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4.1 Distributed Shared Memory 

4.1.1 Introduction 

        Distributed Shared Memory (DSM) is a resource management component of a distributed 

operating system that implements the shared memory model in distributed systems, which have 

no physically shared memory. The shared memory model provides a virtual address space that 

is shared among all computers in a distributed system. An example of this layout can be seen in 

the following diagram taken from Advanced Concepts in Operating Systems. 

 

 

Motivation 

In DSM, data is accessed from a shared address space similar to the way that virutal memory 

 is accessed. Data moves between secondary and main memory, as well as, between the  

distributed main memories of different nodes. Ownership of pages in memory starts out in  

some pre-defined state but changes during the course of normal operation. Ownership changes 
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 take place when data moves from one node to another due to an access by a particular process. 

 

 

Distributed Shared Memory Abstractions 

1. communicate with Read/Write ops in shared virtual space  

2. No Send and Receive primitives to be used by application I 

-  Under covers, Send and Receive used by DSM manager 

3.  Locking is too restrictive; need concurrent access  

4. With replica management, problem of consistency arises! 

5.  =⇒ weaker consistency models (weaker than von Neumann) reqd 

 

 

 
 

Advantages/Disadvantages of DSM 

Advantages: 

1. Shields programmer from Send/Receive primitives 

2. Single address space; simpli_es passing-by-reference and passing complex data structures 

3. Exploit locality-of-reference when a block is moved 

4. DSM uses simpler software interfaces, and cheaper o_-the-shelf hardware. Hence cheaper than 

dedicated multiprocessor systems 

5. No memory access bottleneck, as no single bus Large virtual memory space 

6. DSM programs portable as they use common DSM programming interface 

7. Hide data movement and provide a simpler abstraction for sharing data. Programmers don't need to 

worry about memory transfers between machines like when using the message passing model. 

8. Allows the passing of complex structures by reference, simplifying algorithm development for 

distributed applications. 

9. Takes advantage of "locality of reference" by moving the entire page containing the data referenced 

rather than just the piece of data. 

10. Cheaper to build than multiprocessor systems. Ideas can be implemented using normal hardware and 

do not require anything complex to connect the shared memory to the processors. 

11. Larger memory sizes are available to programs, by combining all physical memory of all nodes. 

This large memory will not incur disk latency due to swapping like in traditional distributed 

systems. 

12. Unlimited number of nodes can be used. Unlike multiprocessor systems where main memory is 

accessed via a common bus, thus limiting the size of the multiprocessor system. 

13. Programs written for shared memory multiprocessors can be run on DSM systems, 
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Advantages/Disadvantages of DSM 

Disadvantages: 

1. Programmers need to understand consistency models, to write correct programs 

2. DSM implementations use async message-passing, and hence cannot be more e_cient than msg-

passing implementations 

3. By yielding control to DSM manager software, programmers cannot use their own msg-passing 

solutions. 

 

 

4.1.2 Organization 

 
 

 

         Fault Handlers 

       A fault handler is a proccess or potrion of a process that sits and waits for memory faults.  

 When there is a memory access that it cannot deal with locally, the fault handler will make a  

request to a server on some other machine in the DSM environment. It is in charge of making 

sure an application or program is given the memory pages it needs without knowing what is  

going on underneath and where the page is actually coming from. 

       Servers 

       The servers from the above diagram actually service the fault handlers requests. They know 

       which machines own the memory page that is being accessed and can fetch the page and 

       deliver it to the asking process. 

         Example Code of Distributed Shared Memory Servers 

Monitor Central Manager 
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Read Processes 

 

Write Processes 

 

 

 

 

 

4.2 Non-Uniform Memory Access Architectures 

4.2.1 Introduction  
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 Non-uniform memory access (NUMA) is a kind of memory architecture that allows  

  a processor faster access to contents of memory than other traditional techniques. 

 In other words, in a NUMA architecture, a processor can access local memory much faster 

 than non-local memory. This is because in a NUMA setup, each processor is assigned a specific local 

memory exclusively for its own use. This eliminates sharing of non-local memory, reducing delays 

when multiple requests come in for access to the same memory location. 

 

Difference between Uniform Memory Access (UMA) and Non-uniform Memory Access 

(NUMA) 

Multiprocessors can be categorized into three shared-memory model which are: 

1. Uniform Memory Access (UMA) 

2. Non-uniform Memory Access (NUMA) 

3. Cache-only Memory Access (COMA) 

Uniform Memory Access (UMA): 

In UMA, where Single memory controller is used. Uniform Memory Access is slower than non-

uniform Memory Access. In Uniform Memory Access, bandwidth is restricted or limited rather than 

non-uniform memory access. There are 3 types of buses used in uniform Memory Access which are: 

Single, Multiple and Crossbar. It is applicable for general purpose applications and time-sharing 

applications. 

 

 

 

https://www.geeksforgeeks.org/computer-architecture-multiprocessor-and-multicomputer/
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Non-uniform Memory Access (NUMA): 

In NUMA, where different memory controller is used. Non-uniform Memory Access is faster than 

uniform Memory Access. Non-uniform Memory Access is applicable for real-time applications and 

time-critical applications. 

