current running system.

$ source ~/.bashrc

Step 5

Use the following commands to configure java alternatives:

13

alternatives --install /usr/bin/java java usr/local/java/bin/java 2

alternatives --install /usr/bin/javac javac usr/local/java/bin/javac 2

alternatives --install /usr/bin/jar jar usr/local/java/bin/jar 2

alternatives --set java usr/local/java/bin/java

alternatives --set javac usr/local/java/bin/javac

alternatives --set jar usr/local/java/bin/jar

Now verify the java -version command from the terminal as explained above.

Downloading Hadoop

Download and extract Hadoop 2.4.1 from Apache software foundation using the following

commands.

$ su

password:

cd /usr/local

wget http://apache.claz.org/hadoop/common/hadoop-2.4.1/

hadoop-2.4.1.tar.gz

tar xzf hadoop-2.4.1.tar.gz

mv hadoop-2.4.1/* to hadoop/

exit

Hadoop Operation Modes

Once you have downloaded Hadoop, you can operate your Hadoop cluster in one of the three

supported modes:

 Local/Standalone Mode : After downloading Hadoop in your system, by default, it is

configured in a standalone mode and can be run as a single java process.

 Pseudo Distributed Mode : It is a distributed simulation on single machine. Each

Hadoop daemon such as hdfs, yarn, MapReduce etc., will run as a separate java process.

This mode is useful for development.

 Fully Distributed Mode : This mode is fully distributed with minimum two or more

machines as a cluster. We will come across this mode in detail in the coming chapters.

Installing Hadoop in Standalone Mode

Here we will discuss the installation of Hadoop 2.4.1 in standalone mode.

14

There are no daemons running and everything runs in a single JVM. Standalone mode is

suitable for running MapReduce programs during development, since it is easy to test and

debug them.

Setting Up Hadoop

You can set Hadoop environment variables by appending the following commands to ~/.bashrc

file.

export HADOOP_HOME=/usr/local/hadoop

Before proceeding further, you need to make sure that Hadoop is working fine. Just issue the

following command:

$ hadoop version

If everything is fine with your setup, then you should see the following result:

Hadoop 2.4.1

Subversion https://svn.apache.org/repos/asf/hadoop/common -r 1529768

Compiled by hortonmu on 2013-10-07T06:28Z

Compiled with protoc 2.5.0

From source with checksum 79e53ce7994d1628b240f09af91e1af4

It means your Hadoop's standalone mode setup is working fine. By default, Hadoop is

configured to run in a non-distributed mode on a single machine. Example

Let's check a simple example of Hadoop. Hadoop installation delivers the following example

MapReduce jar file, which provides basic functionality of MapReduce and can be used for

calculating, like Pi value, word counts in a given list of files, etc.

$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar

Let's have an input directory where we will push a few files and our requirement is to count the

total number of words in those files. To calculate the total number of words, we do not need to

write our MapReduce, provided the .jar file contains the implementation for word count. You

can try other examples using the same .jar file; just issue the following commands to check

supported MapReduce functional programs by hadoop-mapreduce-examples-2.2.0.jar file.

$ hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduceexamples-2.2.0.jar

15

Step 1

Create temporary content files in the input directory. You can create this input directory

anywhere you would like to work.

$ mkdir input

$ cp $HADOOP_HOME/*.txt input

$ ls -l input

It will give the following files in your input directory:

total 24

-rw-r--r-- 1 root root 15164 Feb 21 10:14 LICENSE.txt

-rw-r--r-- 1 root root 101 Feb 21 10:14 NOTICE.txt

-rw-r--r-- 1 root root 1366 Feb 21 10:14 README.txt

These files have been copied from the Hadoop installation home directory. For your

experiment, you can have different and large sets of files. Step 2

Let's start the Hadoop process to count the total number of words in all the files available in the

input directory, as follows:

$ hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduceexamples-2.2.0.jar

wordcount input output

Step 3

Step-2 will do the required processing and save the output in output/part-r00000 file, which you

can check by using:

$cat output/*

It will list down all the words along with their total counts available in all the files available in

the input directory.

