
1

Unit 4

Distributed Shared Memory

4.1 Distributed Shared Memory

4.1.1 Introduction

4.2 Non-Uniform Memory Access Architectures

4.3 Memory Consistency Models

5 Multiprocessor Cache Systems

6 Distributed Shared Memory

7 Implementation of DSM systems

8 Models of Distributed Computation

9 Failures in a Distributed System

10 Distributed Mutual Exclusion

11 Election algorithm and distributed processing

12 Distributed Deadlock handling

13 Distributed termination detection

4.1 Distributed Shared Memory

4.1.1 Introduction

 Distributed Shared Memory (DSM) is a resource management component of a distributed

operating system that implements the shared memory model in distributed systems, which have

no physically shared memory. The shared memory model provides a virtual address space that

is shared among all computers in a distributed system. An example of this layout can be seen in

the following diagram taken from Advanced Concepts in Operating Systems.

Motivation

In DSM, data is accessed from a shared address space similar to the way that virutal memory

 is accessed. Data moves between secondary and main memory, as well as, between the

distributed main memories of different nodes. Ownership of pages in memory starts out in

some pre-defined state but changes during the course of normal operation. Ownership changes

2

 take place when data moves from one node to another due to an access by a particular process.

Distributed Shared Memory Abstractions

1. communicate with Read/Write ops in shared virtual space

2. No Send and Receive primitives to be used by application I

- Under covers, Send and Receive used by DSM manager

3. Locking is too restrictive; need concurrent access

4. With replica management, problem of consistency arises!

5. =⇒ weaker consistency models (weaker than von Neumann) reqd

Advantages/Disadvantages of DSM

Advantages:

1. Shields programmer from Send/Receive primitives

2. Single address space; simpli_es passing-by-reference and passing complex data structures

3. Exploit locality-of-reference when a block is moved

4. DSM uses simpler software interfaces, and cheaper o_-the-shelf hardware. Hence cheaper than

dedicated multiprocessor systems

5. No memory access bottleneck, as no single bus Large virtual memory space

6. DSM programs portable as they use common DSM programming interface

7. Hide data movement and provide a simpler abstraction for sharing data. Programmers don't need to

worry about memory transfers between machines like when using the message passing model.

8. Allows the passing of complex structures by reference, simplifying algorithm development for

distributed applications.

9. Takes advantage of "locality of reference" by moving the entire page containing the data referenced

rather than just the piece of data.

10. Cheaper to build than multiprocessor systems. Ideas can be implemented using normal hardware and

do not require anything complex to connect the shared memory to the processors.

11. Larger memory sizes are available to programs, by combining all physical memory of all nodes.

This large memory will not incur disk latency due to swapping like in traditional distributed

systems.

12. Unlimited number of nodes can be used. Unlike multiprocessor systems where main memory is

accessed via a common bus, thus limiting the size of the multiprocessor system.

13. Programs written for shared memory multiprocessors can be run on DSM systems,

3

Advantages/Disadvantages of DSM

Disadvantages:

1. Programmers need to understand consistency models, to write correct programs

2. DSM implementations use async message-passing, and hence cannot be more e_cient than msg-

passing implementations

3. By yielding control to DSM manager software, programmers cannot use their own msg-passing

solutions.

4.1.2 Organization

 Fault Handlers

 A fault handler is a proccess or potrion of a process that sits and waits for memory faults.

 When there is a memory access that it cannot deal with locally, the fault handler will make a

request to a server on some other machine in the DSM environment. It is in charge of making

sure an application or program is given the memory pages it needs without knowing what is

going on underneath and where the page is actually coming from.

 Servers

 The servers from the above diagram actually service the fault handlers requests. They know

 which machines own the memory page that is being accessed and can fetch the page and

 deliver it to the asking process.

 Example Code of Distributed Shared Memory Servers

Monitor Central Manager

4

Read Processes

Write Processes

4.2 Non-Uniform Memory Access Architectures

4.2.1 Introduction

5

 Non-uniform memory access (NUMA) is a kind of memory architecture that allows

 a processor faster access to contents of memory than other traditional techniques.

 In other words, in a NUMA architecture, a processor can access local memory much faster

 than non-local memory. This is because in a NUMA setup, each processor is assigned a specific local

memory exclusively for its own use. This eliminates sharing of non-local memory, reducing delays

when multiple requests come in for access to the same memory location.

Difference between Uniform Memory Access (UMA) and Non-uniform Memory Access

(NUMA)

Multiprocessors can be categorized into three shared-memory model which are:

1. Uniform Memory Access (UMA)

2. Non-uniform Memory Access (NUMA)

3. Cache-only Memory Access (COMA)

Uniform Memory Access (UMA):

In UMA, where Single memory controller is used. Uniform Memory Access is slower than non-

uniform Memory Access. In Uniform Memory Access, bandwidth is restricted or limited rather than

non-uniform memory access. There are 3 types of buses used in uniform Memory Access which are:

Single, Multiple and Crossbar. It is applicable for general purpose applications and time-sharing

applications.

https://www.geeksforgeeks.org/computer-architecture-multiprocessor-and-multicomputer/

6

Non-uniform Memory Access (NUMA):

In NUMA, where different memory controller is used. Non-uniform Memory Access is faster than

uniform Memory Access. Non-uniform Memory Access is applicable for real-time applications and

time-critical applications.

