
 

SYLLABUS 

Unit I: 

Introduction: Objective, scope and outcome of the course.  

Unit II: 

Computer Data Representation: Basic computer data types, Complements, Fixed point 

representation, Floating point representation. 

Register Transfer and Micro-operations: Register Transfer language, Register Transfer, 

Bus and Memory Transfers (Three-State Bus Buffers, Memory Transfer), Arithmetic Micro-

Operations, Logic Micro-Operations, Shift Micro-Operations, Arithmetic logical shift unit.  

Basic Computer Organization and Design: Instruction codes, Computer registers, computer 

instructions, Timing and Control, Instruction cycle, Memory-Reference Instructions, Input-

output and interrupt, Complete computer description, Design of Basic computer, design of 

Accumulator Unit. 

Unit III: 

Programming The Basic Computer: Introduction, Machine Language, Assembly 

Language, assembler, Program loops, Programming Arithmetic and logic operations, 

subroutines, I-O Programming.  

Micro programmed Control: Control Memory, Address sequencing, Micro program 

Example, design of control Unit. 

Unit IV: 

Central Processing Unit: Introduction, General Register Organization, Stack Organization, 

Instruction format, Addressing Modes, data transfer and manipulation, Program Control, 

Reduced Instruction Set Computer (RISC) 

Pipeline And Vector Processing: Flynn's taxonomy, Parallel Processing, Pipelining, 

Arithmetic Pipeline, Instruction, Pipeline, RISC Pipeline, Vector Processing, Array 

Processors. 



 

Unit V: 

Computer Arithmetic: Introduction, Addition and subtraction, Multiplication Algorithms 

(Booth Multiplication Algorithm), Division Algorithms, Floating Point Arithmetic 

operations, Decimal Arithmetic Unit.  

Input-Output Organization, Input-Output Interface, Asynchronous Data Transfer, Modes 

Of Transfer, Priority Interrupt, DMA, Input-Output Processor (IOP), CPU-IOP 

Communication, Serial communication. 

Unit VI: Memory Organization: Memory Hierarchy, Main Memory, Auxiliary Memory, 

Associative Memory, Cache Memory, Virtual Memory.  

Multiprocessors: Characteristics of Multiprocessors, Interconnection Structures, Inter-

processor Arbitration, Inter- processor Communication and Synchronization, Cache 

Coherence, Shared Memory Multiprocessors. 

 

Text Books: 

1. “Computer Organization and Architecture”, William Stallings (Pearson Education 

India) 

2. “Computer Organization and Architecture”, John P. Hayes (McGraw Hill) 

3. “Computer Organization”, V. Carl. Hamacher (McGraw Hill) 

  



 

UNIT 1 

1.1 Course Description: Computer Architecture  

This course introduces the principles of computer organization and the basic architecture 

concepts. The course emphasizes performance, instruction set design, pipelining, memory 

technology, memory hierarchy, virtual memory management, and I/O systems and design of 

various microprocessors. 

 

1.2 Course Objectives 

On successful completion of this course students should be able:  

 To understand the structure, function and characteristics of computer systems. 

 To understand the design of the various functional units and components of computers. 

 To explain the function of each element of a memory hierarchy. 

 To identify and compare different methods for computer I/O. 

 To identify the elements of modern instructions sets and their impact on processor 

design. 

 

1.3 Course Scope 

 Computer architecture and organization knowledge helps to have peripheral knowledge 

as there are various aspects to processor design.  

 Very broadly, there is an architecture aspect, a circuit aspect, and a process aspect to 

designing a CPU.  

 The process engineers at the fabrication centers for manufacturing the CPU in real 

silicon need know-how in semiconductor physics, fabrication technology, and possibly 

material science. It all depends on how deep you want to go down the rabbit hole.  

 A lot of ideas from OS, networks, compiler design, and distributed systems can be 

applied here, with a singular purpose of delivering the maximum performance at the 

lowest cost.  



 

 However, we get to know everything about how a CPU works.  And that is a good 

direction to go, because having knowledge of supporting technology will also help you 

to become a better computer architect or supporting roles. 

 

1.4 Course Outcomes 

On successful completion of this course students will be able to:  

 Understand the impact of instruction set architecture on cost-performance of computer 

design.   

 Identify microprocessor designs and various design techniques employed.    

 Examine the design process of a computer and critical elements in each step.   

 Understand memory hierarchy and its impact on computer cost/performance. 

 

  



 

Unit-2 

2.1 Computer Data Representation 

2.1.1 Computer Data Representation  

Data refers to the symbols that represent people, events, things, and ideas. Data can be 

a name, a number, the colors in a photograph, or the notes in a musical composition.  

Data Representation refers to the form in which data is stored, processed, and 

transmitted.  

Devices such as smart-phones, iPods, and computers store data in digital formats that 

can be handled by electronic circuitry 

 



 

 

 



 

 

2.1.2 Basic Computer Data Types  

 Registers contain either data or control information 

 Control information is a bit or group of bits used to specify the sequence of 

command signals needed for data manipulation 

 Data are numbers and other binary-coded information that are operated on 

 Possible data types in registers: 

o Numbers used in computations 

o Letters of the alphabet used in data processing 

o Other discrete symbols used for specific purposes 

 All types of data, except binary numbers, are represented in binary-coded form 

 A number system of base, or radix, r is a system that uses distinct symbols for r 

digits 

 Numbers are represented by a string of digit symbols 

 The string of digits 724.5 represents the quantity 

7 x 102 + 2 x 101 + 4 x 100 + 5 x 10-1 

 The string of digits 101101 in the binary number system represents the quantity 

1 x 25 + 0 x 24 + 1 x 23 + 1 x 22 + 0 x 21 + 1 x 20 = 45 

 (101101)2 = (45)10 

 We will also use the octal (radix 8) and hexadecimal (radix 16) number 

systems (736.4)8 = 7 x 82 + 3 x 81 + 6 x 80 + 4 x 8-1 = (478.5)10 

(F3)16 = F x 161 + 3 x 160 = (243)10 

 Conversion from decimal to radix r system is carried out by separating the 

number into its integer and fraction parts and converting each part separately 

 Divide the integer successively by r and accumulate the remainders 



 

 Multiply the fraction successively by r until the fraction becomes zero 

 

 

 Each octal digit corresponds to three binary digits 

 Each hexadecimal digit corresponds to four binary digits 

 Rather than specifying numbers in binary form, refer to them in octal or 

hexadecimal and reduce the number of digits by 1/3 or ¼, respectively 
 
 

 

 

 

 



 

 

 
 

 

 A binary code is a group of n bits that assume up to 2n distinct combinations 

 A four bit code is necessary to represent the ten decimal digits – 6 are unused 

 The most popular decimal code is called binary-coded decimal (BCD) 

 BCD is different from converting a decimal number to binary 

 For example 99, when converted to binary, is 1100011 

 99 when represented in BCD is 1001 1001 

 



 

 
 

 The standard alphanumeric binary code is ASCII 

 This uses seven bits to code 128 characters 

 Binary codes are required since registers can hold binary information only 

 

 
 



 

 
 

2.1.3 Complements 

 

 Complements are used in digital computers for simplifying subtraction and logical 

manipulation 

 Two types of complements for each base r system: r’s complement and (r – 1)’s 

complement 

 Given a number N in base r having n digits, the (r – 1)’s complement of N is 

defined as (rn – 1) – N 

 

 For decimal, the 9’s complement of N is (10n – 1) – N 

 The 9’s complement of 546700 is 999999 – 546700 = 453299 

 The 9’s complement of 453299 is 999999 – 453299 = 546700 

 For binary, the 1’s complement of N is (2n – 1) – N 

 The 1’s complement of 1011001 is 1111111 – 1011001 = 0100110 

 The 1’s complement is the true complement of the number – just toggle all bits 

 

 The r’s complement of an n-digit number N in base r is defined as rn – N 

 This is the same as adding 1 to the (r – 1)’s complement 



 

 The 10’s complement of 2389 is 7610 + 1 = 7611 

 The 2’s complement of 101100 is 010011 + 1 = 010100 

 Subtraction of unsigned n-digit numbers: M – N 

o Add M to the r’s complement of N – this results in 
M + (rn – N) = M – N + rn 

o If M  N, the sum will produce an end carry rn which is discarded 

o If M < N, the sum does not produce an end carry and is equal to 
rn – (N – M), which is the r’s complement of (N – M). To obtain the 

answer in a familiar form, take the r’s complement of the sum and place a 

negative sign in front. 
 