"AS 4

"Contribution" 1

"Contributor" 1

"Derivative 1

"Legal 1

16

"License" 1

"License"); 1

"Licensor" 1

"NOTICE” 1

"Not 1

"Object" 1

"Source” 1

"Work” 1

"You" 1

"Your") 1

"[]" 1

"control" 1

"printed 1

"submitted" 1

(50%) 1

(BIS), 1

(C) 1

(Don't) 1

(ECCN) 1

(INCLUDING 2

(INCLUDING, 2

.............

Installing Hadoop in Pseudo Distributed Mode

Follow the steps given below to install Hadoop 2.4.1 in pseudo distributed

mode. Step 1: Setting Up Hadoop

You can set Hadoop environment variables by appending the following commands to ~/.bashrc

file.

export HADOOP_HOME=/usr/local/hadoop

export HADOOP_MAPRED_HOME=$HADOOP_HOME

17

export HADOOP_COMMON_HOME=$HADOOP_HOME

export HADOOP_HDFS_HOME=$HADOOP_HOME export

YARN_HOME=$HADOOP_HOME

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native

export PATH=$PATH:$HADOOP_HOME/sbin:$HADOOP_HOME/bin export

HADOOP_INSTALL=$HADOOP_HOME

Now apply all the changes into the current running system.

$ source ~/.bashrc

Step

2: Hadoop

Configuration

You

can

find all

the

Hadoop

configuration

files

in

the

location

“$HADOOP_HOME/etc/hadoop”. It is required to make changes in those configuration

files according to your Hadoop infrastructure.

$ cd $HADOOP_HOME/etc/hadoop

In order to develop Hadoop programs in java, you have to reset the java environment variables

in hadoop-env.sh file by replacing JAVA_HOME value with the location of java in your

system.

export JAVA_HOME=/usr/local/jdk1.7.0_71

The following are the list of files that you have to edit to configure Hadoop.

core-site.xml

The core-site.xml file contains information such as the port number used for Hadoop instance,

memory allocated for the file system, memory limit for storing the data, and size of Read/Write

buffers.

Open the core-site.xml and add the following properties in between <configuration>,

</configuration> tags.

<configuration>

<property>

<name>fs.default.name </name>

<value> hdfs://localhost:9000 </value>

18

</property>

</configuration>

hdfs-site.xml

The hdfs-site.xml file contains information such as the value of replication data, namenode

path, and datanode paths of your local file systems. It means the place where you want to store

the Hadoop infrastructure.

Let us assume the following data.

dfs.replication (data replication value) = 1

(In the below given path /hadoop/ is the user name.

hadoopinfra/hdfs/namenode is the directory created by hdfs file system.)

namenode path = //home/hadoop/hadoopinfra/hdfs/namenode

(hadoopinfra/hdfs/datanode is the directory created by hdfs file system.)

datanode path = //home/hadoop/hadoopinfra/hdfs/datanode

Open this file and add the following properties in between the <configuration> </configuration>

tags in this file.

<configuration>

<property>

<name>dfs.replication</name>

<value>1</value>

</property>

<property>

<name>dfs.name.dir</name>

<value>file:///home/hadoop/hadoopinfra/hdfs/namenode </value>

</property>

<property>

<name>dfs.data.dir</name>

19

<value>file:///home/hadoop/hadoopinfra/hdfs/datanode </value>

</property>

</configuration>

Note: In the above file, all the property values are user-defined and you can make changes

according to your Hadoop infrastructure.

yarn-site.xml

This file is used to configure yarn into Hadoop. Open the yarn-site.xml file and add the

following properties in between the <configuration>, </configuration> tags in this file.