 

Let’s see the difference between UMA and NUMA: 

S.NO UMA NUMA 

1. 

UMA stands for Uniform Memory 

Access. 

NUMA stands for Non-uniform 

Memory Access. 

2. 

In Uniform Memory Access, Single 

memory controller is used. 

In Non-uniform Memory Access, 

Different memory controller is used. 

3. 

Uniform Memory Access is slower 

than non-uniform Memory Access. 

Non-uniform Memory Access is 

faster than uniform Memory Access. 

4. 

Uniform Memory Access has 

limited bandwidth. 

Non-uniform Memory Access has 

more bandwidth than uniform 

Memory Access. 

5. Uniform Memory Access is Non-uniform Memory Access is 
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applicable for general purpose 

applications and time-sharing 

applications. 

applicable for real-time applications 

and time-critical applications. 

6. 

In uniform Memory Access, 

memory access time is balanced or 

equal. 

In non-uniform Memory Access, 

memory access time is not equal. 

7. 

There are 3 types of buses used in 

uniform Memory Access which are: 

Single, Multiple and Crossbar. 

While in non-uniform Memory 

Access, There are 2 types of buses 

used which are: Tree and 

hierarchical. 
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buses, interconnection network, or communication network 

Nonuniform Memory Access (NUMA) architectures Generic 

NUMA architecture 
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Multiprocessor Cache and DSM architectures 

 

 

 

Global Memory 

 

 

Common  Bus 

 

 

 

Local  Caches 

 

 

 

Processors 

 

 

(a) Multiprocessor cache architecture 
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     Distributed shared memory architecture 

Common issues 

Data consistency and coherency due to data placement, migration and 

repli- cation 

 

• Data Sharing Granularity 

• Cache Miss Granularity 

• Tradeoffs: 

– Transfer time 

– Administrative overhead 

– Hit rate 

– Replacement rate 

– False Sharing 

What to do on cache 

miss? 

• Locating block - owner/directory 

• Block Migration - block bouncing 

• Block Replication 

• Push vs. Pull 
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4.3 Memory consistency models 

These models apply consistency constraints to all memory 

accesses Accesses may require multiple messages and take 

significant time 

 

Atomic consistency 

All processors see same (global) 

order Respects real-time order 
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Sequential consistency 

All processors see same (global) order and 

order respects all internal orders (not nec. real time) 

 

P1 : W (X)1 

P2 : W (Y )2 

P3 : R(Y )2 R(X)0 R(X)1 

 

 

 

A2 A1 A3 

"Global Time" 

 

 

P1 

 

 

P2 

 

Atomic Consistency − global total order respecting access intervals 

 

 

 

 

 

Access 2 

Access 3 Access 1 
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A2    A3   A4 A1 A5 

"Global Order" 

 

 

 

 

 

 

Sequential Consistency − global total order (not nec. respecting access intervals) 

Causal consistency 

Processors may see different order 

all orders respect causal order (internal and r-w) 

 
P1 : W (X)1  W (X)3  

P2 : R(X)1 W (X)2  

P3 : R(X)1   R(X)3 R(X)2 
P4 : R(X)1   R(X)2 R(X)3 

 

 

 

P4 

P1 

 

 

 

"P1’s 

View" 

causal link that must be respected in any order 

A1 A5 

R(X)1 R(X)0 R(Y)2 

W(Y) 2 

W(X) 1 

A10 R(X)3 A9: R(X)2 A4: R(X)1 
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"P2’s View" 

 

 

"P3’s View" 

 

 

"P4’s View" 

 

Causal Consistency − no global total order; causal partial 

order only Each processor’s order respects internal order 

and Write−Read causality 

4.3.1 Processor consistency 

Writes from same processor are in order 

Writes from different processors not constrained 

 
P1 : W (X)1    

P2 :  R(X)1 W (X)2 

P3 :    R(X)1 R(X)2 
P4 :    R(X)2 R(X)1 

 

 

 

causal link that need not be respected internal link that is respected 

 

"P1’s View" 

 

 

"P2’s View" 

 

 

"P3’s View" 

 

 

"P4’s View" 

Processor Consistency − no global total order; partial order on writes by same 

processor Each processor’s order respects internal order and order of writes by 

same processor 

A1 A2 A6 

A1 A4 A6 A9 A5 A10 

A1 A3 A5 A7 A6 A8 

A1 A6 A3 A7 

A3 A4 A1 A5 

A1 

A1 A2 A3 
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Slow memory consistency 

Writes from same processor to same location are in order 

Writes from different processors or locations not 

constrained 

 

P1 : W (X)1 W (X)2 W (Y )3 

P2 : R(Y )3 R(X)1 R(X)2 

 

 

 

 

P1 

P2 

 

causal link that need not be respected causal link that must be respected 

 

"P1’s View" 

 

"P2’s View" 

 

Slow Memory Consistency − no global total order, no constraints across memory locations 