Example: 72532 – 13250 = 59282. The 10’s complement of 13250 is 86750. 

 

M = 72352 

10’s comp. of N = +86750 

Sum =  159282 

Discard end carry = -100000 

Answer = 59282 

Example for M < N: 13250 – 72532 = -59282 

M = 13250 

10’s comp. of N = +27468 

Sum = 40718 

No end carry 

Answer = -59282 (10’s comp. of 40718) 

Example for X = 1010100 and Y = 1000011 

X = 1010100 

2’s comp. of Y = +0111101 

Sum = 10010001 

Discard end carry = -10000000 

Answer X – Y = 0010001 

Y = 1000011 

2’s comp. of X = +0101100 
Sum = 1101111 

No end carry 

Answer = -0010001 (2’s comp. of 1101111) 

 

 

 

  



 

2.2 Fixed-Point & Floating Point Representation 

2.2.1  Fixed-Point Representation: 

This representation has fixed number of bits for integer part and for fractional part. For 

example, if given fixed-point representation is IIII.FFFF, then you can store minimum value 

is 0000.0001 and maximum value is 9999.9999. There are three parts of a fixed-point number 

representation: the sign field, integer field, and fractional field. 

 

We can represent these numbers using: 

 Signed representation: range from -(2(k-1)-1) to (2(k-1)-1), for k bits. 

 1’s complement representation: range from -(2(k-1)-1) to (2(k-1)-1), for k bits. 

 2’s complementation representation: range from -(2(k-1)) to (2(k-1)-1), for k bits. 

2’s complementation representation is preferred in computer system because of unambiguous 

property and easier for arithmetic operations. 

Example: Assume number is using 32-bit format which reserve 1 bit for the sign, 15 bits for 

the integer part and 16 bits for the fractional part. 

Then, -43.625 is represented as following: 

 

Where, 0 is used to represent + and 1 is used to represent. 000000000101011 is 15 bit binary 

value for decimal 43 and 1010000000000000 is 16 bit binary value for fractional 0.625. 

The advantage of using a fixed-point representation is performance and disadvantage 

is  relatively limited range of values that they can represent. So, it is usually inadequate for 

numerical analysis as it does not allow enough numbers and accuracy. A number whose 

representation exceeds 32 bits would have to be stored inexactly. 

 



 

These are above smallest positive number and largest positive number which can be store in 

32-bit representation as given above format. Therefore, the smallest positive number is 2 -

16 ≈  0.000015 approximate and the largest positive number is (215-1)+(1-2-16)=215(1-2-16) 

=32768, and gap between these numbers is 2-16. 

We can move the radix point either left or right with the help of only integer field is 1. 

 

2.2.2 Floating-Point Representation: 

This representation does not reserve a specific number of bits for the integer part or the 

fractional part. Instead it reserves a certain number of bits for the number (called the mantissa 

or significand) and a certain number of bits to say where within that number the decimal 

place sits (called the exponent). 

The floating number representation of a number has two part: the first part represents a signed 

fixed point number called mantissa. The second part of designates the position of the decimal 

(or binary) point and is called the exponent. The fixed point mantissa may be fraction or an 

integer. Floating -point is always interpreted to represent a number in the following form: 

Mxre. 

Only the mantissa m and the exponent e are physically represented in the register (including 

their sign). A floating-point binary number is represented in a similar manner except that is 

uses base 2 for the exponent. A floating-point number is said to be normalized if the most 

significant digit of the mantissa is 1. 

 

So, actual number is (-1)s(1+m)x2(e-Bias), where s is the sign bit, m is the mantissa, e is the 

exponent value, and Bias is the bias number. 

Note that signed integers and exponent are represented by either sign representation, or one’s 

complement representation, or two’s complement representation. 

The floating point representation is more flexible. Any non-zero number can be represented 

in the normalized form of  ±(1.b1b2b3 ...)2x2n This is normalized form of a number x. 

Example: Suppose number is using 32-bit format: the 1 bit sign bit, 8 bits for signed 

exponent, and 23 bits for the fractional part. The leading bit 1 is not stored (as it is always 1 

for a normalized number) and is referred to as a “hidden bit”. 

Then −53.5 is normalized as  -53.5=(-110101.1)2=(-1.101011)x25 , which is represented as 

following below, 



 

 

Where 00000101 is the 8-bit binary value of exponent value +5. 

Note that 8-bit exponent field is used to store integer exponents -126 ≤  n ≤ 127. 

The smallest normalized positive number that fits into 32 bits is 

(1.00000000000000000000000)2x2-126=2-126≈1.18x10-38 , and  largest normalized positive 

number that fits into 32 bits is (1.11111111111111111111111)2x2127=(224-1)x2104 ≈ 

3.40x1038 . These numbers are represented as following below, 

 

The precision of a floating-point format is the number of positions reserved for binary digits 

plus one (for the hidden bit). In the examples considered here the precision is 23+1=24. 

The gap between 1 and the next normalized floating-point number is known as machine 

epsilon. the gap is (1+2-23)-1=2-23for above example, but this is same as the smallest positive 

floating-point number because of non-uniform spacing unlike in the fixed-point scenario. 

Note that non-terminating binary numbers can be represented in floating point representation, 

e.g., 1/3 = (0.010101 ...)2 cannot be a floating-point number as its binary representation is 

non-terminating. 

 

 

 



 

2.3 Register Transfer and Micro-operations: 
 
2.3.1 Introduction to Register Transfer  

 Digital systems are composed of modules that are constructed from digital 

components, such as registers, decoders, arithmetic elements, and control logic 

 The modules are interconnected with common data and control paths to form a digital 

computer system 

 The operations executed on data stored in registers are called microoperations 

 A microoperation is an elementary operation performed on the information stored in 

one or more registers 

 Examples are shift, count, clear, and load 

 Some of the digital components from before are registers that implement 

microoperations 

 The internal hardware organization of a digital computer is best defined by specifying 

• The set of registers it contains and their functions 
• The sequence of microoperations performed on the binary information stored 

• The control that initiates the sequence of microoperations 

 Use symbols, rather than words, to specify the sequence of microoperations 

 The symbolic notation used is called a register transfer language 

 A programming language is a procedure for writing symbols to specify a given 

computational process 

 Define symbols for various types of microoperations and describe associated hardware 

that can implement the microoperations 

 

  Register Transfer 

 

 Designate computer registers by capital letters to denote its function 

 The register that holds an address for the memory unit is called MAR 

 The program counter register is called PC 

 IR is the instruction register and R1 is a processor register 

 The individual flip-flops in an n-bit register are numbered in sequence from 0 to 

n-1 

 Refer to Figure 4.1 for the different representations of a register 



 

 

 
 

 

 

 
 

 Designate information transfer from one register to another by 

R2  R1 

 

 This statement implies that the hardware is available 

o The outputs of the source must have a path to the inputs of the destination 

o The destination register has a parallel load capability 
 

 If the transfer is to occur only under a predetermined control condition, designate 

it by 

 
or, 

If (P = 1) then (R2  R1) 

 