<configuration>

<property>

<name>yarn.nodemanager.aux-services</name>

<value>mapreduce_shuffle</value>

</property>

</configuration>

mapred-site.xml

This file is used to specify which MapReduce framework we are using. By default, Hadoop

contains a template of yarn-site.xml. First of all, it is required to copy the file from mapred-

site,xml.template to mapred-site.xml file using the following command.

$ cp mapred-site.xml.template mapred-site.xml

Open mapred-site.xml file and add the following properties in between the <configuration>,

</configuration>tags in this file.

<configuration>

<property>

<name>mapreduce.framework.name</name>

<value>yarn</value>

</property>

20

</configuration>

Verifying Hadoop Installation

The following steps are used to verify the Hadoop installation.

Step 1: Name Node Setup

Set up the namenode using the command “hdfs namenode -format” as follows.

$ cd ~

$ hdfs namenode -format

The expected result is as follows.

10/24/14 21:30:55 INFO namenode.NameNode: STARTUP_MSG:

/**

STARTUP_MSG: Starting NameNode STARTUP_MSG: host =

localhost/192.168.1.11

STARTUP_MSG: args = [-format]

STARTUP_MSG: version = 2.4.1

...

...

10/24/14 21:30:56 INFO common.Storage: Storage directory

/home/hadoop/hadoopinfra/hdfs/namenode has been successfully formatted.

10/24/14 21:30:56 INFO namenode.NNStorageRetentionManager: Going to

retain 1 images with txid >= 0

10/24/14 21:30:56 INFO util.ExitUtil: Exiting with status 0

10/24/14 21:30:56 INFO namenode.NameNode: SHUTDOWN_MSG:

/**

SHUTDOWN_MSG: Shutting down NameNode at localhost/192.168.1.11

**/

Step 2: Verifying Hadoop dfs

The following command is used to start dfs. Executing this command will start your Hadoop

file system.

21

$ start-dfs.sh

The expected output is as follows:

10/24/14 21:37:56

Starting namenodes on [localhost]

localhost: starting namenode, logging to /home/hadoop/hadoop

2.4.1/logs/hadoop-hadoop-namenode-localhost.out

localhost: starting datanode, logging to /home/hadoop/hadoop

2.4.1/logs/hadoop-hadoop-datanode-localhost.out

Starting secondary namenodes [0.0.0.0]

Step 3: Verifying Yarn Script

The following command is used to start the yarn script. Executing this command will start your

yarn daemons.

$ start-yarn.sh

The expected output as follows:

starting yarn daemons

starting resourcemanager, logging to /home/hadoop/hadoop

2.4.1/logs/yarn-hadoop-resourcemanager-localhost.out

localhost: starting nodemanager, logging to /home/hadoop/hadoop

2.4.1/logs/yarn-hadoop-nodemanager-localhost.out

Step 4: Accessing Hadoop on Browser

The default port number to access Hadoop is 50070. Use the following url to get Hadoop

services on browser.

http://localhost:50070/

22

Step 5: Verify All Applications for Cluster

The default port number to access all applications of cluster is 8088. Use the following url to

visit this service.

http://localhost:8088/

C .Fully Distributed mode

Compatibility Requirements

23

S.No Category Supported

1 Languages Java, Python, Perl, Ruby etc.

2 Operating System Linux (Server Deployment) Mostly preferred,

 Windows (Development only), Solaris.

3 Hardware 32 bit Linux (64 bit for large deployment)

Installation Items

S.No Item Version

1 jdk-6u25-linux-i586.bin Java 1.6 or higher

2 hadoop-0.20.2-cdh3u0.tar.gz Hadoop 0.20.2

Note: Both Items are required to be installed on Namenode and Datanode machines

Installation Requirements

S.No Requirement Reason

1 Operating system – Linux

 recommended for server deployment

 (Production env.)

2 Language – Java 1.6 or higher

3 Ram – at least 3 GB/node

4 Hard disk – at least 1 TB For namenode machine.

5 Should have root credentials For changing some system files

 you need admin permissions.