Each processor’s order respects its internal order and order of writes to same memory by same 

processor 

A1 A2 A3 

A3   A4 A1 A5 A2 A6 

A1: W(X)1 
 

A3: W(X)2 
 

A3: W(Y)3   

 

A4: R(Y)3 
 

A5: R(X)1 
 

A6: R(X)2   
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          4.3.2 Synchronization Access Consistency Models 

Accesses to synchronization variables distinguished from accesses to 

ordinary shared variables 

 

Weak consistency 

• Accesses to synchronization variables are sequentially consistent 

• No access to a synchronization variable is issued by a processor 
before all previous read/write data accesses have been performed 

(i.e., synch waits until all ongoing accesses complete) 

• No read/write data access is issued by a processor before a previous 

access to a synchronization variable has been performed 

(i.e., all new accesses must wait until synch is performed) 

 

• in effect, system “settles” at synch. 

 

Release consistency 

The synchronization access (synch(S)) in the weak consistency model 

can be refined as a pair of acquire(S) and release(S) accesses. Shared 

variables in the critical section are made consistent when the release 

operation is per- formed. 

(i.e., S “locks” access to shared variables it protects, and release is not 

com- pleted until all accesses to them are also completed). 

 

Entry consistency 

acquire and release are applied to general variables. 

Each variable has an implicit synchronization variable that may be 

acquired to prevent concurrent access to it. 
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Weak 

consistency like 

barrier sync 

 

 

delay 

til 

previou

s done 

 

 

 

 

 

(b) Release 

consistency 

Processor 

consistency 

 

 

delay 

til 

previou

s done 

issued 

 

performed 

 

(c) Entry 

consistency 

Consistency w.r.t. 

but local to process − 

only sync when 

necessary 

w.r.t. S 

All vars in DSM 

system 

memory object X 

across all procs 

issued 

 

 
synch(S) 

 
 

 
performed 

acquire(S) 

all accesses 

are   

exclusive 

release(S) 

 

acquire(X) 
 

only accesses 

to X are 

exclusive 

release(X) 
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R(Y) W(Y) 

W(Z) W(Z) 

Acq(S) R(X) W(Y) Rel(S) 

Acq(S) R(Y) W(Y) Rel(S) 

Acq(R) W(Z) W(Z) Rel(R) 
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Weakening 

 

 

 no system coherence support 

atomic consistency 

 
Real−time O 

sequential consistency 
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4.4 Multiprocessor Cache Systems 

 

Cache directory 

 

 

master copy E 
       

 

P bits 

 

 

P : Number of 

processors V : Valid 

or invalid 

E : Exclusive or 

shared-read-

only 

 

 

 

V bit for validity (in replicas), E bit for exclusive access (in all) 

May also include private (= not shared) bit and/or dirty (= modified) bit. 

 

 

Cache coherency protocols 

write-invalidate and write-

update Write-invalidate 

• Read hit 

• Read miss: transfer block, set P-, V-, and E-bit. 

• Write hit: invalidate cache copies, write and set E-bit 

• Write miss: like read miss/write hit 

 

Hardware mechanisms 

 

• Directory-based 

• Snooping cache 

replicated block V E 

 

replicated block V E 

 

replicated block V E 
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3 

replicate 

replicate 

migrate 

migrate 

4.5 DSM implementation 

 

Memory management algorithms 

 

 

exclusive copy 

 

READ : 

 

1 2 4 

 

WRITE : 

 

 

1 : Central server algorithm 

(SRSW) 

3 : Read-replication algorithm 

(MRSW) 

2 : Migration algoritm (SRSW) 

4 : Full-replication algorithm (MRMW) 

 

 

• Read-remote-write-remote: long network delay, trivial consistency 

• Read-migrate-write-migrate: thrashing and false sharing 

• Read-replicate-write-migrate: write-invalidate 

• Read-replicate-write-replicate; full concurrency, atomic update 

 

 

Considerations: 

 

• Block granularity 

• Block transfer communication overhead 

• Read/write ratio 

• Locality of reference 

• Number of nodes and type of interaction 

remote 

remote 
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probable 

owner 

probable 

owner 

Request 
2 3 

4 ...2n−1 

request and change probable owner along way 

current 

owner 

 

block 

probable 

owner 

 

block 

 

1 

 

block 

 

block 

     4.5.1 Distributed implementation of Directory 

 

Locating Block Owner: 

 

 

Previous  Owners Current Owner 

 

 

 

 

Maintaining Copy List: 

 

 

From To’s 
 

From To’s 
 

From To’s 
  

   

 
From Nil 

 
From Nil 

 

(a) Spanning tree representation of copy set 

 

 

 

 

Head Master 

Node 

invalidate or 

update 

 

End Node 
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append 

 

(b) Linked list representation of copy set 

 

 

 

 

 

 

 

 

 

 

request forwarded request 

acknowledgement 
requestor 

Nil master next master next master next master 
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4.6 Models of Distributed Computation 

4.6.1 Software Layers 

First, consider the software architecture of the components of a distributed system. 
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The lower two layers comprise the platform, such as Intel x86/Windows or PowerPC/MacOS X, 

that provides OS-level services to the upper layers. 

