
Department of Information Technology

Course Name: 6IT4-02:Machine Learning

Unit-V: Semi Supervised Learning

Reinforcement Learning

Reinforcement Learning

1. Reinforcement learning is all about learning from the

 environment through interactions.

2. Finding the optimal policy / optimal value functions is the key for

 solving reinforcement learning problems.

3. Dynamic programming methods are used to find optimal

 policy/optimal value functions using the bellman optimality

 equations.

4. Dynamic programming methods are model based methods, require

 the complete knowledge of environment. such as transition

 probabilities and rewards.

Reinforcement Learning

 There are two types of tasks in RL

1. Prediction : This type of task predicts the expected total

 reward from any given state assuming the

 function π(a|s) is given.

 (in other words) Policy π is given, it calculates the Value

 function V(π) with or without the model.

 ex: Policy evaluation

Reinforcement Learning

There are two types of tasks in RL

2. Control : This type of task finds the policy π(a|s) that maximizes the

expected total reward from any given state.

(in other words) Some Policy π is given , it finds the Optimal policy π*.

 ex: Policy improvement

Policy iteration is the combination of both to find the optimal policy. Just like

in supervised learning , we have regression and classification tasks, in

reinforcement learning, we have prediction and control tasks.

Reinforcement Learning

There are two types of policy learning

1. On policy learning : It learns on the job. which means it evaluates or

improves the policy that is used to make the decisions. It directly learns a

policy which gives you decisions about which action to take in some state.

2.Off policy learning : It evaluates one policy (target policy) while following

another policy (behaviour policy) just like we learn to do something while

observing others doing the same thing.

target policy may be deterministic (ex: greedy) while behaviour policy is

stochastic.

Reinforcement Learning

In RL problems we have two different tasks in nature.

1.Episodic task : A task which can last a finite amount of time is called Episodic

task (an episode)

Ex : Playing a game of chess (win or lose or draw)

we only get the reward at the end of the task or another option is to distribute

the reward evenly across all actions taken in that episode.

Ex: you lost the queen (-10 points), you lost one of the rooks (-5 points) etc..

2. Continuous task : A task which never ends is called Continuous task

Ex: Trading in the crypto currency markets or learning Machine learning on

internet. in this , rewards may be given with discounting with a discount factor

λ∈[0,1]

Reinforcement Learning

Model Free Methods

In MDP , we are given all the components to solve a problem, but

what if we are not given some of the components ???

what if we are not given the transition probabilities and rewards

for a RL problem?? That means we are not given the dynamics of

the environment.

can we solve the problem?? , if so How???

This type of learning is called model free learning

Reinforcement Learning

In Model-free , we just focus on figuring out the value functions

directly from the interactions with the environment

How to figure out V for unknown MDP (assume we get the

policy)??

There are few approaches for solving these kind of problems

1.Monte Carlo approach

2.Temporal-Difference approach

Reinforcement Learning

Monte Carlo Policy Evaluation

The goal here, again, is to learn the value function vpi(s) from episodes of experience under a policy pi. Recall

that the return is the total discounted reward:

S1, A1, R2, ….Sk ~ pi

Also recall that the value function is the expected return:

We know that we can estimate any expected value simply by adding up samples
and dividing by the total number of samples:

i – Episode index
s – Index of state

Reinforcement Learning

First Visit Monte Carlo: Average returns only for first time s is
visited in an episode.

Here’s a step-by-step view of how the algorithm works:

1.Initialize the policy, state-value function

2.Start by generating an episode according to the current policy

2.1Keep track of the states encountered through that episode

3.Select a state in 2.1

3.1Add to a list the return received after first occurrence of
this state

3.2Average over all returns

3.3Set the value of the state as that computed average

4.Repeat step 3

5.Repeat 2-4 until satisfied

Reinforcement Learning

Every visit Monte Carlo: Average returns for every time s is visited in an episode.

For this algorithm, we just change step #3.1 to ‘Add to a list the return received
after every occurrence of this state’.