24

High level Steps

Step Activity Check

1 Binding IP address with the host name under /etc/hosts

2 Setting passwordless SSH

3 Installing Java

4 Installing Hadoop

5 Setting JAVA HOME and HADOOP HOME variables

6 Updating .bash_profile file for hadoop

7 Creating required folders for namenode and datanode

8 Configuring the .xml files

9 Setting the masters and slaves in all the machines

10 Formatting the namenode

11 Starting the Dfs services and mapred services

12 Stopping all services

Binding IP address with the host names

Before starting the installation of hadoop, first you need to bind the IP address of the machines

along with their host names under /etc/hosts file.

First check the hostname of your machine by using following command :

$ hostname

Open /etc/hosts file for binding IP with the hostname

$ vi /etc/hosts

Provide ip & hostname of the all the machines in the cluster

e.g: 10.11.22.33 hostname1

10.11.22.34 hostname2

25

Setting Passwordless SSh login

SSH is used to login from one system to another without requiring passwords. This will be

required when you run a cluster, it will not prompt you for the password again and again.

First log in on Host1 (hostname of namenode machine) as hadoop user and generate a pair of

authentication keys. Command is:

hadoop@Host1$ ssh-keygen –t rsa

Note: Give the hostname which you got in step 5.3.1. Do not enter any passphrase if asked. Now

use ssh to create a directory ~/.ssh as user hadoop on Host2 (Hostname other than namenode

machine).

hadoop@Host1$ ssh hadoop@Host2 mkdir –p .ssh

hadoop@Host2‟s password:

Finally append Host1's new public key to hadoop@Host2: .ssh/authorized_keys and enter

Host2's password one last time:

hadoop@Host1$ cat /home/hadoop/.ssh/id_rsa.pub | ssh hadoop@Host2 „ cat >>

.ssh/authorized_keys ‟

hadoop@Host2‟s password:

From now on you can log into Host2 as hadoop from Host1 without password:

hadoop@Host1$ ssh hadoop@Host2

Host2@hadoop$

NOTE: Do the following changes:

Change the permissions of .ssh to 700

Change the permissions of .ssh/authorized_keys to 640

26

Prepare for installation

Check for previous installed versions of java and hadoop on your machine

$ rpm –qa | grep java

It will display fully qualified paths of the version installed.

Remove all the previous version of Java and Hadoop installed on the machine.

$ rpm –e softwarename or path-name

NOTE: All the installations and extractions are being done in /home/hadoop/

Installing Java

Use the JDK bin file (jdk-6u25-linux-i586.bin) for installing java on your machine . Copy the

.bin file in /home/hadoop/

Execute the command “./jdk-6u25-linux-i586.bin” in /home/hadoop/ (which will unzip the

contents into folder jdk1.6.0_25)

Extract the hadoop package

Syntax

$ tar –xzvf < hadoop-tar-package>

$ tar –xzvf hadoop-0.20.0-cdh3u9.tar.gz

Configuring HADOOP_HOME

Check whether HADOOP_HOME is set up to the folder containing hadoop_core_VERSION.jar

using

$ echo $HADOOP_HOME

If not set then set it

$ export HADOOP_HOME=/home/hadoop/hadoop-version

27

For e.g.

$ cd /home/hadoop/

$ export HADDOP_HOME= /home/hadoop/hadoop-0.20.2-cdh3u0/

Setting JAVA_HOME

$ cd /home/hadoop/hadoop-0.20.0-cdh3u0/conf/

$ vi hadoop-env.sh

hadoop-env.sh file for setting

JAVA_HOME Press :wq to save and exit the file

You need to change the bash file also .

$ vi ~/.bash_profile

28

bash_profile file for setting environment variables and jar files

Check for hadoop installation confirmation

Run hadoop command to confirm whether the installation is successful.

$ cd <hadoop-home-directory>

Standard Path

$ cd /home/hadoop/ hadoop-0.20.0-cdh3u0/

$ bin/hadoop

On successful installation you should get the following message.

