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2.1 Processes and threads 

2.1.1 Introduction 

 

Processes: separate logical address space 

Threads: common logical address space 

 

        Major Issues 

 

Process/thread creation 

Light weight context switching 

Blocking and scheduling
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2.1.2 Thread applications 
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multiple processor system 

 

 

     Thread implementations 

 

• User space: simple but non-preemptable 

• Kernel space: efficient but not portable 

                            Solaris thread implementation 

 

 

Heavy-weight process Heavy-weight process 

 

 

User space threads 

 

 

Light-weight processes 

 

 

 

 

Kernel space threads 
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     2.2 Process models 

 

2.2.1 Synchronous Process, Asynchronous Communication, Time-Space 

 

 

                          Graph representations 
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2.3.1 Time services 

 

• time and timer 

• physical and logical clocks 

 

 

 

                            Physical clock 

A distributed time service architecture 

 

Distributed  Time  Service 
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Lamport Logical Clock 

 

The happens-before relationship: → 

1. If a → b within a same process then C(a) < C(b). 

2. If a is the sending event of Pi and 

b is the corresponding receiving event of Pj, then a → b and 

Ci(a) < Cj(b). 

 

 

For it to be possible for a to have an influence on b, then a → b must be true. 

 

                        Implementation: 

 

C(b) = C(a) + d and 

Cj(b) = max(TSa + d, Cj(b)), 

where TSa is the timestamp of the sending event and d is a positive number. 
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So, a → b  =⇒  C(a) < C(b), but C(a) < C(b) =/⇒ a → b. 
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Vector Logical Clock 

Used so that if Ci(a) < Cj(b) then a → b. Define V Ci = [TS1, TS2, ..., Ci, ..., TSn], 

where n is the number of cooperating processes. On message receipt, use pair-wise 

maximum. 

V Cj[j] = V Cj[j] + d 

V Cj[k] = max(V Cj[k], TSi[k]) : l = 1..n 
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V Cj[j] is Pj’s count of events that have occured at Pj, 

V Cj[k] is Pj’s knowledge of events that have occured at Pk. 
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Pi’s knowl 

 

Matrix Logical Clock 

 

MCi represents 

Pi’s knowledge of its local events (MCi[i, i]), 

its knowledge of the events that Pj knows about (MCi[i, j]), and its knowledge of 

Pj’s knowledge of events at Pk (MCi[j, k]). 

MCi[i, i] = MCi[i, i] + d – Pi updates local event counter on send 

 

When Pj receives a message from Pi with timestamp TS, MCj[j, l] = max(MCj[j, 

l], TSi[i, l]) : l = 1..n update vector clock, and 

 

MCj[k, l]  = max(MCj[k, l], TSi[k, l]) : k = 1..n, l = 1..n update Pk’s 

knowledge of Pl’s counter 
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2.4 Language constructs for synchronization 

 

Concurrent languages 

 

• Specification of concurrent activities 

• Synchronization of processes 

• Interprocess communication 

• Nonderterministic execution of processes 

 

  Language constructs 

 

• Program structure 

• Data structure 

• Control structure 

• Procedure and system call 

• Input and output 

• Assignment 
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Synchronization Methods Language Facilities 

Shared-Variable Synchronization 
semaphore shared variable and system call 

monitor data type abstraction 

conditional critical region control structure 

serializer data type and control structure 

path expression data type and program structure 

Message Passing Synchronization 
communicating sequential processes input and output 

remote procedure call procedure call 

rendezvous procedure call and communication 

 

 

Synchronization mechanisms and language facilities 

 

 

 

 

                   Shared-variable synchronization 

 

• Semaphore and conditional critical region 

• Monitor and serializer 

• Path expression 

 

Classic Problems 

 

• Critical Section 

• Dining Philosophers 

• Readers/Writers 

• Producer-Consumer



13  

Example: the Reader/Writer Problems synchronization + 

concurrency 

 

