
1

Unit-2

CONCURRENT PROCESSES AND PROGRAMMING

2.1 Processes and Threads

 2.1.1 Introduction

 2.1.2 Thread applications

2.2 Process models

 2.2.1Synchronous Process, Asynchronous Communication,Time-Space

2.3 Client/server model

 2.3.1 Time services

2.4 Language constructs for synchronization

2.5 Concurrent programming systems

2.5.1Coordination languages

2.5.2 Concurrent Programs

2.5.3 Problems in concurrent programs

2.5.4 Properties of Concurrent Programs

 2.5.5 Executing Concurrent Programs

2.6 Inter-process Communication and Coordination

 2.6.1Message Passing

2.6.2 Request/Reply and Transaction Communication

2.6.3 Name and Directory services

2.6.4 RPC and RMI case studies

 2.7 Transaction Communication ACID properties

2

2.1 Processes and threads

2.1.1 Introduction

Processes: separate logical address space

Threads: common logical address space

 Major Issues

Process/thread creation

Light weight context switching

Blocking and scheduling

3

Native operating system

Thread run-time library support

Multiple thread processes
Single thread

process

Native Computer System

PCB PCB

TCB TCB TCB

 th
re

ad

 th
re

ad

 th
re

ad

PCB

TCB TCB TCB

 th
re

ad

 th
re

ad

 th
re

ad

 Two-level concurrency of processes and threads

2.1.2 Thread applications

(a) Terminal

server

(b) File

server

(c) Client

Identical static threads Dynamic threads with Concurrent and

dispatcher asynchronous requests

requests

thread

thread

thread

thread

thread

main

re
a
d

w
ri

te

th
re

ad

b
u

ff
e
r

4

multiple processor system

 Thread implementations

• User space: simple but non-preemptable

• Kernel space: efficient but not portable

 Solaris thread implementation

Heavy-weight process Heavy-weight process

User space threads

Light-weight processes

Kernel space threads

LWP LWP LWP LWP

5

 2.2 Process models

2.2.1 Synchronous Process, Asynchronous Communication, Time-Space

 Graph representations

precedence relations

one - way

client / server

peer

Synchronous process

graph

Asynchronous process graph and

communication scenarios

communication

channels

6

kernel

server

client

Time-space model

Processes

P1

P2 P3 P4

Time

: communication

: events

2.3 Client/server model

logical communication request

reply

actual

communication network

kernel

S
p
ac

e

7

TC

TC

2.3.1 Time services

• time and timer

• physical and logical clocks

 Physical clock

A distributed time service architecture

Distributed Time Service

Exter

S

Time

Discrepancie

s

Client Time Clerks

UTC 1

UTC 2

UTC 3

UTC 4

UTC 5

discarded new UTC

TS TS

TS T ime

Servers

nal UTC

ources

8

d,20 e,50 55 f, 60 81

43 57

g,50 h,75

Lamport Logical Clock

The happens-before relationship: →

1. If a → b within a same process then C(a) < C(b).

2. If a is the sending event of Pi and

b is the corresponding receiving event of Pj, then a → b and

Ci(a) < Cj(b).

For it to be possible for a to have an influence on b, then a → b must be true.

 Implementation:

C(b) = C(a) + d and

Cj(b) = max(TSa + d, Cj(b)),

where TSa is the timestamp of the sending event and d is a positive number.

a,40

4

2

b

,

4

5

d

=

1

58 c,60

56 80

So, a → b =⇒ C(a) < C(b), but C(a) < C(b) =/⇒ a → b.

9

d, 010 e, 230 240 f, 260 274

220 250

g, 001 h, 243

Vector Logical Clock

Used so that if Ci(a) < Cj(b) then a → b. Define V Ci = [TS1, TS2, ..., Ci, ..., TSn],

where n is the number of cooperating processes. On message receipt, use pair-wise

maximum.

V Cj[j] = V Cj[j] + d

V Cj[k] = max(V Cj[k], TSi[k]) : l = 1..n

j

TS = VCi

VCj

k

elementwise max merge

Pj’s Lamport Clock Pj’s knowledge of Pk’s Lamport Clock

V Cj[j] is Pj’s count of events that have occured at Pj,

V Cj[k] is Pj’s knowledge of events that have occured at Pk.

a,

1

0

0

2

0

0

b

,

3

0

0

4

5

0

c, 550

242 244

10

Pi’s knowl

Matrix Logical Clock

MCi represents

Pi’s knowledge of its local events (MCi[i, i]),

its knowledge of the events that Pj knows about (MCi[i, j]), and its knowledge of

Pj’s knowledge of events at Pk (MCi[j, k]).