Let’s see the difference between UMA and NUMA:

S.NO UMA NUMA

1.

UMA stands for Uniform Memory

Access.

NUMA stands for Non-uniform

Memory Access.

2.

In Uniform Memory Access, Single

memory controller is used.

In Non-uniform Memory Access,

Different memory controller is used.

3.

Uniform Memory Access is slower

than non-uniform Memory Access.

Non-uniform Memory Access is

faster than uniform Memory Access.

4.

Uniform Memory Access has

limited bandwidth.

Non-uniform Memory Access has

more bandwidth than uniform

Memory Access.

5. Uniform Memory Access is Non-uniform Memory Access is

7

applicable for general purpose

applications and time-sharing

applications.

applicable for real-time applications

and time-critical applications.

6.

In uniform Memory Access,

memory access time is balanced or

equal.

In non-uniform Memory Access,

memory access time is not equal.

7.

There are 3 types of buses used in

uniform Memory Access which are:

Single, Multiple and Crossbar.

While in non-uniform Memory

Access, There are 2 types of buses

used which are: Tree and

hierarchical.

8

buses, interconnection network, or communication network

Nonuniform Memory Access (NUMA) architectures Generic

NUMA architecture

.

memory coherence

controller

memory

processor

memory coherence

controller

memory

processor

9

Multiprocessor Cache and DSM architectures

Global Memory

Common Bus

Local Caches

Processors

(a) Multiprocessor cache architecture

Virtual Memory Space

Communicati

on Network

Local

Memor

y

Processors

1
0

 Distributed shared memory architecture

Common issues

Data consistency and coherency due to data placement, migration and

repli- cation

• Data Sharing Granularity

• Cache Miss Granularity

• Tradeoffs:

– Transfer time

– Administrative overhead

– Hit rate

– Replacement rate

– False Sharing

What to do on cache

miss?

• Locating block - owner/directory

• Block Migration - block bouncing

• Block Replication

• Push vs. Pull

1
1

4.3 Memory consistency models

These models apply consistency constraints to all memory

accesses Accesses may require multiple messages and take

significant time

Atomic consistency

All processors see same (global)

order Respects real-time order

1
2

Sequential consistency

All processors see same (global) order and

order respects all internal orders (not nec. real time)

P1 : W (X)1

P2 : W (Y)2

P3 : R(Y)2 R(X)0 R(X)1

A2 A1 A3

"Global Time"

P1

P2

Atomic Consistency − global total order respecting access intervals

Access 2

Access 3 Access 1

1
3

A2 A3 A4 A1 A5

"Global Order"

Sequential Consistency − global total order (not nec. respecting access intervals)

Causal consistency

Processors may see different order

all orders respect causal order (internal and r-w)

P1 : W (X)1 W (X)3

P2 : R(X)1 W (X)2

P3 : R(X)1 R(X)3 R(X)2
P4 : R(X)1 R(X)2 R(X)3

P4

P1

"P1’s

View"

causal link that must be respected in any order

A1 A5

R(X)1 R(X)0 R(Y)2

W(Y) 2

W(X) 1

A10 R(X)3 A9: R(X)2 A4: R(X)1

1
4

"P2’s View"

"P3’s View"

"P4’s View"

Causal Consistency − no global total order; causal partial

order only Each processor’s order respects internal order

and Write−Read causality

4.3.1 Processor consistency

Writes from same processor are in order

Writes from different processors not constrained

P1 : W (X)1

P2 : R(X)1 W (X)2

P3 : R(X)1 R(X)2
P4 : R(X)2 R(X)1

causal link that need not be respected internal link that is respected

"P1’s View"

"P2’s View"

"P3’s View"

"P4’s View"

Processor Consistency − no global total order; partial order on writes by same

processor Each processor’s order respects internal order and order of writes by

same processor

A1 A2 A6

A1 A4 A6 A9 A5 A10

A1 A3 A5 A7 A6 A8

A1 A6 A3 A7

A3 A4 A1 A5

A1

A1 A2 A3

1
5

Slow memory consistency

Writes from same processor to same location are in order

Writes from different processors or locations not

constrained

P1 : W (X)1 W (X)2 W (Y)3

P2 : R(Y)3 R(X)1 R(X)2

P1

P2

causal link that need not be respected causal link that must be respected

"P1’s View"

"P2’s View"

Slow Memory Consistency − no global total order, no constraints across memory locations