Basics 

• if DB empty, allow anyone in 

• if reader in DB, writer not allowed in 

• if writer in DB, nobody allowed in 

 
 

 

 

 

Variations 

• reader preference 

Allow a reader in if other readers are in 

• strong reader preference 

Allow readers in when writer leaves 

• weak reader preference 

When writer leaves, select a process at random 

• weaker reader preference 

Allow a writer in when writer leaves 

• writer preference 

Do not allow readers in if writer is waiting 
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Semaphore solution to the weak reader preference problem 

 

 

var mutex=1, db=1: semaphore; rc=0: integer  

reader processes writer processes 

do (forever) do (forever) 

BEGIN BEGIN 

 

otherStuff() otherStuff() 

 

P(mutex) 

rc := rc + 1 

if rc = 1 then P(db) P(db) V(mutex) 

 

read database write database 

 

P(mutex) rc := rc -1 

if rc = 0 then V(db) V(db) V(mutex) 

 

END END 
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Monitor solution 

rw : monitor 

var rc : integer; busy : boolean; toread, towrite : condition; 

 

procedure startread procedure endread 

begin begin 

if busy then toread.wait; 

rc := rc + 1; rc := rc - 1; 

toread.signal; if rc = 0 then towrite.signal; 

end end 

 

procedure startwrite procedure endwrite 

begin begin 

if busy or rc ƒ= 0 

then towrite.wait; busy := false; 

busy := true; toread.signal or towrite.signal; 

end end 

 

begin rc := 0; busy := false end 

—————————————————————- 

reader processes writer processes 

 

do (forever) BEGIN do (forever) BEGIN 

 

otherStuff() otherStuff() 

 

rw.startread rw.startwrite 

read database write database 

rw.endread rw.endwrite 

 

END END 
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CCR solution 

 

 

var db: shared; rc: integer; 

 

reader processes writer processes 

 

region  db begin  rc := rc + 1 end; region db when rc = 0 read database 

begin write dat abase end region db begin rc := rc - 1 end; 

 

 

 

Serializer solution 

 

 

rw : serializer 

var readq, writeq: queue; rcrowd, wcrowd: crowd; 

 

procedure read 

begin 

enqueue(readq) until empty(wcrowd); joincrowd(rcrowd) then begin read database 

end; end 

 

procedure write 

begin 

enqueue(writeq) until (empty(wcrowd) and empty(rcrowd)); 

joincrowd(wcrowd) then begin write database end; end 

 

 

 

Path Expression solution 

 

path 1:([read],write) end 



17  

 

 

Message Passing Synchronization 

 

• Asynchronous: non-blocking send, blocking receive 

• Synchronous: blocking send, blocking receive 

 

 
 

 

 

 

 

Communicating Sequential Processes (CSP) 

 

P : Q!exp, Q: P ?var, and guarded commands Process P executes Q!(x + y), 

. then expression x + y is evaluated and sent to process Q. Process Q executes P 

?z, 

. then process Q sets variable z to the value received from process P 

 

ADA rendezvous task rw is 

entry startread; entry endread; entry startwrite; entry endwrite; 

end 

 

task body rw is 

rc: integer := 0; 
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busy: boolean := false; 

begin loop 

select 

when busy = false → 

accept startread do rc := rc + 1 end; 

or 

 

or or 

end 

loo

p 

en

d; 

 

→ 

accept endread do rc := rc - 1 end; 

 

when rc = 0 and busy = false → 

accept startwrite do busy = true end; 

 

→ 

accept endwrite do busy = false end; 

 

 

 

 

 

 

 

 

 

 

 

 

2.5 Concurrent Programming 

Languages 

           A taxonomy 
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          2.5.1 Coordination languages 

 

• OCCAM: based on CSP process model, use PAR, ALT, and SEQ con- structors, 

use explict global links for communication. 

 

• SR: based on resource (object) model, use synchronous CALL and asyn- chronous 

SEND and rendezvous IN, use capability for channel naming. 