MCi[i, i] = MCi[i, i] + d – Pi updates local event counter on send

When Pj receives a message from Pi with timestamp TS, MCj[j, l] = max(MCj[j,

l], TSi[i, l]) : l = 1..n update vector clock, and

MCj[k, l] = max(MCj[k, l], TSi[k, l]) : k = 1..n, l = 1..n update Pk’s

knowledge of Pl’s counter

i TS = MCi element

wise

max

merg

e

MCj

k

 edg

i

j

Pi’s knowledge of Pj’s knowledge of Pi’s Lamport

Clock

Pi’s Vector Clock i,i

e of Pk’s Vector Clock

k Pj’s knowledge of Pk’s Vector Clock

i Pj’s knowledge of Pi’s Vector Clock

j Pj’s Vector Clock

11

2.4 Language constructs for synchronization

Concurrent languages

• Specification of concurrent activities

• Synchronization of processes

• Interprocess communication

• Nonderterministic execution of processes

 Language constructs

• Program structure

• Data structure

• Control structure

• Procedure and system call

• Input and output

• Assignment

12

Synchronization Methods Language Facilities

Shared-Variable Synchronization
semaphore shared variable and system call

monitor data type abstraction

conditional critical region control structure

serializer data type and control structure

path expression data type and program structure

Message Passing Synchronization
communicating sequential processes input and output

remote procedure call procedure call

rendezvous procedure call and communication

Synchronization mechanisms and language facilities

 Shared-variable synchronization

• Semaphore and conditional critical region

• Monitor and serializer

• Path expression

Classic Problems

• Critical Section

• Dining Philosophers

• Readers/Writers

• Producer-Consumer

13

Example: the Reader/Writer Problems synchronization +

concurrency

Basics

• if DB empty, allow anyone in

• if reader in DB, writer not allowed in

• if writer in DB, nobody allowed in

Variations

• reader preference

Allow a reader in if other readers are in

• strong reader preference

Allow readers in when writer leaves

• weak reader preference

When writer leaves, select a process at random

• weaker reader preference

Allow a writer in when writer leaves

• writer preference

Do not allow readers in if writer is waiting

14

Semaphore solution to the weak reader preference problem

var mutex=1, db=1: semaphore; rc=0: integer

reader processes writer processes

do (forever) do (forever)

BEGIN BEGIN

otherStuff() otherStuff()

P(mutex)

rc := rc + 1

if rc = 1 then P(db) P(db) V(mutex)

read database write database

P(mutex) rc := rc -1

if rc = 0 then V(db) V(db) V(mutex)

END END

15

Monitor solution

rw : monitor

var rc : integer; busy : boolean; toread, towrite : condition;

procedure startread procedure endread

begin begin

if busy then toread.wait;

rc := rc + 1; rc := rc - 1;

toread.signal; if rc = 0 then towrite.signal;

end end

procedure startwrite procedure endwrite

begin begin

if busy or rc ƒ= 0

then towrite.wait; busy := false;

busy := true; toread.signal or towrite.signal;

end end

begin rc := 0; busy := false end

—————————————————————-

reader processes writer processes

do (forever) BEGIN do (forever) BEGIN

otherStuff() otherStuff()

rw.startread rw.startwrite

read database write database

rw.endread rw.endwrite

END END

16

CCR solution

var db: shared; rc: integer;

reader processes writer processes

region db begin rc := rc + 1 end; region db when rc = 0 read database

begin write dat abase end region db begin rc := rc - 1 end;

Serializer solution

rw : serializer

var readq, writeq: queue; rcrowd, wcrowd: crowd;

procedure read

begin

enqueue(readq) until empty(wcrowd); joincrowd(rcrowd) then begin read database

end; end

procedure write

begin

enqueue(writeq) until (empty(wcrowd) and empty(rcrowd));

joincrowd(wcrowd) then begin write database end; end

Path Expression solution

path 1:([read],write) end

17

Message Passing Synchronization

• Asynchronous: non-blocking send, blocking receive

• Synchronous: blocking send, blocking receive

Communicating Sequential Processes (CSP)