Each processor’s order respects its internal order and order of writes to same memory by same

processor

A1 A2 A3

A3 A4 A1 A5 A2 A6

A1: W(X)1

A3: W(X)2

A3: W(Y)3

A4: R(Y)3

A5: R(X)1

A6: R(X)2

1
6

 4.3.2 Synchronization Access Consistency Models

Accesses to synchronization variables distinguished from accesses to

ordinary shared variables

Weak consistency

• Accesses to synchronization variables are sequentially consistent

• No access to a synchronization variable is issued by a processor
before all previous read/write data accesses have been performed

(i.e., synch waits until all ongoing accesses complete)

• No read/write data access is issued by a processor before a previous

access to a synchronization variable has been performed

(i.e., all new accesses must wait until synch is performed)

• in effect, system “settles” at synch.

Release consistency

The synchronization access (synch(S)) in the weak consistency model

can be refined as a pair of acquire(S) and release(S) accesses. Shared

variables in the critical section are made consistent when the release

operation is per- formed.

(i.e., S “locks” access to shared variables it protects, and release is not

com- pleted until all accesses to them are also completed).

Entry consistency

acquire and release are applied to general variables.

Each variable has an implicit synchronization variable that may be

acquired to prevent concurrent access to it.

10

delay

til

previou

s done

delay

future

accesses

= time at which shared vars

consistent

delay

til

previou

s done

issued

performed

delay

future

accesses

(a)

Weak

consistency like

barrier sync

delay

til

previou

s done

(b) Release

consistency

Processor

consistency

delay

til

previou

s done

issued

performed

(c) Entry

consistency

Consistency w.r.t.

but local to process −

only sync when

necessary

w.r.t. S

All vars in DSM

system

memory object X

across all procs

issued

synch(S)

performed

acquire(S)

all accesses

are

exclusive

release(S)

acquire(X)

only accesses

to X are

exclusive

release(X)

11

R(Y) W(Y)

W(Z) W(Z)

Acq(S) R(X) W(Y) Rel(S)

Acq(S) R(Y) W(Y) Rel(S)

Acq(R) W(Z) W(Z) Rel(R)

No synchronization

Weak consistency

Release consistency

Taxonomy

W(Y) R(X)

) Synch(S

W(Y)

W(Z)

R(Y)

R(X)

W(Z)

W(Y)

12

rder Weakening

Processor Relative Weakening

rocessor

Relati

Access Type Weakening

Weakening

ocation Relati

Weakening

 no system coherence support

atomic consistency

Real−time O

sequential consistency

causal consistency

 P

processor consistency

L

slow memory

weak consistency

ve

release consistency

ve

entry consistency

13

4.4 Multiprocessor Cache Systems

Cache directory

master copy E

P bits

P : Number of

processors V : Valid

or invalid

E : Exclusive or

shared-read-

only

V bit for validity (in replicas), E bit for exclusive access (in all)

May also include private (= not shared) bit and/or dirty (= modified) bit.

Cache coherency protocols

write-invalidate and write-

update Write-invalidate

• Read hit

• Read miss: transfer block, set P-, V-, and E-bit.

• Write hit: invalidate cache copies, write and set E-bit

• Write miss: like read miss/write hit

Hardware mechanisms

• Directory-based

• Snooping cache

replicated block V E

replicated block V E

replicated block V E

14

3

replicate

replicate

migrate

migrate

4.5 DSM implementation

Memory management algorithms

exclusive copy

READ :

1 2 4

WRITE :

1 : Central server algorithm

(SRSW)

3 : Read-replication algorithm

(MRSW)

2 : Migration algoritm (SRSW)

4 : Full-replication algorithm (MRMW)

• Read-remote-write-remote: long network delay, trivial consistency

• Read-migrate-write-migrate: thrashing and false sharing

• Read-replicate-write-migrate: write-invalidate

• Read-replicate-write-replicate; full concurrency, atomic update

Considerations:

• Block granularity

• Block transfer communication overhead

• Read/write ratio

• Locality of reference

• Number of nodes and type of interaction

remote

remote

15

probable

owner

probable

owner

Request
2 3

4 ...2n−1

request and change probable owner along way

current

owner

block

probable

owner

block

1

block

block

 4.5.1 Distributed implementation of Directory

Locating Block Owner:

Previous Owners Current Owner

Maintaining Copy List:

From To’s

From To’s

From To’s

From Nil

From Nil

(a) Spanning tree representation of copy set

Head Master

Node

invalidate or

update

End Node

16

append

(b) Linked list representation of copy set

request forwarded request

acknowledgement
requestor

Nil master next master next master next master

17

4.6 Models of Distributed Computation

4.6.1 Software Layers

First, consider the software architecture of the components of a distributed system.

18

The lower two layers comprise the platform, such as Intel x86/Windows or PowerPC/MacOS X,

that provides OS-level services to the upper layers.