The middleware sits between the platform and the application and its purpose is to mask 

heterogeneity and provide a consistent programming model for application developers. Some of 

the abstractions provided by middleware include the following: 

 Remote method invocation 

 Group communication 

 Event notification 

 Object replication 

 Real-time data transmission 

Examples of middleware include the following: 

 Java RMI 

 CORBA 

 DCOM 

Atop the middleware layer sits the application layer. The application layer provides application-

specific functionality. Depending on the application, it may or may not make sense to take 

advantage of existing middleware. 

4.6.2 System Architectures 

The application layer defines the functional role of each component in a distributed system, and 

each component may have a different functional role. There are several common architectures 

employed by distributed systems. The choice of architecture can impact the design 

considerations described below: 
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 Responsiveness - how quickly does the system respond to requests? 

 Throughput - how many requests can the system handle (per second, for example)? 

 Load Distribution - are requests distributed evenly among components of the system? 

 Fault Tolerance - can the system continue to handle requests in the face of a failed 

component? 

 Security - does the system ensure that sensitive resources are guarded against attack? 

Common architectures for distributed systems are as follows: 

Client-Server 

The client-server model is probably the most popular paradigm. The server is responsible for 

accepting, processing, and replying to requests. It is the producer. The client is purely the 

consumer. It requests the services of the server and accepts the results. 

The basic web follows the client-server model. Your browser is the client. It requests web pages 

from a server (e.g., google.com), waits for results, and displays them for the user. 

In some cases, a web server may also act as a client. For example, it may act as a client of DNS 

or may request other web pages. 

Multiple Servers 

In reality, a web site is rarely supported with only one server. Such an implementation would not 

be scalable or reliable. Instead, web sites such as Google or CNN are hosted on many (many 

many) machines. Services are either replicated, which means that each machine can perform the 

same task, or partitioned, which means that some machines perform one set of tasks and some 

machines perform another set of tasks. For example, a site like CNN might serve images from 

one set of machines and HTML from another set of machines. 

Proxies and Caches 

To reduce latency, load on the origin server, and bandwidth usage, proxies and caches are also 

used to deliver content. An end host (your browser) may cache content. In this case, when you 

first request content, your browser stores a copy on your local machine. Subsequent requests for 

the same content can be fulfilled by using the cache rather than requesting the content from the 

origin server. 

An organization, like USF, may also deploy a proxy server that can cache content and deliver it 

to any client within the organization. Again, this reduces latency, and it also reduces bandwidth 

usage. Suppose that several hundred USF students download the same YouTube video. If a 

proxy server caches the video after the first student's request, subsequent requests can be 

satisfied by using the cached content, thereby reducing the number of external requests by 

several hundred. 
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CDNs, like Akamai, also fall into this category. However, CDNs work a bit differently than 

traditional proxy servers. CDNs actively replicate content throughout the network in a push-

based fashion. When a customer (e.g., CNN) updates its content, the new content is replicated 

throughout the network. In contrast, a proxy server will cache new content when it is requested 

by the first client. 

4.6.3 P2P 

The peer-to-peer model assumes that each entity in the network has equivalent functionality. In 

essence, it can play the role of a client or a server. Ideally, this reduces bottlenecks and enables 

each entity to contribute resources to the system. Unfortunately, it doesn't always work that way. 

One of the early papers on peer-to-peer systems was Free Riding on Gnutella, a paper that 

demonstrated that peers often free ride by taking resources (downloading files, in this case) and 

never contributing resources (uploading files). 

In addition, enabling communication in such a system is challenging. First, peers must locate 

other peers in order to participate in the system. This is rarely done in a truly distributed or peer-

to-peer fashion. For example, Napster, often cited (controversially) as the first real example of 

peer-to-peer computing, used a centralized mechanism for joining the network and searching for 

content. Searching for content or other resources is the second big challenging in implementing 

peer-to-peer systems. It can be very inefficient to locate resources in a peer-to-peer system and a 

hybrid, or partially centralized, solution is often employed. 

Hierarchical or superpeer systems, like Skype, are also widely used. In these systems, peers are 

organized in a tree-like structure. Typically, more capable peers are elected to become 

superpeers (or supernodes). Superpeers act on behalf of downstream peers and can reduce 

communication overhead. 

Mobile Code/Agents 

The previous models assume that the client/server/peer entities exchange data. The mobile code 

model assumes that components may exchange code. An example of this is Java Applets. When 

your browser downloads and applet, it downloads some Java code that it then runs locally. The 

big issue with this model is that it introduces security risks. No less a security threat are mobile 

agents -- processes that can move from machine to machine. 

Network Computers/Thin Clients 

The network computer model assumes that the end user machine is a low-end computer that 

maintains a minimal OS. When it boots, it retrieves the OS and files/applications from a central 

server and runs applications locally. The thin client model is similar, though assumes that the 

process runs remotely and the client machine simply displays results (e.g., X-windows and 

VNC). 

This model has been around for quite some time, but has recently received much attention. 