Let’s consider a simple example to further understand this concept. Suppose
there’s an environment where we have 2 states – A and B. Let’s say we
observed 2 sample episodes:

A+3 => A indicates a transition from state A to state A, with a reward +3. Let’s find out
the value function using both methods:

Reinforcement Learning

Solution:

First Visit
Episode 1: start with state A:-> 3+2-4+4-3=2
Episode 2: start with state A:->3-3=0
V(A)=(2+0)/2= 1

Episode 1: start with state B:->-4+4-3=-3
Episode 2: start with state B:-> -2+3-3=-2
V(B)=(-3-2)/2= -5/2

Reinforcement Learning

Every Visit

Episode 1: First Occurrence of A->3+2-4+4-3=2
 Second Occurrence of A->2-4+4-3=-1
 Third Occurrence of A->4-3=1
Episode 2: First Occurrence of A->3-3=0
So V(A)=(2-1+1+0)//4= 1/2

Episode 1: First Occurrence of B->-4+4-3=-3
 Second Occurrence of B-> -3
Episode 2: First Occurrence of B->-2+3-3=-2
 Second Occurrence of B-> -3
So V(B)=(-3-3-2-3)//4= -11/4

Q-Learning

• Q-learning is an off policy reinforcement
learning algorithm that seeks to find the best
action to take given the current state.

• It’s considered off-policy because the q-
learning function learns from actions that are
outside the current policy, like taking random
actions, and therefore a policy isn’t needed.

• More specifically, q-learning seeks to learn a
policy that maximizes the total reward.

• What’s ‘Q’?

• The ‘q’ in q-learning stands for quality. Quality
in this case represents how useful a given
action is in gaining some future reward.

• Q-learning is a model-free reinforcement
learning algorithm to learn a policy telling an
agent what action to take under what
circumstances.

https://en.wikipedia.org/wiki/Model-free_(reinforcement_learning)
https://en.wikipedia.org/wiki/Model-free_(reinforcement_learning)
https://en.wikipedia.org/wiki/Model-free_(reinforcement_learning)
https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Reinforcement_learning

• For any finite Markov decision process (FMDP), Q-
learning finds an optimal policy in the sense
maximizing the expected value of the total reward over
any and all successive steps, starting from the current
state.

• Q-learning can identify an optimal action-selection
policy for any given FMDP, given infinite exploration
time and a partly-random policy.

• "Q" names the function that returns the reward used
to provide the reinforcement and can be said to stand
for the "quality" of an action taken in a given state.

https://en.wikipedia.org/wiki/Markov_decision_process
https://en.wikipedia.org/wiki/Markov_decision_process
https://en.wikipedia.org/wiki/Markov_decision_process
https://en.wikipedia.org/wiki/Markov_decision_process
https://en.wikipedia.org/wiki/Markov_decision_process

Example: Q-Learning

• The terminology in Q-Learning includes the
terms "state" and "action".

• We'll call each room, including outside,

--------------------------- "state",

• and the agent's movement from one room to
another will be an--- "action". In our
diagram, a "state" is depicted as a node, while
"action" is represented by the arrows.

• Suppose the agent is in state 2. From state 2, it can go to
state 3 because state 2 is connected to 3. From state 2,
however, the agent cannot directly go to state 1 because
there is no direct door connecting room 1 and 2 (thus, no
arrows).

• From state 3, it can go either to state 1 or 4 or back to 2
(look at all the arrows about state 3). If the agent is in state
4, then the three possible actions are to go to state 0, 5 or
3. If the agent is in state 1, it can go either to state 5 or
3. From state 0, it can only go back to state 4.

• We can put the state diagram and the instant reward values
into the following reward table, "matrix R".

The -1's in the table represent null values (i.e.; where there isn't a link

between nodes). For example, State 0 cannot go to State 1.

• Now we'll add a similar matrix, "Q", to the brain
of our agent, representing the memory of what
the agent has learned through experience. The
rows of matrix Q represent the current state of
the agent, and the columns represent the
possible actions leading to the next state (the
links between the nodes).

• The agent starts out knowing nothing, the matrix
Q is initialized to zero.

The transition rule of Q learning is a very simple formula:

Q(state, action) = R(state, action) + Gamma *
Max[Q(next state, all actions)]

According to this formula, a value assigned to a specific
element of matrix Q, is equal to the sum of the
corresponding value in matrix R and the learning
parameter Gamma, multiplied by the maximum value of
Q for all possible actions in the next state.

• Episode:

• The agent will explore from state to state until
it reaches the goal. We'll call each exploration
an episode.

• Each episode consists of the agent moving
from the initial state to the goal state. Each
time the agent arrives at the goal state, the
program goes to the next episode.