P: R2  R1, 

where P is a control function that can be either 0 or 1 
 

 Every statement written in register transfer notation implies the presence of the 

required hardware construction 



 

 
 

 
 

 

 

 

 It is assumed that all transfers occur during a clock edge transition 

 All microoperations written on a single line are to be executed at the same time 

T: R2  R1, R1  R2 
 

 



 

  Bus and Memory Transfers 

 

 Rather than connecting wires between all registers, a common bus is used 

 A bus structure consists of a set of common lines, one for each bit of a register 

 Control signals determine which register is selected by the bus during each 

transfer 

 Multiplexers can be used to construct a common bus 

 Multiplexers select the source register whose binary information is then placed on 

the bus 

 The select lines are connected to the selection inputs of the multiplexers and 

choose the bits of one register 
 

 
 

 

 In general, a bys system will multiplex k registers of n bits each to produce an n- 

line common bus 

 This requires n multiplexers – one for each bit 

 The size of each multiplexer must be k x 1 

 The number of select lines required is log k 

 To transfer information from the bus to a register, the bus lines are connected to 

the inputs of all destination registers and the corresponding load control line must 

be activated 

 Rather than listing each step as 



 

BUS  C, R1  BUS, 

use R1  C, since the bus is implied 

 

 Instead of using multiplexers, three-state gates can be used to construct the bus 

system 

 A three-state gate is a digital circuit that exhibits three states 

 Two of the states are signals equivalent to logic 1 and 0 

 The third state is a high-impedance state – this behaves like an open circuit, which 

means the output is disconnected and does not have a logic significance 
 

 

 
 

 

 The three-state buffer gate has a normal input and a control input which 

determines the output state 

 With control 1, the output equals the normal input 

 With control 0, the gate goes to a high-impedance state 

 This enables a large number of three-state gate outputs to be connected with wires 

to form a common bus line without endangering loading effects 



 

 

 
 

 

 Decoders are used to ensure that no more than one control input is active at any 

given time 

 This circuit can replace the multiplexer in Figure 4.3 

 To construct a common bus for four registers of n bits each using three-state 

buffers, we need n circuits with four buffers in each 

 Only one decoder is necessary to select between the four registers 

 

 Designate a memory word by the letter M 

 It is necessary to specify the address of M when writing memory transfer 

operations 

 Designate the address register by AR and the data register by DR 

 The read operation can be stated as: 

Read: DR  M[AR] 

 The write operation can be stated as: 

Write: M[AR]  R1 

 

  Arithmetic Microoperations 

 

 There are four categories of the most common microoperations: 

o Register transfer: transfer binary information from one register to another 
o Arithmetic: perform arithmetic operations on numeric data stored in 

registers 



 

o Logic: perform bit manipulation operations on non-numeric data stored in 
registers 

o Shift: perform shift operations on data stored in registers 
 

 The basic arithmetic microoperations are addition, subtraction, increment, 

decrement, and shift 

 Example of addition: R3  R1 +R2 

 Subtraction is most often implemented through complementation and addition 

 Example of subtraction: R3  R1 + R2 + 1 (strikethrough denotes bar on top – 

1’s complement of R2) 

 Adding 1 to the 1’s complement produces the 2’s complement 

 Adding the contents of R1 to the 2’s complement of R2 is equivalent to 

subtracting 
 

 
 

 Multiply and divide are not included as microoperations 

 A microoperation is one that can be executed by one clock pulse 

 Multiply (divide) is implemented by a sequence of add and shift microoperations 

(subtract and shift) 

 

 To implement the add microoperation with hardware, we need the registers that 

hold the data and the digital component that performs the addition 

 A full-adder adds two bits and a previous carry 



 

 A binary adder is a digital circuit that generates the arithmetic sum of two binary 

numbers of any length 

 A binary added is constructed with full-adder circuits connected in cascade 

 An n-bit binary adder requires n full-adders 
 

 
 

 The subtraction A-B can be carried out by the following steps 

o Take the 1’s complement of B (invert each bit) 

o Get the 2’s complement by adding 1 

o Add the result to A 

 The addition and subtraction operations can be combined into one common circuit 

by including an XOR gate with each full-adder 

 
 

 The increment microoperation adds one to a number in a register 

 This can be implemented by using a binary counter – every time the count enable 

is active, the count is incremented by one 

 If the increment is to be performed independent of a particular register, then use 



 

half-adders connected in cascade 

 An n-bit binary incrementer requires n half-adders 
 

 
 

 Each of the arithmetic microoperations can be implemented in one composite 

arithmetic circuit 

 The basic component is the parallel adder 

 Multiplexers are used to choose between the different operations 

 The output of the binary adder is calculated from the following sum: 

D = A + Y + Cin 



 

 
 

 

 



 

 

  Logic Microoperations 

 

 Logic operations specify binary operations for strings of bits stored in registers 

and treat each bit separately 

 Example: the XOR of R1 and R2 is symbolized by 

P: R1  R1 ⊕ R2 

 Example: R1 = 1010 and R2 = 1100 
1010 Content of R1 

1100 Content of R2 

0110 Content of R1 after P = 1 

 

 Symbols used for logical microoperations: 

o OR:  

o AND:  

o XOR: ⊕ 

 The + sign has two different meanings: logical OR and summation 

 When + is in a microoperation, then summation 

 When + is in a control function, then OR 

 Example: 

P + Q: R1  R2 + R3, R4  R5  R6 

 There are 16 different logic operations that can be performed with two binary 

variables 



 

 
 

 The hardware implementation of logic microoperations requires that logic gates 

be inserted for each bit or pair of bits in the registers 

 All 16 microoperations can be derived from using four logic gates 



 

 

 
 

 

 Logic microoperations can be used to change bit values, delete a group of bits, or 

insert new bit values into a register 

 The selective-set operation sets to 1 the bits in A where there are corresponding 

1’s in B 

1010 A before 
1100 B (logic operand) 

1110 A after 

 

A  A  B 

 

 The selective-complement operation complements bits in A where there are 

corresponding 1’s in B 

1010 A before 

1100 B (logic operand) 

0110 A after 

 

A  A ⊕ B 

 The selective-clear operation clears to 0 the bits in A only where there are 

corresponding 1’s in B 

1010 A before 
1100 B (logic operand) 

0010 A after 



 

A  A  B 

 

 The mask operation is similar to the selective-clear operation, except that the bits 

of A are cleared only where there are corresponding 0’s in B 

1010 A before 
1100 B (logic operand) 

1000 A after 

 

A  A  B 

 

 The insert operation inserts a new value into a group of bits 

 This is done by first masking the bits to be replaced and then Oring them with the 

bits to be inserted 
0110 1010 A before 

0000 1111 B (mask) 

0000 1010 A after masking 

0000 1010 A before 

1001 0000 B (insert) 
1001 1010 A after insertion 

 

 The clear operation compares the bits in A and B and produces an all 0’s result if 

the two number are equal 

1010 A 
1010 B 

0000 A  A ⊕ B 

  Shift Microoperations 

 

 Shift microoperations are used for serial transfer of data 

 They are also used in conjunction with arithmetic, logic, and other data- 

processing operations 

 There are three types of shifts: logical, circular, and arithmetic 

 A logical shift is one that transfers 0 through the serial input 

 The symbols shl and shr are for logical shift-left and shift-right by one position 

R1  shl R1 

 

 The circular shift (aka rotate) circulates the bits of the register around the two 

ends without loss of information 

 The symbols cil and cir are for circular shift left and right 



 

 

 
 
 

 The arithmetic shift shifts a signed binary number to the left or right 

 To the left is multiplying by 2, to the right is dividing by 2 

 Arithmetic shifts must leave the sign bit unchanged 

 A sign reversal occurs if the bit in Rn-1 changes in value after the shift 

 This happens if the multiplication causes an overflow 

 An overflow flip-flop Vs can be used to detect the overflow 

Vs = Rn-1 ⊕ Rn-2 

 