Google and Amazon are both promoting "cloud computing". Sun's Sun Ray technology also 

http://www.firstmonday.org/issues/issue5_10/adar/
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makes for an interesting demonstration. Though this model has yet to see success, it is beginning 

to look more promising. 

Mobile Devices 

There is an increasing need to develop distributed systems that can run atop devices such as cell 

phones, cameras, and MP3 players. Unlike traditional distributed computing entities, which 

communicate over the Internet or standard local area networks, these devices often communicate 

via wireless technologies such as Bluetooth or other low bandwidth and/or short range 

mechanisms. As a result, the geographic location of the devices impacts system design. 

Moreover, mobile systems must take care to consider the battery constraints of the participating 

devices. System design for mobile ad hoc networks (MANETs), sensor networks, and 

delay/disruption tolerant networks (DTNs) is a very active area of research. 

 

4.6.4 Fundamental Models 

Or, understanding the characteristics that impact distributed system performance and operation. 

Interaction 

Fundamentally, distributed systems are comprised of entities that communicate and coordinate 

by passing messages. The following characteristics of communication channels impact the 

performance of the system: 

 Latency - the time between the sending of a message at the source and the receipt of the 

message at the destination. 

 Bandwidth - the total amount of information that can be transmitted over a given time 

period (e.g., Mbits/second). 

 Jitter - "the variation int he time taken to deliver a series of messages." (Coulouris et al) 

Additionally, coordination of the actions of entities in a distributed system is impacted by the 

fact that each entity will have a different clock drift rate. Synchronous distributed systems that 

rely on certain actions happening at the same time can only be built if you can guarantee bounds 

on system resources and clock drift rates. Most of the systems that we will discuss are 

asynchronous; there are no guarantees about the time at which actions will occur. 

Generally, it is sufficient to know the order in which events occur. A logical clock is a counter 

that allows a system to keep track of when events occur in relation to other events. 

Failure 

It is important to understand the kinds of failures that may occur in a system. 
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 Failstop: A process halts and remains halted. Other processes can detect that the process 

has failed. 

 Crash: A process halts and remains halted. Other processes may not be able to detect this 

state. 

 Omission: A message inserted in an outgoing message buffer never arrives at the other 

end's incoming message buffer. 

 Send-omission: A process completes a send, but the message is not put in its outgoing 

message buffer. 

 Receive-omission: A message is put in a process's incoming message buffer, but that 

process does not receive it. 

 Arbitrary (Byzantine): Process/channel exhibits arbitrary behavior: it may send/transmit 

arbitrary messages at arbitrary times, commit missions; a process may stop or take an 

incorrect step. 

 Timing failure: Clock drift exceeds allowable bounds. 

Security 

There are several potential threats a system designer need be aware of: 

 Threats to processes - An attacker may send a request or response using a false identity 

(spoofing). 

 Threats to communication channels - An attacker may eavesdrop (listen to messages) or 

inject new messages into a communication channel. An attacker can also save messages 

and replay them later. 

 Denial of service - An attacker may overload a server by making excessive requests. 

Cryptography and authentication are often used to provide security. Communication entities can 

use a shared secret (key) to ensure that they are communicating with one another and to encrypt 

their messages so that they cannot be read by attackers. 

4.7 Failures in a Distributed System 

 

     4.7.1Types of Failures in Distributed Systems 

There are different types of failure across the distributed system and few of them are given in 

this section as below 

Crash failures:  Crash failures are caused across the server of a typical distributed system and if 

these failures are occurred operations of the server are halt for some time. Operating system 

failures are the best examples for this case and the corresponding fault tolerant systems are 

developed with respect to these affects. 

Timing failures: Timing failures are caused across the server of a distributed system. The usual 

behavior of these timing failures would be like that the server response time towards the client 

requests would be more than the expected range. Control flow out of the responses may be 
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caused due to these timing failures and the corresponding clients may give up as they can’t wait 

for the required response from the server and thus the server operations are failed due to this. 

Omission failures: Omission failures are caused across the server due to lack or reply or response 

from the server across the distributed systems. There are different issues raised due to these 

omission failures and the key among them are server not listening or a typical buffer overflow 

errors across the servers of the distributed systems. 

Byzantine failures:  Byzantine failures are also know as arbitrary failures and these failures are 

caused across the server of the distributed systems. These failures cause the server to behave 

arbitrary in nature and the server responds in an arbitrary passion at arbitrary times across the 

distributed systems. Output from the server would be inappropriate and there could be chances of 

the malicious events and duplicate messages from the server side and the clients get arbitrary and 

unwanted duplicate updates from the server due to these failures.  

4.8 Mutual exclusion in distributed system 

    4.8.1 Introduction 

Mutual exclusion is a concurrency control property which is introduced to prevent race 

conditions. It is the requirement that a process can not enter its critical section while another 

concurrent process is currently present or executing in its critical section i.e only one process is 

allowed to execute the critical section at any given instance of time. 

Mutual exclusion in single computer system Vs. distributed system: 

In single computer system, memory and other resources are shared between different processes. 

The status of shared resources and the status of users is easily available in the shared memory so 

with the help of shared variable (For example: Semaphores) mutual exclusion problem can be 

easily solved. 