• LINDA: based on distributed data structure model, use tuples to repre- sent both 

process and object, use blocking IN and RD and non-blocking OUT for 

communication. 
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    2.5.2 Concurrent Programs 

         Processes and concurrent programs:  
basic definitions A sequential program specifies sequential execution of a list of statements; its 

execution is called a process. A concurrent program specifies two or more sequential programs 

that may be executed concurrently as parallel processes. In many languages, process is also the 

name of the construct used to describe process behavior ; one notable exception is Ada, which 

uses the name task for this purpose. 

 

   Distinguishing concurrent, parallel, and distributed programs: 

 A concurrent program is commonly discussed in the same context as parallel or distributed 

programs. Unfortunately, few authors give precise meanings to these terms and the meanings 

that are offered tend to conflict. On balance, the following definitions seem appropriate:  

• A concurrent program defines actions that may be performed simultaneously. 

 • A parallel program is a concurrent program that is designed for execution on parallel hardware. 

 • A distributed program is a parallel program designed for execution on a network of autonomous 

processors that do not share main memory 

 

  Distinguishing concurrent programs and concurrent systems: 

 A concurrent program is primarily a coherent unit of software. If two pieces of communicating 

software run concurrently, the result is a concurrent program when the two pieces form a 

conceptual whole; otherwise, the situation is viewed as two programs communicating through 

an agreed protocol. The communicating programs do, however, constitute a concurrent system 

(or parallel system or distributed system, as appropriate). 

 

2.5.3 Problems in concurrent programs 

     Violating mutual exclusion: 

     Some operations in a concurrent program may fail to produce the desired effect if they are 

performed by two or more processes simultaneously. The code that implements such operations 

constitutes a critical region or critical section. If one process is in a critical region, all other 

processes must be excluded until the first process has finished. When constructing any 

concurrent program, it is essential for software developers to recognize where such mutual 

exclusion is needed and to control it accordingly 

 

Most discussions of the need for mutual exclusion use the example of two processes attempting to 

execute a statement of the form: x := x + 1 

 

Assuming that x has the value 12 initially, the implementation of the statement may result in each 

process taking a local copy of this value, adding one to it and both returning 13 to x (unlucky!). 

 Mutual exclusion for individual memory references is usually implemented in hardware. Thus, if 

two processes attempt to write the values 3 and 4, respectively, to the same memory location, 

one access will always exclude the other in time leaving a value of 3 or 4 and not any other bit 

pattern. 

 

   Deadlock: 

 A process is said to be in a state of deadlock if it is waiting for an event that will not occur. 

Deadlock usually involves several processes and may lead to the termination of the program. A 

deadlock can occur when processes communicate (e.g., two processes attempt to send messages 
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to each other simultaneously and synchronously) but is a problem more frequently associated 

with resource management. In this context there are four necessary conditions for a deadlock to 

exist . 

1. Processes must claim exclusive access to resources. 

 2. Processes must hold some resources while waiting for others (i.e., acquire resources in a 

piecemeal fashion). 3. Resources may not be removed from waiting processes (no preemption). 

4. A circular chain of processes exists in which each process holds one or more resources required 

by the next process in the chain. 

 

Busy waiting 

 Regardless of the environment in which a concurrent program is executed, it is rarely acceptable 

for any of its processes to execute a loop awaiting a change of program state. This is known as 

busy waiting. The state variables involved constitute a spin lock. It is not in itself an error but it 

wastes processor power, which in turn may lead to the violation of a performance requirement. 

Ideally, the execution of the process concerned should be suspended and continued only when 

the condition for it to make progress is satisfied. 

 

 

2.5.4 Properties of Concurrent Programs: 

Safety 

 Safety properties assert what a program is allowed to do, or equivalently, what it may not do. 

 Examples include: 

 • Mutual exclusion: no more than one process is ever present in a critical region. 

 • No deadlock: no process is ever delayed awaiting an event that cannot occur. 

 • Partial correctness: if a program terminates, the output is what is required. 