P : Q!exp, Q: P ?var, and guarded commands Process P executes Q!(x + y),

. then expression x + y is evaluated and sent to process Q. Process Q executes P

?z,

. then process Q sets variable z to the value received from process P

ADA rendezvous task rw is

entry startread; entry endread; entry startwrite; entry endwrite;

end

task body rw is

rc: integer := 0;

18

busy: boolean := false;

begin loop

select

when busy = false →

accept startread do rc := rc + 1 end;

or

or or

end

loo

p

en

d;

→

accept endread do rc := rc - 1 end;

when rc = 0 and busy = false →

accept startwrite do busy = true end;

→

accept endwrite do busy = false end;

2.5 Concurrent Programming

Languages

 A taxonomy

20

 2.5.1 Coordination languages

• OCCAM: based on CSP process model, use PAR, ALT, and SEQ con- structors,

use explict global links for communication.

• SR: based on resource (object) model, use synchronous CALL and asyn- chronous

SEND and rendezvous IN, use capability for channel naming.

• LINDA: based on distributed data structure model, use tuples to repre- sent both

process and object, use blocking IN and RD and non-blocking OUT for

communication.

System

Object

mo

del

Channel

namin

g

O

C

C

A

M

concurrent

program

ming

languag

e

process

es

static

global

channe

ls

S

R

concurrent

program

ming

languag

e

resourc

es

dynamic

capabil

ities

L

I

N

D

A

concurrent

program

ming

paradig

m

distrib

ute

d

data

stru

ctur

es

associativ

e tags

21

 2.5.2 Concurrent Programs

 Processes and concurrent programs:
basic definitions A sequential program specifies sequential execution of a list of statements; its

execution is called a process. A concurrent program specifies two or more sequential programs

that may be executed concurrently as parallel processes. In many languages, process is also the

name of the construct used to describe process behavior ; one notable exception is Ada, which

uses the name task for this purpose.

 Distinguishing concurrent, parallel, and distributed programs:

 A concurrent program is commonly discussed in the same context as parallel or distributed

programs. Unfortunately, few authors give precise meanings to these terms and the meanings

that are offered tend to conflict. On balance, the following definitions seem appropriate:

• A concurrent program defines actions that may be performed simultaneously.

 • A parallel program is a concurrent program that is designed for execution on parallel hardware.

 • A distributed program is a parallel program designed for execution on a network of autonomous

processors that do not share main memory

 Distinguishing concurrent programs and concurrent systems:

 A concurrent program is primarily a coherent unit of software. If two pieces of communicating

software run concurrently, the result is a concurrent program when the two pieces form a

conceptual whole; otherwise, the situation is viewed as two programs communicating through

an agreed protocol. The communicating programs do, however, constitute a concurrent system

(or parallel system or distributed system, as appropriate).

2.5.3 Problems in concurrent programs

 Violating mutual exclusion:

 Some operations in a concurrent program may fail to produce the desired effect if they are

performed by two or more processes simultaneously. The code that implements such operations

constitutes a critical region or critical section. If one process is in a critical region, all other

processes must be excluded until the first process has finished. When constructing any

concurrent program, it is essential for software developers to recognize where such mutual

exclusion is needed and to control it accordingly

Most discussions of the need for mutual exclusion use the example of two processes attempting to

execute a statement of the form: x := x + 1

Assuming that x has the value 12 initially, the implementation of the statement may result in each

process taking a local copy of this value, adding one to it and both returning 13 to x (unlucky!).

 Mutual exclusion for individual memory references is usually implemented in hardware. Thus, if

two processes attempt to write the values 3 and 4, respectively, to the same memory location,

one access will always exclude the other in time leaving a value of 3 or 4 and not any other bit

pattern.

 Deadlock:

 A process is said to be in a state of deadlock if it is waiting for an event that will not occur.

Deadlock usually involves several processes and may lead to the termination of the program. A

deadlock can occur when processes communicate (e.g., two processes attempt to send messages

21

to each other simultaneously and synchronously) but is a problem more frequently associated

with resource management. In this context there are four necessary conditions for a deadlock to

exist .