 

 

 

 A bi-directional shift unit with parallel load could be used to implement this 

 Two clock pulses are necessary with this configuration: one to load the value and 

another to shift 

 In a processor unit with many registers it is more efficient to implement the shift 

operation with a combinational circuit 

 The content of a register to be shifted is first placed onto a common bus and the 

output is connected to the combinational shifter, the shifted number is then loaded 

back into the register 

 This can be constructed with multiplexers 



 

 
 

 

  Arithmetic Logic Shift Unit 

 

 The arithmetic logic unit (ALU) is a common operational unit connected to a 

number of storage registers 

 To perform a microoperation, the contents of specified registers are placed in the 

inputs of the ALU 

 The ALU performs an operation and the result is then transferred to a destination 

register 

 The ALU is a combinational circuit so that the entire register transfer operation 

from the source registers through the ALU and into the destination register can be 

performed during one clock pulse period 



 

 
 

 

 

 
 

2.7 Basic Computer Organization and Design  

2.7.1 Basic Computer Organization: A computer system is basically a machine that simplifies complicated tasks. It should 

maximize performance and reduce costs as well as power consumption. The different components in the Computer System 

Architecture are Input Unit, Output Unit, Storage Unit, Arithmetic Logic Unit, Control Unit etc. 

 



 

Architecture and function of general computer system: 

A diagram that shows the flow of data between these units is as follows: 

 

The input data travels from input unit to ALU. Similarly, the computed data travels from ALU to output unit. The data 

constantly moves from storage unit to ALU and back again. This is because stored data is computed on before being stored 

again. The control unit controls all the other units as well as their data. 

Details about all the computer units are: 

1. Input Unit 

The input unit provides data to the computer system from the outside. So, basically it links the external environment with the 

computer. It takes data from the input devices, converts it into machine language and then loads it into the computer system. 

Keyboard, mouse etc. are the most commonly used input devices. 

2. Output Unit 

The output unit provides the results of computer process to the users i.e it links the computer with the external environment. 

Most of the output data is the form of audio or video. The different output devices are monitors, printers, speakers, 

headphones etc. 

3. Storage Unit 

Storage unit contains many computer components that are used to store data. It is traditionally divided into primary storage 

and secondary storage. Primary storage is also known as the main memory and is the memory directly accessible by the CPU. 

Secondary or external storage is not directly accessible by the CPU. The data from secondary storage needs to be brought into 

the primary storage before the CPU can use it. Secondary storage contains a large amount of data permanently. 

4. Arithmetic Logic Unit 

All the calculations related to the computer system are performed by the arithmetic logic unit. It can perform operations like 

addition, subtraction, multiplication, division etc. The control unit transfers data from storage unit to arithmetic logic unit 

when calculations need to be performed. The arithmetic logic unit and the control unit together form the central processing 

unit. 



 

5. Control Unit 

This unit controls all the other units of the computer system and so is known as its central nervous system. It transfers data 

throughout the computer as required including from storage unit to central processing unit and vice versa. The control unit 

also dictates how the memory, input output devices, arithmetic logic unit etc. should behave. 

 

2.7.2 Design: Flynn's classification divides computers into four major groups as follows:  

 

Single instruction stream, single data stream (SISD)  

Single instruction stream, multiple data stream (SIMD) Multiple instruction streams, 

single data stream (MISD)  

Multiple instruction streams, multiple data stream (MIMD)  

 

SISD represents the organizations of a single computer containing a control unit, a processor unit, and a memory unit. 

Instructions are executed sequentially and the system may or may not have internal parallel processing capabilities. 

Parallel processing in this case may be achieved by means of multiple functional units or by pipeline processing.  

 

SIMD represents an organization that includes many processing units under the supervision of a common control unit. 

All processors receive the same instruction from the control unit but operate on different items of data. The shared 

memory unit must contain multiple modules so that it can communicate with all the processors simultaneously.  

 

MISD structure is only of theoretical interest since no practical system has been constructed using this organization.  

 

MIMD organization refers to a computer system capable of processing several programs at the same time. Most 

multiprocessor and multi-computer systems can be classified in this category.  

 

Flynn's classification depends on the distinction between the performance of the control unit and the data processing 

unit. It emphasizes the behavioral characteristics of the computer system rather than its  operational and structural 

interconnections. 

 

Function of General Computer System 

The four basic functions of a computer system are as follows: 

 input 

 output 
 processing 

 storage 

Let's look at each individually: 

Input: Transferring of information into the system. This may be through a user input device - i.e. keyboard, mouse, 

scanner etc.. Or though previously loaded software/program, cd etc. 

Output: Output is the exact opposite of input. Output is the function that allows a computer to display information,  

from the system, for the user. This can be accomplished through the monitor (or other graphical display), printer, 

speakers etc. 



 

Processing: This is where the computer actually does the 'work' - manipulating and controlling data over the entire 

system. 

Storage: Most computers are able to store data both temporarily (in order to process), but also long-term (i.e., 

permanently).  Storage takes place on hard-drives or external storage devices. 

 

2.7.3 Instruction Codes 

While a Program, as we all know, is, A set of instructions that specify the operations, operands, and the sequence 

by which processing has to occur. An instruction code is a group of bits that tells the computer to perform a 

specific operation part. 

Instruction Code: Operation Code 

The operation code of an instruction is a group of bits that define operations such as add, subtract, multiply, shift 

and compliment. The number of bits required for the operation code depends upon the total number of operations 

available on the computer. The operation code must consist of at least n bits for a given 2^n operations. The 

operation part of an instruction code specifies the operation to be performed. 

Instruction Code: Register Part 

The operation must be performed on the data stored in registers. An instruction code therefore specifies not only 

operations to be performed but also the registers where the operands(data) will be found as well as the registers 

where the result has to be stored. 

Stored Program Organization 

The simplest way to organize a computer is to have Processor Register and instruction code with two parts. The 

first part specifies the operation to be performed and second specifies an address. The memory address tells where 

the operand in memory will be found. 

Instructions are stored in one section of memory and data in another. 

 



 

Computer with a single processor register is known as Accumulator (AC). The operation is performed with the 

memory operand and the content of AC. 

 

 

2.7.4 Computer Registers 

Registers are a type of computer memory used to quickly accept, store, and transfer data and instructions that are 

being used immediately by the CPU. The registers used by the CPU are often termed as Processor registers. 

A processor register may hold an instruction, a storage address, or any data (such as bit sequence or individual 

characters). 

The computer needs processor registers for manipulating data and a register for holding a memory address. The 

register holding the memory location is used to calculate the address of the next instruction after the execution of 

the current instruction is completed. 

Following is the list of some of the most common registers used in a basic computer: 

Register Symbol Number of bits Function 

Data register DR 16 Holds memory operand 

Address register AR 12 Holds address for the memory 

Accumulator AC 16 Processor register 

Instruction register IR 16 Holds instruction code 

Program counter PC 12 Holds address of the instruction 

Temporary 

register 
TR 16 Holds temporary data 

Input register INPR 8 Carries input character 



 

Output register OUTR 8 Carries output character 

 

The following image shows the register and memory configuration for a basic computer. 

 

 

o The Memory unit has a capacity of 4096 words, and each word contains 16 bits. 

o The Data Register (DR) contains 16 bits which hold the operand read from the memory location. 

o The Memory Address Register (MAR) contains 12 bits which hold the address for the memory location. 

o The Program Counter (PC) also contains 12 bits which hold the address of the next instruction to be read 

from memory after the current instruction is executed. 

o The Accumulator (AC) register is a general purpose processing register. 

o The instruction read from memory is placed in the Instruction register (IR). 

o The Temporary Register (TR) is used for holding the temporary data during the processing. 

o The Input Registers (IR) holds the input characters given by the user. 

o The Output Registers (OR) holds the output after processing the input data. 