The middleware sits between the platform and the application and its purpose is to mask

heterogeneity and provide a consistent programming model for application developers. Some of

the abstractions provided by middleware include the following:

 Remote method invocation

 Group communication

 Event notification

 Object replication

 Real-time data transmission

Examples of middleware include the following:

 Java RMI

 CORBA

 DCOM

Atop the middleware layer sits the application layer. The application layer provides application-

specific functionality. Depending on the application, it may or may not make sense to take

advantage of existing middleware.

4.6.2 System Architectures

The application layer defines the functional role of each component in a distributed system, and

each component may have a different functional role. There are several common architectures

employed by distributed systems. The choice of architecture can impact the design

considerations described below:

19

 Responsiveness - how quickly does the system respond to requests?

 Throughput - how many requests can the system handle (per second, for example)?

 Load Distribution - are requests distributed evenly among components of the system?

 Fault Tolerance - can the system continue to handle requests in the face of a failed

component?

 Security - does the system ensure that sensitive resources are guarded against attack?

Common architectures for distributed systems are as follows:

Client-Server

The client-server model is probably the most popular paradigm. The server is responsible for

accepting, processing, and replying to requests. It is the producer. The client is purely the

consumer. It requests the services of the server and accepts the results.

The basic web follows the client-server model. Your browser is the client. It requests web pages

from a server (e.g., google.com), waits for results, and displays them for the user.

In some cases, a web server may also act as a client. For example, it may act as a client of DNS

or may request other web pages.

Multiple Servers

In reality, a web site is rarely supported with only one server. Such an implementation would not

be scalable or reliable. Instead, web sites such as Google or CNN are hosted on many (many

many) machines. Services are either replicated, which means that each machine can perform the

same task, or partitioned, which means that some machines perform one set of tasks and some

machines perform another set of tasks. For example, a site like CNN might serve images from

one set of machines and HTML from another set of machines.

Proxies and Caches

To reduce latency, load on the origin server, and bandwidth usage, proxies and caches are also

used to deliver content. An end host (your browser) may cache content. In this case, when you

first request content, your browser stores a copy on your local machine. Subsequent requests for

the same content can be fulfilled by using the cache rather than requesting the content from the

origin server.

An organization, like USF, may also deploy a proxy server that can cache content and deliver it

to any client within the organization. Again, this reduces latency, and it also reduces bandwidth

usage. Suppose that several hundred USF students download the same YouTube video. If a

proxy server caches the video after the first student's request, subsequent requests can be

satisfied by using the cached content, thereby reducing the number of external requests by

several hundred.

20

CDNs, like Akamai, also fall into this category. However, CDNs work a bit differently than

traditional proxy servers. CDNs actively replicate content throughout the network in a push-

based fashion. When a customer (e.g., CNN) updates its content, the new content is replicated

throughout the network. In contrast, a proxy server will cache new content when it is requested

by the first client.

4.6.3 P2P

The peer-to-peer model assumes that each entity in the network has equivalent functionality. In

essence, it can play the role of a client or a server. Ideally, this reduces bottlenecks and enables

each entity to contribute resources to the system. Unfortunately, it doesn't always work that way.

One of the early papers on peer-to-peer systems was Free Riding on Gnutella, a paper that

demonstrated that peers often free ride by taking resources (downloading files, in this case) and

never contributing resources (uploading files).

In addition, enabling communication in such a system is challenging. First, peers must locate

other peers in order to participate in the system. This is rarely done in a truly distributed or peer-

to-peer fashion. For example, Napster, often cited (controversially) as the first real example of

peer-to-peer computing, used a centralized mechanism for joining the network and searching for

content. Searching for content or other resources is the second big challenging in implementing

peer-to-peer systems. It can be very inefficient to locate resources in a peer-to-peer system and a

hybrid, or partially centralized, solution is often employed.

Hierarchical or superpeer systems, like Skype, are also widely used. In these systems, peers are

organized in a tree-like structure. Typically, more capable peers are elected to become

superpeers (or supernodes). Superpeers act on behalf of downstream peers and can reduce

communication overhead.

Mobile Code/Agents

The previous models assume that the client/server/peer entities exchange data. The mobile code

model assumes that components may exchange code. An example of this is Java Applets. When

your browser downloads and applet, it downloads some Java code that it then runs locally. The

big issue with this model is that it introduces security risks. No less a security threat are mobile

agents -- processes that can move from machine to machine.

Network Computers/Thin Clients

The network computer model assumes that the end user machine is a low-end computer that

maintains a minimal OS. When it boots, it retrieves the OS and files/applications from a central

server and runs applications locally. The thin client model is similar, though assumes that the

process runs remotely and the client machine simply displays results (e.g., X-windows and

VNC).

This model has been around for quite some time, but has recently received much attention.

