UNIT-IV
COMPUTER ARITHMETIC

Introduction:
Data is manipulated by using the arithmetic instructions in digital computers. Data is manipulated
to produce results necessary to give solution for the computation problems. The Addition,
subtraction, multiplication and division are the four basic arithmetic operations. If we want then

we can derive other operations by using these four operations,

To execute arithmetic operations there is a separate section called arithmetic processing unit in
central processing unit. The arithmetic instructions are performed generally on binary or decimal
data. Fixed-point numbers are used to represent integers or fractions. We can have signed or
unsigned negative numbers, Fixed-point addition is the simplest arithmetic operation.

If we want to solve a problem then we use a sequence of well-defined steps. These steps are
collectively called algorithm. To solve various problems we give algorithms.

In order to solve the computational problems, arithmetic instructions are used in digital computers
that manipulate data. These instructions perform arithmetic calculations.

And these instructions perform a great activity in processing data in a digital computer.
As we already stated that with the four basic arithmetic operations addition, subtraction,
multiplication and division, it is possible to derive other arithmetic operations and solve

scientific problems by means of numerical analysis methods.

A processor has an arithmetic prbcessor(as a sub part of 'it) that executes arithmetic
operations. The data type, assumed to reside in processor, registers during the execution
of an arithmetic instruction. Negative numbers may be in a signed magnitude or signed
complement representation. There are three ways of representing negative fixed point -
binary numbers signed magnitude, signed 1’s comp]emént or signed 2’s complement.
Most computers use the Signed magnitude representation for the mantissa. :

Addition and Subtraction :
Addition and Subtraction with Signed —Magnitude Data

We designate the magnitude of the two numbers by A and B. Where the signed numbers
- are added or subtracted, we find that there are eight different conditions to consider,
depending on the sign of the numbers aﬁd the operation performed. These conditions are
listed in the first column of Table 4.1. The other columns in the table show the actual
~ operation to be performed with the magnitude of the numbers. The last column is needed
to present a negative zero. In other words, when two equal numbers are subtracted, the

result should be +0 not -0.

| The algorithms for addition and subtractic_m‘ are derived from the table and can be stated
as follows (the words parentheses should be used for the subtraction algorithm)

UNIT-IV : ' 109 :
Scanned with CamScanner

Addition and Subtraction of Signed-Magnitude Numbers
2

Addition and Subftraction

Computer Arithmetic

SIGNED MAGNITUDEADDITION AND SUBTRACTION

A+ B; A: Augend; B:Addend

Addition:
Subtraction: A-B: A:Minuend; B: Subtrahend
Add ~ Subtract Magnitude
Operation | Magnitude |WhenA>B. When A<B When A=B
(+A)+(+B) [+A+B) :
(+A) +(-B) +A-B) -(B-A) +(A-B)
(-A) +(+B) “(A-B) #{B-A) +(A-B)
(-A) +(-B) -(A+B) '
($A)- (+B) | ; +HA-B) -(B-A) +(A-B)
(+A) - (-B) +(A + B) '
(-A)- (+B) | -(A+B)
(-A) - (-B) -(A-B) #B-A) +(A-B)’
Hardware Implementation B Register
ACLC(0"-}04; ﬂllzo - |AVF Complementer [¢ M(Mode Control)
et © o]b l | _
/P(“ ;D ‘ g:: ryUt Parallel Adder gl;:';
3 ”" 4 g v i S | 5
[ARegister _ [——Load Sum I
" Computer Organization et Prof. H. Yoon
Computer Arithmetic’ 3 Add}tion and Subtraction

SIGNED 2’ S COMPLEMENT ADDITION ANDisUBTRACTION

Hardware

- B Register |
: : Compl t d
N | Pa’:a?l':lexdzre?'n
OVQrflowr
| 1
‘ [" AC
. Algorithm .
| Subtract Add
I |

Augend In AC
Addend in B

Minuendin AC !
. Subtrahend in B

|

l ‘

AC «—AC +B'+1

AC «AC +B
V « overflow

V « overflow

Computer Organization

Prof. H. Yoon

Scanned with CamScanner

Algorithm:

0

My

The flowchart is shown in Figure 7.1. The fw‘o signs A, and B, are compared by an ‘
exclusive-OR gate. : | ‘ |

If the output of the gate is 0 the signs are
identical; If it is 1, the signs are different.