1. Processes must claim exclusive access to resources.

 2. Processes must hold some resources while waiting for others (i.e., acquire resources in a

piecemeal fashion). 3. Resources may not be removed from waiting processes (no preemption).

4. A circular chain of processes exists in which each process holds one or more resources required

by the next process in the chain.

Busy waiting

 Regardless of the environment in which a concurrent program is executed, it is rarely acceptable

for any of its processes to execute a loop awaiting a change of program state. This is known as

busy waiting. The state variables involved constitute a spin lock. It is not in itself an error but it

wastes processor power, which in turn may lead to the violation of a performance requirement.

Ideally, the execution of the process concerned should be suspended and continued only when

the condition for it to make progress is satisfied.

2.5.4 Properties of Concurrent Programs:

Safety

 Safety properties assert what a program is allowed to do, or equivalently, what it may not do.

 Examples include:

 • Mutual exclusion: no more than one process is ever present in a critical region.

 • No deadlock: no process is ever delayed awaiting an event that cannot occur.

 • Partial correctness: if a program terminates, the output is what is required.

Liveness

Liveness (or progress)properties assert what a program must do; they state what will happen

(eventually) in a computation.

 Examples include:

• Fairness (weak): a process that can execute will be executed.

• Reliable communication: a message sent by one process to another will be received.

 • Total correctness: a program terminates and the output is what is required.

2.5.5 Executing Concurrent Programs

1. Measures of concurrency

Concurrent behavior can be measured in several ways. In practice, the measures are merely rough

classifications of behavior that help characterize a program. These measures are given names

here, for convenience, but there is no consensus on naming. In particular, references to the term

grain or granularity of concurrency in the literature may mean any of the following measures:

• The unit of concurrency is the language component on which process behavior is defined. It

may be an element in an expression; it may be a program statement; but most commonly it is a

program block.

• The level of concurrency is the mean number of active processes present during the execution of

a program.

 • The scale of concurrency is the mean duration (or lifetime) of processes in the execution of a

21

program ; there is an overhead in initiating a concurrent activity, and so ideally its duration

should be sufficiently long to make that overhead negligible.

 • The grain of concurrency is the mean computation time between communications in the

execution of a program ; this should be relatively large if a physical distribution of processes is

required.

2. Execution environments

Programs involving large-scale concurrent behavior (comprising processes of relatively long

duration) are executed most commonly on a single processor computer in which the processor is

shared among the active processes. This is known as multiprogramming (or multitasking).

Multiprocessing occurs on a multiprocessor, a computer in which several (usually identical)

processors share a common primary memory.

Multicomputers use separate primary memory, and their execution of processes is known as

distributed processing. Closely coupled multicomputers have fast and reliable point-to-point

interprocessor links; loosely coupled systems communicate over a network that is much slower

and much less reliable. Components of a multicomputer may be in the same vicinity or

physically remote from each other.

 In these are referred to as workstation-LANs (Local Area Networks) and workstation-WANs

(Wide Area Networks), respectively.

 Small-scale concurrent programs are usually executed by array or vector processor computers that

apply the same operation to a number of data items at the same time. This is known as

synchronous processing .

 Dataflow and reduction machines apply different operations to different data items simultaneously

. These latter machines are still largely experimental. A detailed presentation of the hardware

available for parallel processing is given in . A collection of early papers on parallel processing

may be found in .

3. Patterns of execution

 Most commonly, a concurrent program starts as a single process and subdivides into multiple

processes at some point in its execution. The spawned processes may be activated individually

or in sets. The processes thus activated may be able to subdivide in the same way.

 There are two main models of execution:

1. The spawned processes, when activated, execute independently of the process that triggers their

execution.

2. The triggering process forks into multiple processes which, when complete, join to form a

single process again.

Most programming languages support the fork-and-join model.

3. Process states

 A process exists in one of three states (there is no agreement on the names used):

1. Awake, meaning that the process is able to execute.

2. Asleep (or blocked), meaning that the process is suspended awaiting a particular event (e.g.,

message arrival or resource available).

3. Terminated, meaning that the execution of the process has finished.

 Processes that are awake can be further divided into those that are running (executing) and those

that are ready to run as soon as a processor becomes available.