2.7.5 Computer Instructions 



 

The basic computer has three instruction code formats. The Operation code (opcode) part of the instruction 

contains 3 bits and remaining 13 bits depends upon the operation code encountered. 

There are three types of formats: 

1. Memory Reference Instruction 

It uses 12 bits to specify the address and 1 bit to specify the addressing mode (I). I is equal to 0 for direct 

address and 1 for indirect address. 

2. Register Reference Instruction 

These instructions are recognized by the opcode 111 with a 0 in the left most bit of instruction. The other 12 

bits specify the operation to be executed. 

3. Input-Output Instruction 

These instructions are recognized by the operation code 111 with a 1 in the left most bit of instruction. The 

remaining 12 bits are used to specify the input-output operation. 

Format of Instruction 

The format of an instruction is depicted in a rectangular box symbolizing the bits of an instruction. Basic fields of 

an instruction format are given below: 

1. An operation code field that specifies the operation to be performed. 

2. An address field that designates the memory address or register. 

3. A mode field that specifies the way the operand of effective address is determined. 

Computers may have instructions of different lengths containing varying number of addresses. The number of 

address field in the instruction format depends upon the internal organization of its registers. 

 

Timing and Control 

The timing for all registers in the basic computer is controlled by a master clock generator. The clock pulses are 

applied to all flip-flops and registers in the system, including the flip-flops and registers in the control unit.  

The clock pulses do not change the state of a register unless the register is enabled by a control signal. The control 

signals are generated in the control unit and provide control inputs for the multiplexers in the common bus, control 

inputs in processor registers, and microoperations for the accumulator. 

There are two major types of control organization: hardwired control and microprogrammed control. In the 

hardwired organization, the control logic is implemented with gates, flip-flops, decoders, and other digital circuits. 

It has the advantage that it can be optimized to produce a fast mode of operation. In the microprogrammed 

organization, the control information is stored in a control memory.  



 

The control memory is programmed to initiate the required sequence of microoperations. A hardwired control, as 

the name implies, requires changes in the wiring among the various components if the design has to be modified or 

changed. In the microprogrammed control, any required changes or modifications can be done by updating the 

microprogram in control memory. A hardwired control for the basic computer is presented in this section.. 

The block diagram of the control unit is shown in Fig. It consists of two decoders, a sequence counter, and a 

number of control logic gates. An instruction read from memory is placed in the instruction register (IR).  

The position of this register in the common bus system is indicated in Fig. 5-4. The instruction register is shown 

again in Fig., where it is divided into three parts: the I bit, the operation code, and bits 0 through 11. The operation 

code in bits 12 through 14 are decoded with a 3 x 8 decoder. The eight outputs of the decoder are designated by the 

symbols D0 through D7 

The subscripted decimal number is equivalent to the binary value of the corresponding operation code. Bit 15 of 

the instruction is transferred to a flip-flop designated by the symbol I. Bits 0 through 11 are applied to the control 

logic gates. The 4-bit sequence counter can count in binary from 0 through 15. The outputs of the counter are 

decoded into 16 timing signals T0 through T15 

The internal logic of the control gates will be derived later when we consider the design of the computer in detail. 

The sequence counter SC can be incremented or cleared synchronously. Most of the time, the counter is 

incremented to provide the sequence of timing signals out of the 4 x 16 decoder. Once in awhile, the counter is 

cleared to 0, causing the next active timing signal to be T0. 



 

 

  

   

 

Instruction Cycle 

A program residing in the memory unit of a computer consists of a sequence of instructions. These instructions 

are executed by the processor by going through a cycle for each instruction. 

Instruction Cycle: An instruction cycle, also known as fetch-decode-execute cycle is the basic operational 

process of a computer. This process is repeated continuously by CPU from boot up to shut down of computer. 

In a basic computer, each instruction cycle consists of the following phases: 

1. Fetch the Instruction 

The instruction is fetched from memory address that is stored in PC(Program Counter) and stored in the instruction 

register IR. At the end of the fetch operation, PC is incremented by 1 and it then points to the next instruction to be 

executed. 



 

2. Decode the Instruction 

The instruction in the IR is executed by the decoder. 

3. Read the Effective Address 

If the instruction has an indirect address, the effective address is read from the memory. Otherwise operands are 

directly read in case of immediate operand instruction. 

4. Execute the Instruction 

The Control Unit passes the information in the form of control signals to the functional unit of CPU. The result 

generated is stored in main memory or sent to an output device 

The cycle is then repeated by fetching the next instruction. Thus in this way the instruction cycle is repeated 

continuously. 

 

FLOWCHART OF INSTRUCTION CYCLE 



 

 

 

Registers Involved In Each Instruction Cycle: 

 Memory address registers(MAR) : It is connected to the address lines of the system bus. It specifies the 

address in memory for a read or write operation. 

 Memory Buffer Register(MBR) : It is connected to the data lines of the system bus. It contains the value to 

be stored in memory or the last value read from the memory. 

 Program Counter(PC) : Holds the address of the next instruction to be fetched. 

 Instruction Register(IR) : Holds the last instruction fetched. 

 

Each computer's CPU can have different cycles based on different instruction sets, but will be similar to the 

following cycle: 



 

1. Fetch Stage: The next instruction is fetched from the memory address that is currently stored in the 

program counter and stored into the instruction register. At the end of the fetch operation, the PC points to 

the next instruction that will be read at the next cycle. 

2. Decode Stage: During this stage, the encoded instruction present in the instruction register is interpreted by 

the decoder. 

Read the effective address: In the case of a memory instruction (direct or indirect), the execution 

phase will be during the next clock pulse. If the instruction has an indirect address, the effective 

address is read from main memory, and any required data is fetched from main memory to be 

processed and then placed into data registers (clock pulse: T3). If the instruction is direct, nothing is 

done during this clock pulse. If this is an I/O instruction or a register instruction, the operation is 

performed during the clock pulse. 

3. Execute Stage: The control unit of the CPU passes the decoded information as a sequence of control signals 

to the relevant function units of the CPU to perform the actions required by the instruction, such as reading 

values from registers, passing them to the ALU to perform mathematical or logic functions on them, and 

writing the result back to a register. If the ALU is involved, it sends a condition signal back to the CU. The 

result generated by the operation is stored in the main memory or sent to an output device. Based on the 

feedback from the ALU, the PC may be updated to a different address from which the next instruction will 

be fetched. 

4. Repeat Cycle 

 

 

 

 

2.9.1 Memory-Reference Instructions 

Memory-Reference Instructions: In order to specify the microoperations needed for the execution of each 

instruction, it is necessary that the function that they are intended to perform be defined precisely. Some 

instructions have an ambiguous description. This is because the explanation of an instruction in words is usually 

lengthy, and not enough space is available in the table for such a lengthy explanation. 

We will now show that the function of the memory-reference instructions can be defined precisely by means of 

register transfer notation. 

The decoded D; for i = 0, 1, 2, 3, 4, 5, and 6 from the operation decoder that belongs to each instruction is included 

in the table. The effective address of the instruction is in the address register AR and was placed there during 

timing signal T2 when I = 0, or during timing signal T3 when I = 1. The execution of the memory-reference 



 

instructions starts with timing signal T4• The symbolic description of each instruction is specified in the table in 

terms of register transfer notation. 

The actual execution of the instruction in the bus system will require a sequence of microoperations. This is 

because data stored in memory cannot be processed directly. The data must be read from memory to a register 

where they can be operated on with logic circuits. We now explain the operation of each instruction and list the 

control functions and microoperations needed for their execution.  