Google and Amazon are both promoting "cloud computing". Sun's Sun Ray technology also

http://www.firstmonday.org/issues/issue5_10/adar/

21

makes for an interesting demonstration. Though this model has yet to see success, it is beginning

to look more promising.

Mobile Devices

There is an increasing need to develop distributed systems that can run atop devices such as cell

phones, cameras, and MP3 players. Unlike traditional distributed computing entities, which

communicate over the Internet or standard local area networks, these devices often communicate

via wireless technologies such as Bluetooth or other low bandwidth and/or short range

mechanisms. As a result, the geographic location of the devices impacts system design.

Moreover, mobile systems must take care to consider the battery constraints of the participating

devices. System design for mobile ad hoc networks (MANETs), sensor networks, and

delay/disruption tolerant networks (DTNs) is a very active area of research.

4.6.4 Fundamental Models

Or, understanding the characteristics that impact distributed system performance and operation.

Interaction

Fundamentally, distributed systems are comprised of entities that communicate and coordinate

by passing messages. The following characteristics of communication channels impact the

performance of the system:

 Latency - the time between the sending of a message at the source and the receipt of the

message at the destination.

 Bandwidth - the total amount of information that can be transmitted over a given time

period (e.g., Mbits/second).

 Jitter - "the variation int he time taken to deliver a series of messages." (Coulouris et al)

Additionally, coordination of the actions of entities in a distributed system is impacted by the

fact that each entity will have a different clock drift rate. Synchronous distributed systems that

rely on certain actions happening at the same time can only be built if you can guarantee bounds

on system resources and clock drift rates. Most of the systems that we will discuss are

asynchronous; there are no guarantees about the time at which actions will occur.

Generally, it is sufficient to know the order in which events occur. A logical clock is a counter

that allows a system to keep track of when events occur in relation to other events.

Failure

It is important to understand the kinds of failures that may occur in a system.

22

 Failstop: A process halts and remains halted. Other processes can detect that the process

has failed.

 Crash: A process halts and remains halted. Other processes may not be able to detect this

state.

 Omission: A message inserted in an outgoing message buffer never arrives at the other

end's incoming message buffer.

 Send-omission: A process completes a send, but the message is not put in its outgoing

message buffer.

 Receive-omission: A message is put in a process's incoming message buffer, but that

process does not receive it.

 Arbitrary (Byzantine): Process/channel exhibits arbitrary behavior: it may send/transmit

arbitrary messages at arbitrary times, commit missions; a process may stop or take an

incorrect step.

 Timing failure: Clock drift exceeds allowable bounds.

Security

There are several potential threats a system designer need be aware of:

 Threats to processes - An attacker may send a request or response using a false identity

(spoofing).

 Threats to communication channels - An attacker may eavesdrop (listen to messages) or

inject new messages into a communication channel. An attacker can also save messages

and replay them later.

 Denial of service - An attacker may overload a server by making excessive requests.

Cryptography and authentication are often used to provide security. Communication entities can

use a shared secret (key) to ensure that they are communicating with one another and to encrypt

their messages so that they cannot be read by attackers.

4.7 Failures in a Distributed System

 4.7.1Types of Failures in Distributed Systems

There are different types of failure across the distributed system and few of them are given in

this section as below

Crash failures: Crash failures are caused across the server of a typical distributed system and if

these failures are occurred operations of the server are halt for some time. Operating system

failures are the best examples for this case and the corresponding fault tolerant systems are

developed with respect to these affects.

Timing failures: Timing failures are caused across the server of a distributed system. The usual

behavior of these timing failures would be like that the server response time towards the client

requests would be more than the expected range. Control flow out of the responses may be

23

caused due to these timing failures and the corresponding clients may give up as they can’t wait

for the required response from the server and thus the server operations are failed due to this.

Omission failures: Omission failures are caused across the server due to lack or reply or response

from the server across the distributed systems. There are different issues raised due to these

omission failures and the key among them are server not listening or a typical buffer overflow

errors across the servers of the distributed systems.

Byzantine failures: Byzantine failures are also know as arbitrary failures and these failures are

caused across the server of the distributed systems. These failures cause the server to behave

arbitrary in nature and the server responds in an arbitrary passion at arbitrary times across the

distributed systems. Output from the server would be inappropriate and there could be chances of

the malicious events and duplicate messages from the server side and the clients get arbitrary and

unwanted duplicate updates from the server due to these failures.

4.8 Mutual exclusion in distributed system

 4.8.1 Introduction

Mutual exclusion is a concurrency control property which is introduced to prevent race

conditions. It is the requirement that a process can not enter its critical section while another

concurrent process is currently present or executing in its critical section i.e only one process is

allowed to execute the critical section at any given instance of time.

Mutual exclusion in single computer system Vs. distributed system:

In single computer system, memory and other resources are shared between different processes.

The status of shared resources and the status of users is easily available in the shared memory so

with the help of shared variable (For example: Semaphores) mutual exclusion problem can be

easily solved.