In Distributed systems, we neither have shared memory nor a common physical clock and 

there for we can not solve mutual exclusion problem using shared variables. To eliminate the 

mutual exclusion problem in distributed system approach based on message passing is used. 

Requirements of Mutual exclusion Algorithm: 

 No Deadlock: 

Two or more site should not endlessly wait for any message that will never arrive. 

 No Starvation: 

Every site who wants to execute critical section should get an opportunity to execute it in 

finite time. Any site should not wait indefinitely to execute critical section while other site 

are repeatedly executing critical section 

 Fairness: 

Each site should get a fair chance to execute critical section. Any request to execute critical 

section must be executed in the order they are made i.e Critical section execution requests 

should be executed in the order of their arrival in the system. 

 Fault Tolerance: 

In case of failure, it should be able to recognize it by itself in order to continue functioning 

without any disruption. 

https://www.geeksforgeeks.org/semaphores-operating-system/
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  4.8.2 Solution to distributed mutual exclusion: 

As we know shared variables or a local kernel can not be used to implement mutual exclusion in 

distributed systems. Message passing is a way to implement mutual exclusion. Below are the 

three approaches based on message passing to implement mutual exclusion in distributed 

systems: 

1. Token Based Algorithm: 

 A unique token is shared among all the sites. 

 If a site possesses the unique token, it is allowed to enter its critical section 

 This approach uses sequence number to order requests for the critical section. 

 Each requests for critical section contains a sequence number. This sequence number 

is used to distinguish old and current requests. 

 This approach insures Mutual exclusion as the token is unique 

 Example:  

 Suzuki-Kasami’s Broadcast Algorithm 

2. Non-token based approach: 

 A site communicates with other sites in order to determine which sites should execute 

critical section next. This requires exchange of two or more successive round of messages 

among sites. 

 This approach use timestamps instead of sequence number to order requests for the critical 

section. 

 When ever a site make request for critical section, it gets a timestamp. Timestamp is also 

used to resolve any conflict between critical section requests. 

 All algorithm which follows non-token based approach maintains a logical clock. Logical 

clocks get updated according to Lamport’s scheme 

 Example:  

 Lamport's algorithm, Ricart–Agrawala algorithm 

 

4.9 Election algorithm and distributed processing 

Distributed Algorithm is a algorithm that runs on a distributed system. Distributed system is a 

collection of independent computers that do not share their memory. Each processor has its own 

memory and they communicate via communication networks. Communication in networks is 

implemented in a process on one machine communicating with a process on other machine. 

Many algorithms used in distributed system require a coordinator that performs functions needed 

by other processes in the system. Election algorithms are designed to choose a coordinator. 

Election Algorithms: 

Election algorithms choose a process from group of processors to act as a coordinator. If the 

coordinator process crashes due to some reasons, then a new coordinator is elected on other 

processor. Election algorithm basically determines where a new copy of coordinator should be 

restarted. 

Election algorithm assumes that every active process in the system has a unique priority number. 

The process with highest priority will be chosen as a new coordinator. Hence, when a 

coordinator fails, this algorithm elects that active process which has highest priority 

number.Then this number is send to every active process in the distributed system. 

We have two election algorithms for two different configurations of distributed system. 
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4.9.1 The Bully Algorithm – 

This algorithm applies to system where every process can send a message to every other process 

in the system. 

Algorithm – Suppose process P sends a message to the coordinator. 

1. If coordinator does not respond to it within a time interval T, then it is assumed that 

coordinator has failed. 

2. Now process P sends election message to every process with high priority number. 

3. It waits for responses, if no one responds for time interval T then process P elects itself as a 

coordinator. 

4. Then it sends a message to all lower priority number processes that it is elected as their 

new coordinator. 

5. However, if an answer is received within time T from any other process Q, 

 (I) Process P again waits for time interval T’ to receive another message from Q that 

it has been elected as coordinator. 

 (II) If Q doesn’t responds within time interval T’ then it is assumed to have failed and 

algorithm is restarted. 

 

2. The Ring Algorithm – 

This algorithm applies to systems organized as a ring(logically or physically). In this algorithm 

we assume that the link between the process are unidirectional and every process can message to 

the process on its right only. Data structure that this algorithm uses is active list, a list that has 

priority number of all active processes in the system. 

Algorithm – 

1. If process P1 detects a coordinator failure, it creates new active list which is empty 

initially. It sends election message to its neighbour on right and adds number 1 to its active 

list. 

2. If process P2 receives message elect from processes on left, it responds in 3 ways: 

             (I) If message received does not contain 1 in active list then P1 adds 2 to its active list 

and forwards the message. 

3. (II) If this is the first election message it has received or sent, P1 creates new active list 

with numbers 1 and 2. It then sends election message 1 followed by 2. 

4. (III) If Process P1 receives its own election message 1 then active list for P1 now 

contains numbers of all the active processes in the system. Now Process P1 detects 

highest priority number from list and elects it as the new coordinator. 