 

Liveness  

Liveness (or progress )properties assert what a program must do; they state what will happen 

(eventually) in a computation. 

 Examples include:  

• Fairness (weak): a process that can execute will be executed.  

• Reliable communication: a message sent by one process to another will be received. 

 • Total correctness: a program terminates and the output is what is required. 

 

2.5.5 Executing Concurrent Programs 

 

1. Measures of concurrency 

Concurrent behavior can be measured in several ways. In practice, the measures are merely rough 

classifications of behavior that help characterize a program. These measures are given names 

here, for convenience, but there is no consensus on naming. In particular, references to the term 

grain or granularity of concurrency in the literature may mean any of the following measures:  

• The unit of concurrency is the language component on which process behavior is defined. It 

may be an element in an expression; it may be a program statement; but most commonly it is a 

program block.  

• The level of concurrency is the mean number of active processes present during the execution of 

a program. 

 • The scale of concurrency is the mean duration (or lifetime) of processes in the execution of a 
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program ; there is an overhead in initiating a concurrent activity, and so ideally its duration 

should be sufficiently long to make that overhead negligible. 

 • The grain of concurrency is the mean computation time between communications in the 

execution of a program ; this should be relatively large if a physical distribution of processes is 

required. 

 

2. Execution environments  

Programs involving large-scale concurrent behavior (comprising processes of relatively long 

duration) are executed most commonly on a single processor computer in which the processor is 

shared among the active processes. This is known as multiprogramming (or multitasking). 

Multiprocessing occurs on a multiprocessor, a computer in which several (usually identical) 

processors share a common primary memory.  

Multicomputers use separate primary memory, and their execution of processes is known as 

distributed processing. Closely coupled multicomputers have fast and reliable point-to-point 

interprocessor links; loosely coupled systems communicate over a network that is much slower 

and much less reliable. Components of a multicomputer may be in the same vicinity or 

physically remote from each other. 

 In  these are referred to as workstation-LANs (Local Area Networks) and workstation-WANs 

(Wide Area Networks), respectively. 

 Small-scale concurrent programs are usually executed by array or vector processor computers that 

apply the same operation to a number of data items at the same time. This is known as 

synchronous processing . 

 Dataflow and reduction machines apply different operations to different data items simultaneously 

. These latter machines are still largely experimental. A detailed presentation of the hardware 

available for parallel processing is given in . A collection of early papers on parallel processing 

may be found in . 

 

3. Patterns of execution 

 Most commonly, a concurrent program starts as a single process and subdivides into multiple 

processes at some point in its execution. The spawned processes may be activated individually 

or in sets. The processes thus activated may be able to subdivide in the same way. 

 There are two main models of execution:  

1. The spawned processes, when activated, execute independently of the process that triggers their 

execution. 

2. The triggering process forks into multiple processes which, when complete, join to form a 

single process again.  

Most programming languages support the fork-and-join model. 

 

3. Process states 

 A process exists in one of three states (there is no agreement on the names used): 

1. Awake, meaning that the process is able to execute. 

2.  Asleep (or blocked), meaning that the process is suspended awaiting a particular event (e.g., 

message arrival or resource available). 

3.  Terminated, meaning that the execution of the process has finished. 

 Processes that are awake can be further divided into those that are running (executing) and those 

that are ready to run as soon as a processor becomes available. 
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4. Process scheduling 
 In exceptional circumstances, a concurrent program may run directly on bare hardware. 

 More usually, however, it will execute on top of support software that provides a more abstract 

interface to that hardware. This is known as the system kernel or nucleus.  

One component of the nucleus is the scheduler, which is responsible for the allocation of 

processors to processes, that is, the resolution of the mismatch between the number of processes 

that can execute and the number of processors available to execute them. In distributed systems, 

the scheduler itself may be distributed .  

The processes in some concurrent programs are assigned explicitly to particular processors by the 

program designer. More commonly, however, the mapping is handled implicitly by the 

scheduler. Processes often execute with different priorities.  