In Distributed systems, we neither have shared memory nor a common physical clock and

there for we can not solve mutual exclusion problem using shared variables. To eliminate the

mutual exclusion problem in distributed system approach based on message passing is used.

Requirements of Mutual exclusion Algorithm:

 No Deadlock:

Two or more site should not endlessly wait for any message that will never arrive.

 No Starvation:

Every site who wants to execute critical section should get an opportunity to execute it in

finite time. Any site should not wait indefinitely to execute critical section while other site

are repeatedly executing critical section

 Fairness:

Each site should get a fair chance to execute critical section. Any request to execute critical

section must be executed in the order they are made i.e Critical section execution requests

should be executed in the order of their arrival in the system.

 Fault Tolerance:

In case of failure, it should be able to recognize it by itself in order to continue functioning

without any disruption.

https://www.geeksforgeeks.org/semaphores-operating-system/

24

 4.8.2 Solution to distributed mutual exclusion:

As we know shared variables or a local kernel can not be used to implement mutual exclusion in

distributed systems. Message passing is a way to implement mutual exclusion. Below are the

three approaches based on message passing to implement mutual exclusion in distributed

systems:

1. Token Based Algorithm:

 A unique token is shared among all the sites.

 If a site possesses the unique token, it is allowed to enter its critical section

 This approach uses sequence number to order requests for the critical section.

 Each requests for critical section contains a sequence number. This sequence number

is used to distinguish old and current requests.

 This approach insures Mutual exclusion as the token is unique

 Example:

 Suzuki-Kasami’s Broadcast Algorithm

2. Non-token based approach:

 A site communicates with other sites in order to determine which sites should execute

critical section next. This requires exchange of two or more successive round of messages

among sites.

 This approach use timestamps instead of sequence number to order requests for the critical

section.

 When ever a site make request for critical section, it gets a timestamp. Timestamp is also

used to resolve any conflict between critical section requests.

 All algorithm which follows non-token based approach maintains a logical clock. Logical

clocks get updated according to Lamport’s scheme

 Example:

 Lamport's algorithm, Ricart–Agrawala algorithm

4.9 Election algorithm and distributed processing

Distributed Algorithm is a algorithm that runs on a distributed system. Distributed system is a

collection of independent computers that do not share their memory. Each processor has its own

memory and they communicate via communication networks. Communication in networks is

implemented in a process on one machine communicating with a process on other machine.

Many algorithms used in distributed system require a coordinator that performs functions needed

by other processes in the system. Election algorithms are designed to choose a coordinator.

Election Algorithms:

Election algorithms choose a process from group of processors to act as a coordinator. If the

coordinator process crashes due to some reasons, then a new coordinator is elected on other

processor. Election algorithm basically determines where a new copy of coordinator should be

restarted.

Election algorithm assumes that every active process in the system has a unique priority number.

The process with highest priority will be chosen as a new coordinator. Hence, when a

coordinator fails, this algorithm elects that active process which has highest priority

number.Then this number is send to every active process in the distributed system.

We have two election algorithms for two different configurations of distributed system.

25

4.9.1 The Bully Algorithm –

This algorithm applies to system where every process can send a message to every other process

in the system.

Algorithm – Suppose process P sends a message to the coordinator.

1. If coordinator does not respond to it within a time interval T, then it is assumed that

coordinator has failed.

2. Now process P sends election message to every process with high priority number.

3. It waits for responses, if no one responds for time interval T then process P elects itself as a

coordinator.

4. Then it sends a message to all lower priority number processes that it is elected as their

new coordinator.

5. However, if an answer is received within time T from any other process Q,

 (I) Process P again waits for time interval T’ to receive another message from Q that

it has been elected as coordinator.

 (II) If Q doesn’t responds within time interval T’ then it is assumed to have failed and

algorithm is restarted.

2. The Ring Algorithm –

This algorithm applies to systems organized as a ring(logically or physically). In this algorithm

we assume that the link between the process are unidirectional and every process can message to

the process on its right only. Data structure that this algorithm uses is active list, a list that has

priority number of all active processes in the system.

Algorithm –

1. If process P1 detects a coordinator failure, it creates new active list which is empty

initially. It sends election message to its neighbour on right and adds number 1 to its active

list.

2. If process P2 receives message elect from processes on left, it responds in 3 ways:

 (I) If message received does not contain 1 in active list then P1 adds 2 to its active list

and forwards the message.

3. (II) If this is the first election message it has received or sent, P1 creates new active list

with numbers 1 and 2. It then sends election message 1 followed by 2.

4. (III) If Process P1 receives its own election message 1 then active list for P1 now

contains numbers of all the active processes in the system. Now Process P1 detects

highest priority number from list and elects it as the new coordinator.