Q-Learning ALgorithm

The Q-Learning algorithm goes as follows:
1. Set the gamma parameter, and environment rewards in matrix R.
2. Initialize matrix Q to zero.
3. For each episode:
Select a random initial state.
Do While the goal state hasn't been reached.
•Select one among all possible actions for the current state.
•Using this possible action, consider going to the next state.
•Get maximum Q value for this next state based on all possible actions.
•Compute: Q(state, action) = R(state, action) + Gamma * Max[Q(next state,
all actions)]
•Set the next state as the current state.
End Do
End For

• The algorithm above is used by the agent to learn
from experience. Each episode is equivalent to
one training session.

• In each training session, the agent explores the
environment (represented by matrix R), receives
the reward (if any) until it reaches the goal state.

• The purpose of the training is to enhance the
'brain' of our agent, represented by matrix
Q. More training results in a more optimized
matrix Q.

• The Gamma parameter has a range of 0 to 1 (0 <=
Gamma > 1).

• If Gamma is closer to zero, the agent will tend to
consider only immediate rewards. If Gamma is closer
to one, the agent will consider future rewards with
greater weight, willing to delay the reward.

• To use the matrix Q, the agent simply traces the
sequence of states, from the initial state to goal
state. The algorithm finds the actions with the highest
reward values recorded in matrix Q for current state:

Algorithm to utilize the Q matrix:

1. Set current state = initial state.

2. From current state, find the action with the highest Q value.

3. Set current state = next state.

4. Repeat Steps 2 and 3 until current state = goal state.

The algorithm above will return the sequence of states from the initial

state to the goal state.

• To understand how the Q-learning algorithm
works, we'll go through a few episodes step by
step. The rest of the steps are illustrated in the
source code examples.

• We'll start by setting the value of the learning
parameter Gamma = 0.8, and the initial state as
Room 1.

• Initialize matrix Q as a zero matrix:

Look at the second row

(state 1) of matrix R. There

are two possible actions for

the current state 1: go to

state 3, or go to state 5. By

random selection, we select

to go to 5 as our action.

Q(state, action) = R(state, action) + Gamma * Max[Q(next state, all actions)]
Q(1, 5) = R(1, 5) + 0.8 * Max[Q(5, 1), Q(5, 4), Q(5, 5)] = 100 + 0.8 * 0 = 100

Since matrix Q is still initialized to zero, Q(5, 1), Q(5, 4), Q(5, 5), are all zero.
The result of this computation for Q(1, 5) is 100 because of the instant reward from
R(5, 1).
The next state, 5, now becomes the current state. Because 5 is the goal state,
we've finished one episode.

For the next episode, we start with a randomly chosen initial state. This time, we
have state 3 as our initial state.
Look at the fourth row of matrix R; it has 3 possible actions: go to state 1, 2 or 4. By
random selection, we select to go to state 1 as our action.
Then, we compute the Q value:
Q(state, action) = R(state, action) + Gamma * Max[Q(next state, all actions)]
Q(3,1) = R(3,1) + 0.8 * Max[Q(1, 3), Q(1, 5)] = 0 + 0.8 * Max(0, 100) = 80
We use the updated matrix Q from the last episode. Q(1, 3) = 0 and Q(1, 5) =
100. The result of the computation is Q(3, 1) = 80 because the reward is zero. The
matrix Q becomes:

• The next state, 1, now becomes the current
state. We repeat the inner loop of the Q
learning algorithm because state 1 is not the
goal state.

• So, starting the new loop with the current
state 1, there are two possible actions: go to
state 3, or go to state 5. By lucky draw, our
action selected is 5.

Now, imaging we're in state 5, there are three possible actions: go to state 1, 4 or
5.
We compute the Q value using the maximum value of these possible actions.
Q(state, action) = R(state, action) + Gamma * Max[Q(next state, all actions)]
Q(1, 5) = R(1, 5) + 0.8 * Max[Q(5, 1), Q(5, 4), Q(5, 5)] = 100 + 0.8 * 0 = 100

The updated entries of matrix Q, Q(5, 1), Q(5, 4), Q(5, 5), are all zero. The result
of this computation for Q(1, 5) is 100 because of the instant reward from R(5,
1). This result does not change the Q matrix.
Because 5 is the goal state, we finish this episode. Our agent's brain now contain
updated matrix Q as:

• If our agent learns more through further
episodes, it will finally reach convergence
values in matrix Q like:

• Once the matrix Q gets close enough to a
state of convergence, we know our agent has
learned the most optimal paths to the goal
state. Tracing the best sequences of states is
as simple as following the links with the
highest values at each state.