One objective of the scheduler is to ensure that all running processes have no lower a priority than 

those that are in a ready state. Priorities may be assigned explicitly by the program designer or 

be set and adjusted implicitly by the scheduler. 

 The compilation of a concurrent program results in the generation of calls to the kernel that may 

trigger scheduling operations. Any entry to the kernel provides an opportunity to suspend the 

process involved and select another for execution. In some cases, normal program behavior may 

result in an acceptably even distribution of processor power over the competing processes. 

However, when processing power is scarce it is desirable to implement some form of time 

slicing to ensure that all processes make steady progress. This is often implemented with the 

assistance of a  system clock that interrupts at least one processor at regular intervals. 

 

 

2.6 INTERPROCESS COMMUNICATION AND COORDINATION 

 

Basic message passing communication 

 Communication primitives:  

send(destination, message) 

 receive(source, message)  

channel naming = process name, link, mailbox, port 

 • direct communication: symmetric/asymmetric process naming, link 

 • indirect communication: many-to-many mailbox, many-to-one port 

 

2.6.1Message Passing 

 

Message buffering and synchronization 
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Message passing API  

 

• Pipe: A FIFO byte-stream unidirectional link for related processes (set up at process invocation) 

 • Message queue: A structured variable length message queue 

 • Named Pipe: A special FIFO file pipe using path name for unrelated processes under the same 

domain (explicitly created and accessed) 

 • Socket: A logical communication endpoint for communication between autonomous domains 

(bound to physical communication endpoint) 
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2.6.2 Request/Reply and Transaction Communication 

 

  Asymmetric - Client and Server Server starts first: 

 • Server process: application level process 

 - server protocol 

 • LCE: Logical Communication Endpoint - established with socket call 

 • PCE: Physical Communication Endpoint - (Transport TSAP/L4SAP, Network NSAP/L3SAP) bound to 

LCE with bind call 

 • Listen: Server waits for incoming connection request 

 • Accept: Server accepts connection request, initializes connection 

 • Read: Server reads incoming segment(s) of request • Write: Server writes reply segment(s) 

 • Close: Server terminates connection when reply is received 

 

 

 

Client starts after Server: 

 • Client process: application level process - runs server protocol 

 • LCE: Logical Communication Endpoint - established with socket call  

• PCE: Physical Communication Endpoint - (Transport TSAP/L4SAP, Network NSAP/L3SAP) bound to 

LCE with connect  call, which also initialized connection to server PCE 

 • Write: Client writes request segment(s) 

 • Read: Client reads incoming segment(s) of reply 

 • Close: Client terminates connection when reply is received and acknowledged 
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2.6.2 Name and Directory services 

Name and Directory Services 

 

                       Object attributes and name structures 

 
 

 

 

  

 

2.6.3 RPC and RMI case studies 
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21 
 

  
 

 

 

 

 

 

 RPC exception and failure  

• Exception: in-band or out-band signaling 

 • Link failure: retransmission, sequence number and idempotent requests, use of transaction id xid 

 • Server crash: –  

  at least once: server raises an exception and client retries 

 – at most once: server raises an exception and client gives up 

 – maybe: server raises no exception and client retries 

 • Client crash: 

 – orphan killed by client 

 – orphan killed by server  

– orphan killed by expiration 

 

 

Secure RPC 

- Cs and Ss are 128-bit random numbers. 

- Cp = α Csmod M, and Sp = α Ssmod M, where α and M are known constants. 

 

SKcs = S Cs p = (α Ss ) Cs = α Ss∗Cs  

SKsc = C Ss p = (α Cs ) Ss = α Cs∗Ss 
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2.7  Transaction Communication ACID properties 

 • Atomicity 

Consistency 

 • Isolation  

• Durability 
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          Distributed Mutual Exclusion 

 • Contention-based: 

 – Timestamp prioritized  

– Voting  

• Control (Token)-based: 

 – Ring structure 

 – Tree structure  

– Broadcast structure 
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Leader Election Complete topology 

Complete topology 
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