! For an add operation, identical signs dictate that the magnitudés be added. For a

subtract operation, different signs dictate that the magnitudes be added.

The magnitudes are added with a microoperation EA ~ A + B, where EA is a register
that combines E and A. The carry in E after the addition constitutes an overflow iF it is
equal to 1. The value of E is transferred into the add-overflow flip-flop AVF.

The two magnitudes are subtracted if the signs are different for an add operation or

identical for a subtract operation. The magnitudes are subtracted by adding A to the
2's complemented B. No overflow can occur if the numbers are subtracted so AVF is
cleared to 0.

1 in E indicates that A >= B and the number in A is the correct result. If this numbs is
zero, the sign A must be made positive to avoid a negative zero. =~ -

0 in E indicates that A < B. For this case it is necessary to take the 2's complement of
the value in A. The operation can be done with one microoperation A~ A' +1. -

However, we assume that the A register has circuits for microoperations complement
and increment, so the 2's complement is obtained from these two microoperations.

In other paths of the flowchart, the sign of the result is the same as the sign of A. so no
change in A is required. However, when A < B, the sign of the result is the
complement of the original sign of A. It is then necessary to complement A, to obtain
the correct sign. | i

The final result is found in register A and its sign in As. The value in AVF provideé\an
overflow indication. The final value of E is immaterial. :

Figure 7.2 shows a block diagram of the hardware for implementing the addition and)

subtraction operations. ' |

It consists of régisters A and B and si‘gn flip-flops As and Bs.
Subtraction is done by adding A to the 2's complement of B.

The output carry is transferred to flip-flop E‘, where it can be checked to determine
the relative magnitudes of two numbers. i

The add-overflow flip-flop AVF holds the overflow bit when A and B are added.

The A régister provides other micfooperatiohs that may be needed when we specify
the sequence of steps in the algorithm.

»,‘7',.“?\") -

Scanned with CamScanner

Subtracy operation Add operution

Augend in A
] Addend in g

Minuend in .-
bubn'nhencl in »

A DB, N
A, 3, A, =n,
|
|[:‘A<~'A+B
Aw::—g |
YoR
0 @ — 0
| O gt 3
Tl b , | |02

Figure 10:2 Flowchare for add and suBtract operations.

Multiplication Algorithm:

In the beginning, the multiplicand is in B and the multiplier in Q. Their corresponding signs are -
in Bs'and Qs respectively. We compare the signs of both A and Q and set to corresponding sign
of the product since a double-length product will be stored in registers A and Q. Registers A and
E are cleared and the sequence counter SC is set to the number of bits of the multiplier. Since an

operand must be stored with its sign, one bit of the word will be occupied by the sign and the
magnitude will consist of n-1 bits.

Now, the low order bit of the multiplier in Qn is tested. If it is 1, the multiplicand (B) is added to
present partial product (A), 0 otherwise. Register EAQ is then shifted once to the right to form-th-e
new partial product. The vsequengg,}c;:ounter is decremented by 1 and its new value checked. If it is
not equal to zero, the process is repeated and a new partial product is formed. When SC =0 we
stops the process. ;

! ; END
((result is in 4 and Ag)) i ‘) [’ z @

Scanned with CamScanner

P

Nultiplicand

« & w IMﬂI
vl

¥

Lt et Adder

Add

Shift Right

'qlulll ‘B Add)