 

 

AND to AC 

This is an instaruction that perform the AND logic operation on pairs of bits in AC and the memory word specified 

by the effective address. The result of 

the operation is transferred to AC . The microoperations that execute this instruction are: 

D0T4: DR <- M [AR] 

D0T5: AC <- AC /\ DR, SC <--- 0 

 

The control function for this instruction uses the operation decoder D0 since this output of the decoder is active 

when the instruction has an AND operation whose binary code value 000. Two timing signals are needed to 

execute the instaruction. The clock transition associared with  timing signal T4 transfers the operand from memory 

into DR . The clock transition associated with the next timing signal T5 transfers to AC the result of the AND 

logic operation between the contents of DR and AC. The same clock transition clears SC to 0, transferring control 

to timing signal T0 to start a new instruction cycle. 

ADD to AC 

  

This instruction adds the content of the memory word specified by the effective address to the value of AC . The 

sum is transferred into AC and the output carry Cout is transferred to the E (extended accumulator) flip-flop. The 

rnicrooperations needed to execute this instruction are 



 

D1T4: DR← M[AR] 

D1T5: AC← AC + DR, E← Cout , SC ← 0 

 

Same Two timing signals, T, and T5, are used again but with operation decoder D1 instead of D0, which was used 

for the AND instruction. After the instruction is fetched from memory and decoded, only one output of the 

operation decoder will be active, and that output determines the sequence of microoperations that the control 

follows during the execution of a memory-reference instruction. 

LDA: Load to AC 

  

This instruction transfers the memory word specified by the effective address to AC . The microoperations needed 

to execute this instruction are 

  

D2T4: DR← M [AR] 

D2T5: AC← DR ,  ← 0 

 

Looking back at the bus system shown in Fig. 5-4 we note that there is no direct path from the bus into AC . The 

adder and logic circuit receive information from DR which can be transferred into AC . Therefore, it is necessary 

to read the memory word into DR first and then transfer the content of DR into AC . The reason for not connecting 

the bus to the inputs of AC is the delay encountered in the adder and logic circuit. It is assumed that the time it 

takes to read from memory and transfer the word through the bus as well as the adder and logic circuit is more than 

the time of one clock cycle. By not connecting the bus to the inputs of AC we can maintain one clock cycle per 

microoperation. 

  

STA: Store AC 

  

This instruction stores the content of AC into the memory word specified by the effective address. Since the output 

of AC is applied to the bus and the data input of memory is connected to the bus, we can execute this instruction 

with one microoperation: 

D3T4: M [AR] ← AC, SC ← 0 

 

 

BUN: Branch Unconditionally 

 

This instruction transfers the program to the instruction specified by the effective address. Remember that PC 

holds the address of the instruction to be read from memory in the next instruction cycle. PC is incremented at 



 

time T1 to prepare it for the address of the next instruction in the program sequence. The BUN instruction allows 

the programmer to specify an instruction out of sequence and we say that the program branches (or jumps) 

unconditionally. The instruction is executed with one microoperation: 

D4T4: PC ← AR, SC ← 0 

The effective address frpom AR is transferred through the common bus to PC .Resetting SC to 0 transfers control 

to T0• The next instruction is then fetched and executed from the memory address given by the new value in PC . 

  

BSA: Branch and Save Return Address 

This instruction is useful for branching to a portion of the program called a subroutine or procedure. When 

executed, the BSA instruction stores the address of the next instruction in sequence (which is available in PC) into 

a memory location specified by the effective address. The effective address plus one is then transferred to PC to 

serve as the address of the first instruction in the subroutine. This operation was specified in Table 5-4 with the 

following register transfer: 

M[AR] <-- PC, PC <-- AR + I 

A numerical example that demonstrates how this instruction is used with a subroutine is shown in Fig. 5-10. The 

BSA instruction is assumed to be in memory at address 20. The I bit is 0 and the address part of the instruction has 

the binary equivalent of 135. After the fetch and decode phases, PC contains 21, which is the address of the next 

instruction in the program (referred to as the return address). AR holds the effective address 135. This is shown in 

part (a) of the figure. The BSA instruction performs the following numerical operation: 

M[135] <-- 21, PC <-- 135 + 1 = 136 

The result of this operation is shown in part (b) of the figure. The return address 21 is stored in memory location 

135 and control continues with the subroutine program starting from address 136. The return to the original 

program (at address 21) is accomplished by means of an indirect BUN instruction placed at the end of the 

subroutine. When this instruction is executed, control goes to the indirect phase to read the effective address at 

location 135, where it finds the previously saved address 21. When the BUN instruction is executed, the effective 

address 21 is transferred to PC . The next instruction cycle finds PC with the value 21, so control continues to 

execute the instruction at the return address. 

ISZ: Increment and Skip if Zero 

  

This instruction increments the word specified by the effective address, and if the incremented value is equal to 0, 

PC is incremented by 1. The programmer usually stores a negative number (in 2's complement) in the memory 

word. As this negative number is repeatedly incremented by one, it eventually reaches the value of zero. At that 

time PC is incremented by one in order to skip the next instruction in the program. 

Since it is not possible to increment a word inside the memory, it is necessary to read the word into DR, increment 

DR, and store the word back into memory. This is done with the following sequence of microoperations: 



 

D6T4: DR <-- M [AR] 

D6T5: DR <-- DR + 1 

D,T,: M [AR] <-- DR, 

if (DR = 0) then (PC ← PC + 1), SC ← 0 

 

 

Input-Output and Interrupt 

A computer can serve no useful purpose unless it communicates with the external environment. Instructions and 

data stored in memory must come from some input device. Computational results must be transmitted to the user 

through some output device. Commercial computers include many types of input and output devices. To 

demonstrate the most basic reqttirements for input and output communication, we will use as an illustration a 

terminal unit with a keyboard and printer. Input-output organization is dicsussed further in Chap. 11. 

Input-Output Configuration 

The terminal sends and receives serial information. Each quantity of information has eight bits of an alphanumeric 

code. The serial information from the keyboard is shifted into the input register INPR. The serial information for 

the printer is stored in the output register OUTR. These two registers communicate with a communication 

interface serially and with the AC in parallel. The input-output configuration is shown in Fig. 5-12. The transmitter 

interface receives serial information from the keyboard and transmits it to INPR. The receiver interface receives 

information from OUTR and sends it to the printer serially. The operation of the serial communication interface is 

explained in Sec. 11-3. 

Input Register: The input register INPR consists of eight bits and holds an alphanumeric input information. The 

1-bit input flag FGI is a control flip-flop. The flag bit is set to 1 when new information is available in the input 

device and is cleared to 0 when the information is accepted by the computer. The flag is needed to synchronize the 

timing rate difference between the input device and the computer. The process of information transfer is as 

follows. Initially, the input flag FGI is cleared to 0. When a key is struck in the keyboard, an 8-bit alphanumeric 

code is shifted into INPR and the input flag FGI is set to 1. As long as the flag is set, the information in INPR 

cannot be changed by striking another key. The computer checks the flag bit; if it is 1, the information from INPR 

is transferred in parallel into AC and FGI is cleared to 0. Once the flag is cleared, new information can be shifted 

into INPR by striking another key. 



 

 

  



 

Unit – IV 

 

General Register Organization: 

The number of registers in a processor unit may vary from just one processor register to as many as 64 registers or 

more. 

1. One of the CPU registers is called as an accumulator AC or 'A' register. It is the main operand register of the 

ALU. 

2. The data register (DR) acts as a buffer between the CPU and main memory. It is used as an input operand 

register with the accumulator. 