Distributed Deadlock handling

Deadlock is a state of a database system having two or more transactions, when each transaction

is waiting for a data item that is being locked by some other transaction. A deadlock can be

indicated by a cycle in the wait-for-graph. This is a directed graph in which the vertices denote

transactions and the edges denote waits for data items.

For example, in the following wait-for-graph, transaction T1 is waiting for data item X which is

locked by T3. T3 is waiting for Y which is locked by T2 and T2 is waiting for Z which is

locked by T1. Hence, a waiting cycle is formed, and none of the transactions can proceed

executing.

26

Deadlock Handling in Centralized Systems

There are three classical approaches for deadlock handling, namely −

 Deadlock prevention.

 Deadlock avoidance.

 Deadlock detection and removal.

All of the three approaches can be incorporated in both a centralized and a distributed database

system.

Deadlock Prevention

The deadlock prevention approach does not allow any transaction to acquire locks that will lead

to deadlocks. The convention is that when more than one transactions request for locking the

same data item, only one of them is granted the lock.

One of the most popular deadlock prevention methods is pre-acquisition of all the locks. In this

method, a transaction acquires all the locks before starting to execute and retains the locks for

the entire duration of transaction. If another transaction needs any of the already acquired locks,

it has to wait until all the locks it needs are available. Using this approach, the system is

prevented from being deadlocked since none of the waiting transactions are holding any lock.

Deadlock Avoidance

The deadlock avoidance approach handles deadlocks before they occur. It analyzes the

transactions and the locks to determine whether or not waiting leads to a deadlock.

The method can be briefly stated as follows. Transactions start executing and request data items

that they need to lock. The lock manager checks whether the lock is available. If it is available,

the lock manager allocates the data item and the transaction acquires the lock. However, if the

item is locked by some other transaction in incompatible mode, the lock manager runs an

algorithm to test whether keeping the transaction in waiting state will cause a deadlock or not.

Accordingly, the algorithm decides whether the transaction can wait or one of the transactions

should be aborted.

27

There are two algorithms for this purpose, namely wait-die and wound-wait. Let us assume

that there are two transactions, T1 and T2, where T1 tries to lock a data item which is already

locked by T2. The algorithms are as follows −

 Wait-Die − If T1 is older than T2, T1 is allowed to wait. Otherwise, if T1 is younger

than T2, T1 is aborted and later restarted.

 Wound-Wait − If T1 is older than T2, T2 is aborted and later restarted. Otherwise, if T1

is younger than T2, T1 is allowed to wait.

Deadlock Detection and Removal

The deadlock detection and removal approach runs a deadlock detection algorithm periodically

and removes deadlock in case there is one. It does not check for deadlock when a transaction

places a request for a lock. When a transaction requests a lock, the lock manager checks

whether it is available. If it is available, the transaction is allowed to lock the data item;

otherwise the transaction is allowed to wait.

Since there are no precautions while granting lock requests, some of the transactions may be

deadlocked. To detect deadlocks, the lock manager periodically checks if the wait-forgraph has

cycles. If the system is deadlocked, the lock manager chooses a victim transaction from each

cycle. The victim is aborted and rolled back; and then restarted later. Some of the methods used

for victim selection are −

 Choose the youngest transaction.

 Choose the transaction with fewest data items.

 Choose the transaction that has performed least number of updates.

 Choose the transaction having least restart overhead.

 Choose the transaction which is common to two or more cycles.

This approach is primarily suited for systems having transactions low and where fast response

to lock requests is needed.

Deadlock Handling in Distributed Systems

Transaction processing in a distributed database system is also distributed, i.e. the same

transaction may be processing at more than one site. The two main deadlock handling concerns

in a distributed database system that are not present in a centralized system are transaction

location and transaction control. Once these concerns are addressed, deadlocks are handled

through any of deadlock prevention, deadlock avoidance or deadlock detection and removal.

Transaction Location

Transactions in a distributed database system are processed in multiple sites and use data items

in multiple sites. The amount of data processing is not uniformly distributed among these sites.

The time period of processing also varies. Thus the same transaction may be active at some sites

and inactive at others. When two conflicting transactions are located in a site, it may happen

28

that one of them is in inactive state. This condition does not arise in a centralized system. This

concern is called transaction location issue.

This concern may be addressed by Daisy Chain model. In this model, a transaction carries

certain details when it moves from one site to another. Some of the details are the list of tables

required, the list of sites required, the list of visited tables and sites, the list of tables and sites

that are yet to be visited and the list of acquired locks with types. After a transaction terminates

by either commit or abort, the information should be sent to all the concerned sites.

Transaction Control

Transaction control is concerned with designating and controlling the sites required for

processing a transaction in a distributed database system. There are many options regarding the

choice of where to process the transaction and how to designate the center of control, like −

 One server may be selected as the center of control.

 The center of control may travel from one server to another.

 The responsibility of controlling may be shared by a number of servers.