L Control Logle 70

C A
0 0000
0 10113
0 0101
" o010
0 1101
¢ 0110
. Cav 1y, 000d
G Y‘j 0 1000

3
Qib M !
1101 1011
— Ay

1101 _ 1011
1110@), 1011
Q= i"’s

1112 1011

113000 1011
11140 1011

11110 1011

Il@

My [+

‘1111Q 2011«

st
ls*°

Imhm ajmq

Multiply operation
¥

Multi;licand in B

Multiplier in Q
)

A.v<— Q,O B.s'
QS‘—QSO B!
A<—0E<—0
SC«—n-1

|

ﬁ/
SR LYY S (5 I

F 3
LU RO <
o (%

Multiplier

\
@/[pem{"mj
—t
Initial Values

Add } First Ao{a(Mwith A A= /H‘M

Shiftyv
CA

WY oRS I Q,=1 e tave o

Second

shift }- cycle /befffmvl 41?7077

aad 3 Third _,g,,/,Ce @, =1 ATY

shift

Add } Fourth
Cycle ~TQ:

shift

cycle

=) 0010
| ol
|10

o= | ’
4 o\\o+1om;@oom

edld \W’l'# Mﬁfm(/

EA<-A+B

{END
(products Js in AQ)

Figure: F lowchart for multiply operation.

Booth’s algorithm :

UNIT-IV

o

(1 Booth algorithm gives a procedure for fnultiplying binary integers in siéned- 2’s
complement representation,

{; It operates on the fact that strings of 0’s in the multiplier require no addition but just

Scanned with CamScanner

fpel:&n) sag%? _stgm.g of 1I’s in the multiplier from bit weight 2* to weight 2™ can be

() For example, the binary number 001110 (+14) has a string 1’s from 23 to 2! (k=3,
m=1). The number can be represented as 2k*! = 2m, =24~ 21"= 16 — 2 = 14. Therefore,

the multiplication M X 14, where M is the multiplicand and 14 the multiplier, can be
doneasM X 2*-M X 2', ‘

(1 Thus the product can be obtained by shifting the binary multiplicand M four times to
the left and subtracting M shifted left once.

Hardware for Booth Algorithm

> Sign bits are not separated

from the rest of the [BR register_ | 5"“"“““':g%?UNTE,;|
registers -

: > rename registers A;B; and

f Q as AC.BR and QR

respectively Complementer and
~ < parallel adder
> Q,, designates the least E "

significant bit of the

multiplier in register QR % | Q,.; |
> Flip-flop Qn+1 is appended Sz . 1

to QR to facilitate a double | __ACregister == OR repister ==
bit inspection of the

multiplier
lStart)i

]
A= 0, Q-1=0
M ~— Multiplicand
Q -~=— Multiplier
Count - ¢

A== A-M | | A~ A +M

Arithmetic shift
Right: A, Q, Q-1
Count -+ Count-1

P

T As in all multiplication schemes, booth algorithm requires examination of the
- multiplier-bits and shifting of partial product. :

T Prior to the shifting, the multiplicand may be added to the partial product,'su'btracted
from the partial, or left unchanged according to the following rules:

UNIT-IV 6]
Scanned with CamScanner

,,,,,

The multiplicand is subtracted from the partial product upon encountering the

1.
first least significant 1 in a string of 1°s in the multiplier.

2. The multiplicand is added to the partial product upon encoﬁntering the first 0
in a string of 0’s in the multiplier. '

3. The partial pfoduct does not change when multiplier bit is identical to the

previous multiplier bit.

The algorithm works for positive or negative multipliers in 2°s complement |
representation.

This is because a negative multiplier ends with a string of 1’s and the last operation
will be a subtraction of the appropriate weight.

The two bits of the multiplier in Qn and Qn+1 are inspected.

If the two bits are equal to 10, it means that the first 1 in a string of 1 's has been
encountered. This requires a subtraction of the multiplicand from the partial product in

AC,

If the two bits are equal to 01, it means that the first 0 in a string of 0's has been
encountered. This requires the addition of the multiplicand to the partial product in

AC.
When the two bits are equal, the partial product does not change.

Scanned with CamScanner