3. The instruction register (IR) holds the opcode of the current instruction. 

4. The address register (AR) holds the address of the memory in which the operand resides. 

5. The program counter (PC) holds the address of the next instruction to be fetched for execution. 

Additional addressable registers can be provided for storing operands and address. This can be viewed as replacing 

the single accumulator by a set of registers. If the registers are used for many purposes, the resulting computer is 

said to have general register organization. In the case of processor registers, a registers is selected by the 

multiplexers that form the buses. 

 

When a large number of registers are included in the CPU, it is most efficient to connect them through a common 

bus system. The registers communicate with each other not only for direct data transfers, but also while 

performing various micro-operations. Hence it is necessary to provide a common unit that can perform all the 

arithmetic, logic and shift micro-operation in the processor. 

 

The output of each register is connected to true multiplexer (MUX) to form the two buses A & B. The selection 

lines in each multiplexer select one register or the input data for the particular bus. The A and B buses forms the 

input to a common ALU. The operation selected in the ALU determines the arithmetic or logic micro-operation 

that is to be performed. The result of the micro-operation is available for output and also goes into the inputs of the 

registers. The register that receives the information from the output bus is selected by a decoder. The decoder 

activates one of the register load inputs, thus providing a transfer both between the data in the output bus and the 

inputs of the selected destination register. 

 



 

 

A Bus organization for seven CPU registers: 

 

The control unit that operates the CPU bus system directs the information flow through the registers and ALU by 

selecting the various components in the systems. 

R1 ® R2 + R3 

(1) MUX A selection (SEC A): to place the content of R2 into bus A 

(2) MUX B selection (sec B): to place the content of R3 into bus B 

(3) ALU operation selection (OPR): to provide the arithmetic addition (A + B) 

(4) Decoder destination selection (SEC D): to transfer the content of the output bus into R1 

These form the control selection variables are generated in the control unit and must be available at the beginning 

of a clock cycle. The data from the two source registers propagate through the gates in the multiplexer and the 

ALU, to the output bus, and into the destination registers, all during the clock cycle intervals. 

 



 

 Stack Organization  

The CPU of most computers comprises of a stack or last-in-first-out (LIFO) list wherein information is stored in 

such a manner that the item stored last is the first to be retrieved. The operation of a stack can be compared to a 

stack of trays. The last tray placed on top of the stack is the first to be taken off.  

The stack in digital computers is essentially a memory unit with an address register that can count only (after an 

initial value is loaded into it). A Stack Pointer (SP) is the register where the address for the stack is held because its 

value always points at the top item in the stack. The physical registers of a stack are always available for reading or 

writing unlike a stack of trays where the tray itself may be taken out or inserted because it is the content of the word 

that is inserted or deleted.  

A stack has only two operations i.e. the insertion and deletion of items. The operation insertion is called push (or 

push-down) because it can be thought of as the result of pushing a new item on top. The deletion operation is called 

pop (or pop-up) because it can be thought of as the result of removing one item so that the stack pops up. In actual, 

nothing is exactly pushed or popped in a computer stack. These operations are simulated by incrementing or 

decrementing the stack pointer register.  

Register Stack 

There are two ways to place a stack. Either it can be placed in a portion of a large memory or it can be organized as 

a collection of a finite number of memory words or registers.  

In a 64-word stack, the stack pointer contains 6 bits because 26 = 64. Since SP has only six bits, it cannot exceed a 

number greater than 63 (111111 in binary). When 63 is incremented by l, the result is 0 since 111111 + 1 = 

1000000 in binary, but SP can accommodate only the six least significant bits. Similarly, when 000000 is 

decremented by 1, the result is 111111. The 1-bit register FULL is set to 1 when the stack is full, and the one-bit 

register EMTY is set to 1 when the stack is empty of items. DR is the data register that holds the binary data to be 

written into or read out of the stack.  

Initially, SP is cleared to 0, EMTY is set to 1, and FULL is cleared to 0, so that SP points to the word at address 0 

and the stack is marked empty and not full. If the stack is not full (if FULL = 0), a new item is inserted with a push 

operation. The push operation is  

implemented with the following sequence of micro-operations:  

SP  SP + 1  Increment stack pointer  

M[SP]  DR  Write item on top of the stack  

If (SP= 0) then (FULL  l)  Check if stack is full  

The stack pointer is incremented so that it points to the address of the next-higher word. The word from DR is 

inserted into the top of the stack by the memory write operation. The M[SP] denotes the memory word specified by 

the address presently available in SP whereas the SP holds the address the top of the stack. The storage of the first 

item is done at address 1 whereas as the last item is store at address 0. If SP reaches 0, the stack is full of items, so 

FULL is set to 1. This condition is reached if the top item prior to the last push was in location 63 and after 

incrementing SP, the last item is stored in location 0. Once an item is stored in location 0, there are no more empty 

registers in the stack. If an item is written in the stack, obviously the stack cannot be empty, so EMTY is cleared to 

0.  



 

A new item is deleted from the stack if the stack is not empty (if EMTY <> 0). The pop  

operation consists of the following sequence of micro-operations:  

DR  M[SP]  Read item from the top of stack  

SP  SP - 1  Decrement stack pointer  

If (SP == 0) then (FULL  1)   

Check if stack is empty EMTY  0   

Mark the stack not full  

DR. reads the top item from the stack. Then the stack pointer is decremented. If its value attains zero, the stack is 

empty, so EMTY is set to 1. This condition is reached if the item read was in location 1. Once this item is read out, 

SP is decremented and it attain reaches the value 0, which is the initial value of SP. Note that if a pop operation 

reads the item from location 0 and then SP is decremented, SP changes to 111111, which is equivalent to decimal 

63. In this configuration, the word in address 0 receives the last item in the stack. Note also that an erroneous 

operation will result if the stack is pushed when FULL = 1 or popped when EMPTY = 1.  

 

Memory Stack  

As shown in Fig. 5.3, stack can exist as a stand-alone unit or can be executed in a random-access memory attached 

to a CPU. The implementation of a stack in the CPU is done by assigning a portion of memory. A portion of 

memory is assigned to a stack operation and a processor register is used as a stack pointer to execute stack in the 

CPU. Figure 5.4 shows a portion of computer memory partitioned into three segments - program, data, and stack. 

The address of the next instruction in the program is located by the program counter PC while an array of data is 

pointed by address register AR. The top of the stack is located by the stack pointer SP. The three registers are 

connected to a common address bus, which connects the three registers and either one can provide an address for 

memory. PC is used during the fetch phase to read an instruction. AR is used during the execute phase to read an 

operand. SP is used to push or pop items into or from the stack.  

 

 

 

  

 

 

 

 

 



 

 

 

 

 

 

 

 

Fig.:Computer memory with program, data, and stack segments. 

 

Fig displays the initial value of SP at 4001 and the growing of stack with decreasing addresses. Thus the first item 

stored in the stack is at address 4000, the second item is stored at address 3999, and the last address that can be used 

for the stack is 3000. No checks are provided for checking stack limits.  

We assume that the items in the stack communicate with a data register DR. A new  

item is inserted with the push operation as follows:  

SP  SP - 1 M[SP]  DR  

The stack pointer is decremented so that it points at the address of the next word. A memory write operation inserts 

the word form DR into the top of the stack. A new item  

is deleted with a pop operation as follows:  

DR  M[SP]  

SP  SP + 1  

The top item is read from the stack into DR. The stack pointer is then incremented to point at the next item in the 

stack.  

Most computers are not equipped with hardware to check for stack overflow (full stack) or underflow (empty 

stack). The stack limits can be checked by using two processor registers: one to hold the upper limit (3000 in this 

case), and the other to hold the lower limit (40001 in this case). After a push operation, SP is compared with the 

upper-limit register and after a pop operation, SP is compared with the lower-limit register.  