29

CONFIGURING HADOOP IN FULLY DISTRIBUTED MODE

Create the dfs.name.dir local directories on namenode machine

$ cd /home/hadoop/

$ mkdir -p data/1/dfs/nn

Creating the directories for storing the Data blocks and the temporary directory for storing

process ids on datanode machines

$ cd /home/hadoop/

$ mkdir –p data/1/dfs/dn data/2/dfs/dn data/3/dfs/dn $

mkdir –p /home/hadoop/ tmp

Creating the directories for storing the temporary data (Task Tracker) and the system files for

Map/Reduce jobs

$ cd /home/hadoop/

$ mkdir –p data/1/mapred/local data/2/mapred/local data/3/mapred/local $

mkdir –p /home/hadoop/mapred/system

Give full permission to all folder under /home/hadoop/

$ cd /home/hadoop/

$ chmod 777 *

Navigate to /home/hadoop/hadoop-0.20.0-cdh3u0/conf directory

$ cd /home/hadoop/hadoop-0.20.0-cdh3u0/conf

Set up the configuration files under /home/hadoop/hadoop-0.20.0-cdh3u0/conf/

Core-Site.xml

$ vi core-site.xml

Parameters of core-site.xml

fs.default.name URL for the Name Node

URL for the temporary data

This property specifies the number of times the file has to be replicated on

cluster.

30

core-site.xml

hdfs-site.xml

$ vi hdfs-site.xml

Parameters of hdfs-site.xml

This property specifies the directories where the NameNode stores its metadata

and edit logs. Represented by the /home/hadoop/data/1/dfs/nn path examples.

This property specifies the directories where the DataNode stores blocks.

Represented by the /home/hadoop/data/1/dfs/dn, /home/hadoop/data/2/dfs/dn ,

/home/hadoop/data/3/dfs/dn

hdfs-site.xml

Press :wq to save and exit the file

mapred-site.xml

$ vi mapred-site.xml

Parameters of mapred-site.xml

31

mapred.local.dir This property specifies the directories where the TaskTracker will store

temporary data and intermediate map output files while running Map Reduce jobs.

Eg./home/hadoop/data/1/mapred/local,/home/hadoop/data/2/mapred/local,

/home/hadoop/data/3/mapred/local.

mapred.system.dir

e.g./home/hadoop/mapred/system/.

mapred.job.tracker Host or IP and port of Job Tracker.

mapred-site.xml

Press :wq to save and exit the file

Set the correct owner and permissions of the local directories:

Directory Owner Permissions

dfs.name.dir hdfs:hadoop drwx------

dfs.data.dir hdfs:hadoop drwx------

mapred.local.dir mapred:hadoop drwxr-xr-x

$ chmod 700 /home/hadoop/data/1/dfs/nn/

$ chmod 700 /home/hadoop/data/1/dfs/dn/ /home/hadoop/data/2/dfs/dn/

32

/home/hadoop/data/3/dfs/dn/

$ chmod 755 /home/hadoop/data/1/mapred/local/

/home/hadoop/data/2/mapred/local/ /home/hadoop/data/3/mapred/local/

Setting up the masters and slaves

vi conf/masters

hostname of machine acting as a SecondaryNamenode

vi slaves

hostname of machines acting as a Datanode & TaskTrackers

Formatting the namenode

You need to format the namenode every time you start the dfs services. This is because every

time you start the services it causes some files to be written in the namenode folder which may

get duplicated when you run the services for the second time. Do not format a running Hadoop

namenode, otherwise it will cause all your data in the HDFS filesytem to be erased.

$ cd /home/hadoop/hadoop-0.20.0-cdh3u0/

$ bin/hadoop namenode -format

Note : Give “Y” when it asks for re-format

Starting dfs service

Run the command

$ /bin/start-dfs.sh on the machine you want the namenode to run on. This will bring up HDFS

with the namenode running on the machine you ran the previous command on, and datanodes on

the machines listed in the conf/slaves file.