 

Distributed Deadlock handling 

Deadlock is a state of a database system having two or more transactions, when each transaction 

is waiting for a data item that is being locked by some other transaction. A deadlock can be 

indicated by a cycle in the wait-for-graph. This is a directed graph in which the vertices denote 

transactions and the edges denote waits for data items. 

For example, in the following wait-for-graph, transaction T1 is waiting for data item X which is 

locked by T3. T3 is waiting for Y which is locked by T2 and T2 is waiting for Z which is 

locked by T1. Hence, a waiting cycle is formed, and none of the transactions can proceed 

executing. 



26 

 

 

Deadlock Handling in Centralized Systems 

There are three classical approaches for deadlock handling, namely − 

 Deadlock prevention. 

 Deadlock avoidance. 

 Deadlock detection and removal. 

All of the three approaches can be incorporated in both a centralized and a distributed database 

system. 

Deadlock Prevention 

The deadlock prevention approach does not allow any transaction to acquire locks that will lead 

to deadlocks. The convention is that when more than one transactions request for locking the 

same data item, only one of them is granted the lock. 

One of the most popular deadlock prevention methods is pre-acquisition of all the locks. In this 

method, a transaction acquires all the locks before starting to execute and retains the locks for 

the entire duration of transaction. If another transaction needs any of the already acquired locks, 

it has to wait until all the locks it needs are available. Using this approach, the system is 

prevented from being deadlocked since none of the waiting transactions are holding any lock. 

Deadlock Avoidance 

The deadlock avoidance approach handles deadlocks before they occur. It analyzes the 

transactions and the locks to determine whether or not waiting leads to a deadlock. 

The method can be briefly stated as follows. Transactions start executing and request data items 

that they need to lock. The lock manager checks whether the lock is available. If it is available, 

the lock manager allocates the data item and the transaction acquires the lock. However, if the 

item is locked by some other transaction in incompatible mode, the lock manager runs an 

algorithm to test whether keeping the transaction in waiting state will cause a deadlock or not. 

Accordingly, the algorithm decides whether the transaction can wait or one of the transactions 

should be aborted. 
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There are two algorithms for this purpose, namely wait-die and wound-wait. Let us assume 

that there are two transactions, T1 and T2, where T1 tries to lock a data item which is already 

locked by T2. The algorithms are as follows − 

 Wait-Die − If T1 is older than T2, T1 is allowed to wait. Otherwise, if T1 is younger 

than T2, T1 is aborted and later restarted. 

 Wound-Wait − If T1 is older than T2, T2 is aborted and later restarted. Otherwise, if T1 

is younger than T2, T1 is allowed to wait. 

Deadlock Detection and Removal 

The deadlock detection and removal approach runs a deadlock detection algorithm periodically 

and removes deadlock in case there is one. It does not check for deadlock when a transaction 

places a request for a lock. When a transaction requests a lock, the lock manager checks 

whether it is available. If it is available, the transaction is allowed to lock the data item; 

otherwise the transaction is allowed to wait. 

Since there are no precautions while granting lock requests, some of the transactions may be 

deadlocked. To detect deadlocks, the lock manager periodically checks if the wait-forgraph has 

cycles. If the system is deadlocked, the lock manager chooses a victim transaction from each 

cycle. The victim is aborted and rolled back; and then restarted later. Some of the methods used 

for victim selection are − 

 Choose the youngest transaction. 

 Choose the transaction with fewest data items. 

 Choose the transaction that has performed least number of updates. 

 Choose the transaction having least restart overhead. 

 Choose the transaction which is common to two or more cycles. 

This approach is primarily suited for systems having transactions low and where fast response 

to lock requests is needed. 

Deadlock Handling in Distributed Systems 

Transaction processing in a distributed database system is also distributed, i.e. the same 

transaction may be processing at more than one site. The two main deadlock handling concerns 

in a distributed database system that are not present in a centralized system are transaction 

location and transaction control. Once these concerns are addressed, deadlocks are handled 

through any of deadlock prevention, deadlock avoidance or deadlock detection and removal. 

Transaction Location 

Transactions in a distributed database system are processed in multiple sites and use data items 

in multiple sites. The amount of data processing is not uniformly distributed among these sites. 

The time period of processing also varies. Thus the same transaction may be active at some sites 

and inactive at others. When two conflicting transactions are located in a site, it may happen 



28 

 

that one of them is in inactive state. This condition does not arise in a centralized system. This 

concern is called transaction location issue. 

This concern may be addressed by Daisy Chain model. In this model, a transaction carries 

certain details when it moves from one site to another. Some of the details are the list of tables 

required, the list of sites required, the list of visited tables and sites, the list of tables and sites 

that are yet to be visited and the list of acquired locks with types. After a transaction terminates 

by either commit or abort, the information should be sent to all the concerned sites. 

Transaction Control 

Transaction control is concerned with designating and controlling the sites required for 

processing a transaction in a distributed database system. There are many options regarding the 

choice of where to process the transaction and how to designate the center of control, like − 

 One server may be selected as the center of control. 

 The center of control may travel from one server to another. 

 The responsibility of controlling may be shared by a number of servers. 