For example, from initial State 2, the agent can use the matrix Q as a
guide:
From State 2 the maximum Q values suggests the action to go to
state 3.
From State 3 the maximum Q values suggest two
alternatives: go to state 1 or 4. Suppose we arbitrarily choose to go
to 1.
From State 1 the maximum Q values suggests the action to go to
state 5.
Thus the sequence is 2 - 3 - 1 - 5.

TD-learning

 Temporal difference (TD) learning is an approach to learning how

to predict a quantity that depends on future values of a given

signal.

TD-learning

 The name TD derives from its use of changes, or differences, in

predictions over successive time steps to drive the learning

process.

TD-learning

 Temporal difference (TD) learning, is a model-free learning

algorithm.

TD-learning

It has two important properties:

1. It doesn’t require the model dynamics to be

 known in advance.

2. It can be applied for non-episodic tasks as well.

Bootstrapping:

 Temporal difference learning approximates the current

estimate based on the previously learned estimate. This

approach is called bootstrapping.

TD-learning

• TD update rule for updating the value of a state:

value of a previous state = value of previous state + learning_rate * (reward +
discount_factor(value of current state) — value of previous state)

TD-learning

TD Prediction Algorithm

 To update the values of all states using the TD update rule.

TD Prediction Algorithm

Step:

1. First, initialize V(S) to 0 or some arbitrary value.

TD Prediction Algorithm

Step:

2. Begin the episode. For every step in the episode,

 perform an action A in the state S and receive a reward

R and move to the next state (s’).

TD Prediction Algorithm

Step:

3. Update the value of the previous state using the TD

 update rule.

TD Prediction Algorithm

Step:

3. Update the value of the previous state using the TD

 update rule.

TD Prediction Algorithm

Step:

4. Repeat steps 2 and 3 until we reach the terminal state.

TD Prediction Algorithm: Example

State: A, B & C Action: Right, Left

A B C

Step-I

Value Table

State Value

A 0

B 0

C 0

Step-II

• Say we are in a starting state (s) (A) and we take an action right
and move to the next state (s’) (B) and receive a reward (R) as
0.5.

• Update the value of state(A) using this information:

Step-II

• Let us consider the learning rate (α) as 0.1

• and the discount factor (gamma) as 0.5;

• We know that the value of the state (A), as in V(s), is 0

• and the value of the next state (B), as in V(s’), is also 0.

Step-III

• Update the value of the previous state using the TD update rule.

Step-III

• V(s) = V(A) = 0 + 0.1 [0.5 + 0.5 (0)-0]

• V(A) = 0.05

Step-III

State Value

A 0.05

B 0

C 0

So, we update the value for the state (A) as 0.05 in the value table, as shown
in the following Table:

Step-II

• Now that we are in the state (s) as (B), we take an action right and

move to the next state (s’) (C) and receive a reward (R) as -0.3

• Now find updated value of state (B)?

Step-III

• Update the value of the previous state using the TD update rule.

Step-III

We will substitute the values in the TD update equation:

 So V(B) = 0 + 0.1 [-0.3 + 0.5(0)-0]

V(B) = -0.03

update the value of state (B) as -0.03 in the value table:

Step-III

State Value

A 0.05

B -0.03

C 0

So, we update the value for the state (B) as -0.03 in the value table, as shown
in the following Table:

Step-II

• We are now in the state (s) (C).

• Let’s take an action left.

• We again go back to that state (s’) (B) and receive a reward
(R) as -0.2.

• Here, the value of the state (C) is 0 and the value of the next
state (B) is -0.03 in the value table.

Step-III

Now find updated value of state (C) ?

So V(s) = V(C) = 0 +0.1 [-0.2 + 0.5 (-0.03)-0)]

V(C) = 0.1[-0.215]

V(C) = -0.0215

Update the value of state (C) as –0.0215 in the value table:

Step-III

State Value

A 0.05

B -0.03

C -0.0215

So, we update the value for the state (C) as -0.0215 in the value table, as
shown in the following Table:

TD Prediction Algorithm

Step:

4. Repeat steps 2 and 3 until we reach the terminal state.

TD Prediction Algorithm

THANK YOU