$ cd /home/hadoop/hadoop-0.20.0-cdh3u0/

$./bin/start-dfs.sh

NOTE: For any problems check the log files under all the machines under

/home/hadoop/hadoop-0.20.2-cdh3u0/logs/ and refer to the troubleshooting guide for the same.

Starting mapred service

33

For mapred services run the following command on the machine you want jobtracker to run on

(in my case it was namenode machine)

you can choose other machine also.

$./bin/start-mapred.sh

Checking the DFS service report

$./bin/hadoop dfsadmin –report

Checking on web interface DFS SERVICE

http://ip-address of namenode machine:50070/

Checking on web interface Mapred Job

http://ip of namenode machine:50030/

Stopping dfs and mapred services

cd /home/hadoop/hadoop-0.20.0-cdh3u0/

$./bin/stop-all.sh

4 Configuring XML files.

Hadoop Cluster Configuration Files

34

All these files are available under „conf‟ directory of Hadoop installation directory.

Here is a listing of these files in the File System:

Let‟s look at the files and their usage one by one!

hadoop-env.sh

This file specifies environment variables that affect the JDK used by Hadoop Daemon

(bin/hadoop).

As Hadoop framework is written in Java and uses Java Runtime environment, one of the

important environment variables for Hadoop daemon is $JAVA_HOME in hadoop-env.sh.

This variable directs Hadoop daemon to the Java path in the system.

35

This file is also used for setting another Hadoop daemon execution environment such as heap

size (HADOOP_HEAP), hadoop home (HADOOP_HOME), log file location

(HADOOP_LOG_DIR), etc.

Note: For the simplicity of understanding the cluster setup, we have configured only necessary

parameters to start a cluster.

The following three files are the important configuration files for the runtime environment

settings of a Hadoop cluster.

core-site.sh

This file informs Hadoop daemon where NameNode runs in the cluster. It contains the

configuration settings for Hadoop Core such as I/O settings that are common to HDFS and

MapReduce.

Where hostname and port are the machine and port on which NameNode daemon runs and

listens. It also informs the Name Node as to which IP and port it should bind. The commonly

used port is 8020 and you can also specify IP address rather than hostname.

hdfs-site.sh

This file contains the configuration settings for HDFS daemons; the Name Node, the

Secondary Name Node, and the data nodes.

You can also configure hdfs-site.xml to specify default block replication and permission

checking on HDFS. The actual number of replications can also be specified when the file is

created. The default is used if replication is not specified in create time.

36

The value “true” for property „dfs.permissions‟ enables permission checking in HDFS and the

value “false” turns off the permission checking. Switching from one parameter value to the other

does not change the mode, owner or group of files or directories.

mapred-site.sh

This file contains the configuration settings for MapReduce daemons; the job tracker and the

task-trackers. Themapred.job.tracker parameter is a hostname (or IP address) and port pair

on which the Job Tracker listens for RPC communication. This parameter specify the location of

the Job Tracker to Task Trackers and MapReduce clients.

37

You can replicate all of the four files explained above to all the Data Nodes and Secondary

Namenode. These files can then be configured for any node specific configuration e.g. in case of

a different JAVA HOME on one of the Datanodes.

The following two file ‘masters’ and ‘slaves’ determine the master and salve Nodes in Hadoop

CLUSTER.

Masters

This file informs about the Secondary Namenode location to hadoop daemon. The „masters‟

file at Master server contains a hostname Secondary Name Node servers.

The „masters‟ file on Slave Nodes is blank.

Slaves

The „slaves‟ file at Master node contains a list of hosts, one per line, that are to host Data

Node and Task Tracker servers.

The „slaves‟ file on Slave server contains the IP address of the slave node. Notice that the

„slaves‟ file at Slave node contains only its own IP address and not of any other Data Nodes in

the cluster.

38