Distributed Deadlock Prevention 

Just like in centralized deadlock prevention, in distributed deadlock prevention approach, a 

transaction should acquire all the locks before starting to execute. This prevents deadlocks. 

The site where the transaction enters is designated as the controlling site. The controlling site 

sends messages to the sites where the data items are located to lock the items. Then it waits for 

confirmation. When all the sites have confirmed that they have locked the data items, 

transaction starts. If any site or communication link fails, the transaction has to wait until they 

have been repaired. 

Though the implementation is simple, this approach has some drawbacks − 

 Pre-acquisition of locks requires a long time for communication delays. This increases 

the time required for transaction. 

 In case of site or link failure, a transaction has to wait for a long time so that the sites 

recover. Meanwhile, in the running sites, the items are locked. This may prevent other 

transactions from executing. 

 If the controlling site fails, it cannot communicate with the other sites. These sites 

continue to keep the locked data items in their locked state, thus resulting in blocking. 

Distributed Deadlock Avoidance 

As in centralized system, distributed deadlock avoidance handles deadlock prior to occurrence. 

Additionally, in distributed systems, transaction location and transaction control issues needs to 

be addressed. Due to the distributed nature of the transaction, the following conflicts may occur 

− 
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 Conflict between two transactions in the same site. 

 Conflict between two transactions in different sites. 

In case of conflict, one of the transactions may be aborted or allowed to wait as per distributed 

wait-die or distributed wound-wait algorithms. 

Let us assume that there are two transactions, T1 and T2. T1 arrives at Site P and tries to lock a 

data item which is already locked by T2 at that site. Hence, there is a conflict at Site P. The 

algorithms are as follows − 

 Distributed Wound-Die 

o If T1 is older than T2, T1 is allowed to wait. T1 can resume execution after Site P 

receives a message that T2 has either committed or aborted successfully at all 

sites. 

o If T1 is younger than T2, T1 is aborted. The concurrency control at Site P sends a 

message to all sites where T1 has visited to abort T1. The controlling site notifies 

the user when T1 has been successfully aborted in all the sites. 

 Distributed Wait-Wait 

o If T1 is older than T2, T2 needs to be aborted. If T2 is active at Site P, Site P 

aborts and rolls back T2 and then broadcasts this message to other relevant sites. 

If T2 has left Site P but is active at Site Q, Site P broadcasts that T2 has been 

aborted; Site L then aborts and rolls back T2 and sends this message to all sites. 

o If T1 is younger than T1, T1 is allowed to wait. T1 can resume execution after 

Site P receives a message that T2 has completed processing. 

Distributed Deadlock Detection 

Just like centralized deadlock detection approach, deadlocks are allowed to occur and are 

removed if detected. The system does not perform any checks when a transaction places a lock 

request. For implementation, global wait-for-graphs are created. Existence of a cycle in the 

global wait-for-graph indicates deadlocks. However, it is difficult to spot deadlocks since 

transaction waits for resources across the network. 

Alternatively, deadlock detection algorithms can use timers. Each transaction is associated with 

a timer which is set to a time period in which a transaction is expected to finish. If a transaction 

does not finish within this time period, the timer goes off, indicating a possible deadlock. 

Another tool used for deadlock handling is a deadlock detector. In a centralized system, there is 

one deadlock detector. In a distributed system, there can be more than one deadlock detectors. A 

deadlock detector can find deadlocks for the sites under its control. There are three alternatives 

for deadlock detection in a distributed system, namely. 

 Centralized Deadlock Detector − One site is designated as the central deadlock 

detector. 

 Hierarchical Deadlock Detector − A number of deadlock detectors are arranged in 

hierarchy. 
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 Distributed Deadlock Detector − All the sites participate in detecting deadlocks and 

removing them. 

 Distributed termination detection  

A fundamental problem:  

1. To determine if a distributed computation has terminated.  
2. A non-trivial task since no process has complete knowledge of the global state, and global time 

does not exist.  
3. A distributed computation is globally terminated if every process is locally terminated and there 

is no message in transit between any processes.  
4. “Locally terminated” state is a state in which a process has finished its computation and will not 

restart any action unless it receives a message. 
5. In the termination detection problem, a particular process (or all of the processes) must infer 

when the underlying computation has terminated. 

- A termination detection algorithm is used for this purpose. 

-  Messages used in the underlying computation are called basic messages, and messages 

used for the purpose of termination detection are called control messages. 

-  A termination detection (TD) algorithm must ensure the following:  
1 Execution of a TD algorithm cannot indefinitely delay the underlying computation.  

2 The termination detection algorithm must not require addition of new communication 

channels between processes. 

 

Definition of Termination Detection 

1. Let pi(t) denote the state (active or idle) of process pi at instant t. 
2.  Let ci,j(t) denote the number of messages in transit in the channel at instant t from process pi to 

process pj . 
3.  A distributed computation is said to be terminated at time instant t0 iff: 

 (∀i:: pi(t0) = idle) ∧ (∀i, j:: ci,j(t0)=0).  

Thus, a distributed computation has terminated 

 iff all processes have become idle and there is no message in transit in any channel. 
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