21

4. Process scheduling
 In exceptional circumstances, a concurrent program may run directly on bare hardware.

 More usually, however, it will execute on top of support software that provides a more abstract

interface to that hardware. This is known as the system kernel or nucleus.

One component of the nucleus is the scheduler, which is responsible for the allocation of

processors to processes, that is, the resolution of the mismatch between the number of processes

that can execute and the number of processors available to execute them. In distributed systems,

the scheduler itself may be distributed .

The processes in some concurrent programs are assigned explicitly to particular processors by the

program designer. More commonly, however, the mapping is handled implicitly by the

scheduler. Processes often execute with different priorities.

One objective of the scheduler is to ensure that all running processes have no lower a priority than

those that are in a ready state. Priorities may be assigned explicitly by the program designer or

be set and adjusted implicitly by the scheduler.

 The compilation of a concurrent program results in the generation of calls to the kernel that may

trigger scheduling operations. Any entry to the kernel provides an opportunity to suspend the

process involved and select another for execution. In some cases, normal program behavior may

result in an acceptably even distribution of processor power over the competing processes.

However, when processing power is scarce it is desirable to implement some form of time

slicing to ensure that all processes make steady progress. This is often implemented with the

assistance of a system clock that interrupts at least one processor at regular intervals.

2.6 INTERPROCESS COMMUNICATION AND COORDINATION

Basic message passing communication

 Communication primitives:

send(destination, message)

 receive(source, message)

channel naming = process name, link, mailbox, port

 • direct communication: symmetric/asymmetric process naming, link

 • indirect communication: many-to-many mailbox, many-to-one port

2.6.1Message Passing

Message buffering and synchronization

21

Message passing API

• Pipe: A FIFO byte-stream unidirectional link for related processes (set up at process invocation)

 • Message queue: A structured variable length message queue

 • Named Pipe: A special FIFO file pipe using path name for unrelated processes under the same

domain (explicitly created and accessed)

 • Socket: A logical communication endpoint for communication between autonomous domains

(bound to physical communication endpoint)

21

21

2.6.2 Request/Reply and Transaction Communication

 Asymmetric - Client and Server Server starts first:

 • Server process: application level process

 - server protocol

 • LCE: Logical Communication Endpoint - established with socket call

 • PCE: Physical Communication Endpoint - (Transport TSAP/L4SAP, Network NSAP/L3SAP) bound to

LCE with bind call

 • Listen: Server waits for incoming connection request

 • Accept: Server accepts connection request, initializes connection

 • Read: Server reads incoming segment(s) of request • Write: Server writes reply segment(s)

 • Close: Server terminates connection when reply is received

Client starts after Server:

 • Client process: application level process - runs server protocol

 • LCE: Logical Communication Endpoint - established with socket call

• PCE: Physical Communication Endpoint - (Transport TSAP/L4SAP, Network NSAP/L3SAP) bound to

LCE with connect call, which also initialized connection to server PCE

 • Write: Client writes request segment(s)

 • Read: Client reads incoming segment(s) of reply

 • Close: Client terminates connection when reply is received and acknowledged

21

2.6.2 Name and Directory services

Name and Directory Services

 Object attributes and name structures

2.6.3 RPC and RMI case studies

21

21

 RPC exception and failure

• Exception: in-band or out-band signaling

 • Link failure: retransmission, sequence number and idempotent requests, use of transaction id xid

 • Server crash: –

 at least once: server raises an exception and client retries

 – at most once: server raises an exception and client gives up

 – maybe: server raises no exception and client retries

 • Client crash:

 – orphan killed by client

 – orphan killed by server

– orphan killed by expiration

Secure RPC

- Cs and Ss are 128-bit random numbers.

- Cp = α Csmod M, and Sp = α Ssmod M, where α and M are known constants.

SKcs = S Cs p = (α Ss) Cs = α Ss∗Cs

SKsc = C Ss p = (α Cs) Ss = α Cs∗Ss

21

2.7 Transaction Communication ACID properties

 • Atomicity

Consistency

 • Isolation

• Durability

21

21

 Distributed Mutual Exclusion

 • Contention-based:

 – Timestamp prioritized

– Voting

• Control (Token)-based:

 – Ring structure

 – Tree structure

– Broadcast structure

21

Leader Election Complete topology

Complete topology

21