Distributed Deadlock Prevention

Just like in centralized deadlock prevention, in distributed deadlock prevention approach, a

transaction should acquire all the locks before starting to execute. This prevents deadlocks.

The site where the transaction enters is designated as the controlling site. The controlling site

sends messages to the sites where the data items are located to lock the items. Then it waits for

confirmation. When all the sites have confirmed that they have locked the data items,

transaction starts. If any site or communication link fails, the transaction has to wait until they

have been repaired.

Though the implementation is simple, this approach has some drawbacks −

 Pre-acquisition of locks requires a long time for communication delays. This increases

the time required for transaction.

 In case of site or link failure, a transaction has to wait for a long time so that the sites

recover. Meanwhile, in the running sites, the items are locked. This may prevent other

transactions from executing.

 If the controlling site fails, it cannot communicate with the other sites. These sites

continue to keep the locked data items in their locked state, thus resulting in blocking.

Distributed Deadlock Avoidance

As in centralized system, distributed deadlock avoidance handles deadlock prior to occurrence.

Additionally, in distributed systems, transaction location and transaction control issues needs to

be addressed. Due to the distributed nature of the transaction, the following conflicts may occur

−

29

 Conflict between two transactions in the same site.

 Conflict between two transactions in different sites.

In case of conflict, one of the transactions may be aborted or allowed to wait as per distributed

wait-die or distributed wound-wait algorithms.

Let us assume that there are two transactions, T1 and T2. T1 arrives at Site P and tries to lock a

data item which is already locked by T2 at that site. Hence, there is a conflict at Site P. The

algorithms are as follows −

 Distributed Wound-Die

o If T1 is older than T2, T1 is allowed to wait. T1 can resume execution after Site P

receives a message that T2 has either committed or aborted successfully at all

sites.

o If T1 is younger than T2, T1 is aborted. The concurrency control at Site P sends a

message to all sites where T1 has visited to abort T1. The controlling site notifies

the user when T1 has been successfully aborted in all the sites.

 Distributed Wait-Wait

o If T1 is older than T2, T2 needs to be aborted. If T2 is active at Site P, Site P

aborts and rolls back T2 and then broadcasts this message to other relevant sites.

If T2 has left Site P but is active at Site Q, Site P broadcasts that T2 has been

aborted; Site L then aborts and rolls back T2 and sends this message to all sites.

o If T1 is younger than T1, T1 is allowed to wait. T1 can resume execution after

Site P receives a message that T2 has completed processing.

Distributed Deadlock Detection

Just like centralized deadlock detection approach, deadlocks are allowed to occur and are

removed if detected. The system does not perform any checks when a transaction places a lock

request. For implementation, global wait-for-graphs are created. Existence of a cycle in the

global wait-for-graph indicates deadlocks. However, it is difficult to spot deadlocks since

transaction waits for resources across the network.

Alternatively, deadlock detection algorithms can use timers. Each transaction is associated with

a timer which is set to a time period in which a transaction is expected to finish. If a transaction

does not finish within this time period, the timer goes off, indicating a possible deadlock.

Another tool used for deadlock handling is a deadlock detector. In a centralized system, there is

one deadlock detector. In a distributed system, there can be more than one deadlock detectors. A

deadlock detector can find deadlocks for the sites under its control. There are three alternatives

for deadlock detection in a distributed system, namely.

 Centralized Deadlock Detector − One site is designated as the central deadlock

detector.

 Hierarchical Deadlock Detector − A number of deadlock detectors are arranged in

hierarchy.

30

 Distributed Deadlock Detector − All the sites participate in detecting deadlocks and

removing them.

 Distributed termination detection

A fundamental problem:

1. To determine if a distributed computation has terminated.
2. A non-trivial task since no process has complete knowledge of the global state, and global time

does not exist.
3. A distributed computation is globally terminated if every process is locally terminated and there

is no message in transit between any processes.
4. “Locally terminated” state is a state in which a process has finished its computation and will not

restart any action unless it receives a message.
5. In the termination detection problem, a particular process (or all of the processes) must infer

when the underlying computation has terminated.

- A termination detection algorithm is used for this purpose.

- Messages used in the underlying computation are called basic messages, and messages

used for the purpose of termination detection are called control messages.

- A termination detection (TD) algorithm must ensure the following:
1 Execution of a TD algorithm cannot indefinitely delay the underlying computation.

2 The termination detection algorithm must not require addition of new communication

channels between processes.

Definition of Termination Detection

1. Let pi(t) denote the state (active or idle) of process pi at instant t.
2. Let ci,j(t) denote the number of messages in transit in the channel at instant t from process pi to

process pj .
3. A distributed computation is said to be terminated at time instant t0 iff:

 (∀i:: pi(t0) = idle) ∧ (∀i, j:: ci,j(t0)=0).

Thus, a distributed computation has terminated

 iff all processes have become idle and there is no message in transit in any channel.

31

32