Instruction Formats  

• It is the function of the control unit within the CPU to interpret each instruction code  

• The bits of the instruction are divided into groups called fields  

• The most common fields are:  

o Operation code  

o Address field - memory address or a processor register  

o Mode field - specifies the way the operand or effective address is determined  



 

• A register address is a binary number of k bits that defines one of 2k registers in the CPU  

• The instructions may have several different lengths containing varying number of addresses  

• The number of address fields in the instruction format of a computer depends on the internal 

organization of its registers  

• Most computers fall into one of the three following organizations:  

o Single accumulator organization  

o General register organization  

o Stack organization  

• Single accumulator org. uses one address field  

 

ADD X : AC  AC + M[X]  

• The general register org. uses three address fields  

ADD R1, R2, R3: R1  R2 + R3  

• Can use two rather than three fields if the destination is assumed to be one of  

the source registers  

• Stack org. would require one address field for PUSH/POP operations and none  

for operation-type instructions  

PUSH X  

ADD  

• Some computers combine features from more than one organizational structure  

Example: X = (A+B) * (C + D)  

 

Three-address instructions:  

ADD  R1, A, B  R1  M[A] + M[B]  

ADD  R2, C, D  R2  M[C] + M[D]  

M UL  X, R1, R2  M[X]  R1 * R2  

Two-address instructions: 

MOV R1, A   / R 1  M [A ]  

ADD R1, B    /R1  R1 + M[B]  

MOV R2, C    / R2  M[C]  



 

 

One-address instructions:  

LOAD A AC  M[A]  

ADD  B AC  AC + M[B]  

STORE T  M[T]  AC  

LOAD C AC  M[C]  

ADD  D AC  AC + M[D]  

M UL  T AC  AC * M[T]  

STORE X  M[X]  AC  

 

Zero-address instructions:  

PUSH   TOS  AC 

POP  M[X]  TOS  

 

Arithmetic instructions:  

Increment  INC   

Divide  DIV  

Decrement  DEC   

Add w/carry  ADDC  

Add  ADD   

Sub. w/borrow  SUBB  

Subtract  SUB   

Negate (2's comp)  N EG  

Multiply  M UL  

• Some computers have different instructions depending upon the data type  

ADDI  Add two binary integer numbers  

ADDF  Add two floating point numbers  

ADDD  Add two decimal numbers in BCD  



 

 

• Logical and bit manipulation instructions:  

Clear  

Complement  

AND  

OR  

Exclusive-OR  

Clear carry  

Set carry  

Comp. carry  

Enable inter.  

Disable inter. 

CLR  

COM 

AND  

OR  

XOR  

CLRC  

SETC  

COMC  

EI  

DI  

Clear selected bits -        AND instruction  

Set selected bits -         OR instruction  

Complement selected bits -     XOR instruction  

 

• Shift instructions:  

Logical shift right  SHR   

Rotate right   ROR  

Logical shift left  SHL   

Rotate left   ROL  

Arithmetic shift right  SHRA   

ROR thru carry  RORC  

Arithmetic shift left  SHLA  

ROL thru carry  ROLC  

 

Program Control  

• Program control instructions: provide decision-making capabilities and change the program path  

• Typically, the program counter is incremented during the fetch phase to the location of the next instruction  

• A program control type of instruction may change the address value in the program counter and cause the 

flow of control to be altered  



 

• This provides control over the flow of program execution and a capability for branching to different 

program segments  

Branch  BR   

Return   RET  

Jump   JM P   

Compare  CMP  

Skip   SKP   

Test   TST  

Call   CALL  

TST and CMP cause branches based upon four status bits: C, S, Z, and V  

 

RISC and CISC 

CISC characteristics  

CISC, which stands for Complex Instruction Set Computer, is a philosophy for designing chips that are easy to 

program and which make efficient use of memory. Each instruction in a CISC instruction set might perform a series 

of operations inside the processor. This reduces the number of instructions required to implement a given program, 

and allows the programmer to learn a small but flexible set of instructions.  

Most common microprocessor designs --- including the Intel(R) 80x86 and Motorola 68K series --- also follow the 

CISC philosophy.  

As we shall see, recent changes in software and hardware technology have forced a re- examination of CISC. But 

first, let's take a closer look at the decisions which led to CISC.  

The disadvantages of CISC  

Still, designers soon realized that the CISC philosophy had its own problems, including:  

Earlier generations of a processor family generally were contained as a subset in every new version --- so 

instruction set & chip hardware become more complex with each generation of computers.  

So that as many instructions as possible could be stored in memory with the least possible wasted space, individual 

instructions could be of almost any length---this means that different instructions will take different amounts of 

clock time to execute, slowing down the overall performance of the machine.  

Many specialized instructions aren't used frequently enough to justify their existence --- approximately 20% of the 

available instructions are used in a typical program.  

CISC instructions typically set the condition codes as a side effect of the instruction. Not only does setting the 

condition codes take time, but programmers have to remember to examine the condition code bits before a 

subsequent instruction changes them.  



 

 

RISC  

The design of the instruction set for the processor is very important in terms of computer architecture. It's the 

instruction set of a particular computer that determines the way that machine language programs are constructed. 

Computer hardware is improvised by various factors, such as upgrading existing models to provide more customer 

applications adding instructions that facilitate the translation from high-level language into machine language 

programs and striving to develop machines that move functions from software implementation into hardware 

implementation. A computer with a large number of instructions is classified as a complex instruction set computer, 

abbreviated as CISC.  

An important aspect of computer architecture is the design of the instruction set for the processor  

The instruction set determines the way that machine language programs are constructed  

• Many computers have instructions sets of about 100 - 250 instructions  

• These computers employ a variety of data types and a large number of addressing modes - complex 

instruction set computer (CISC)  

• A RISC uses fewer instructions with simple constructs so they can be executed much faster within the CPU 

without having to use memory as often  

• The essential goal of CISC architecture is to attempt to provide a single machine instruction for each 

statement that is written in a high-level language  

The major characteristics of CISC architecture are:  

• Large number of instructions: Some instructions that perform specialized tasks and are used infrequently  

• Large variety of addressing modes  

• Variable length instruction formats  

• Instructions that manipulate operands in memory  

• The goal of RISC architecture is to reduce execution time by simplifying the instructions set  

RISC Characteristics  

The essential goal of RISC architecture involves an attempt to reduce execution time by simplifying the instruction 

set of the computer.  

The major characteristics of a RISC processor are:  

• Relatively few instructions.  

• Relatively few addressing modes.  

• Memory access limited to load and store instructions.  

• All operations done within the registers of the CPU. Fixed length easily decoded instruction format. 

Single-cycle instruction execution.  

• Hardwired rather than micro-programmed control.  

 

Parallel Processing 

Parallelism: Performing multiple operations at the same time 



 

 

Flynn's Taxonomy 

 

SISD: One control unit, one instruction per instruction cycle on one piece of data. May include pipelining (later). 

SIMD: Same instruction operating on multiple streams of data at the same time. 

MISD: Not used 

MIMD: Multiple processors that can execute different instructions at the same time. Multi-core PCs, clusters. 

Flynn's classification divides computers into four major groups as follows:  

Single instruction stream, single data stream (SISD)  

Single instruction stream, multiple data stream (SIMD)  

Multiple instruction streams, single data stream (MISD)  

Multiple instruction streams, multiple data stream (MIMD)  

SISD represents the organizations of a single computer containing a control unit, a processor unit, and a memory 

unit. Instructions are executed sequentially and the system may or may not have internal parallel processing 

capabilities. Parallel processing in this case may be achieved by means of multiple functional units or by pipeline 

processing.  

SIMD represents an organization that includes many processing units under the supervision of a common control 

unit. All processors receive the same instruction from the control unit but operate on different items of data. The 

shared memory unit must contain multiple modules so that it can communicate with all the processors 

simultaneously.  

MISD structure is only of theoretical interest since no practical system has been constructed using this organization.  

MIMD organization refers to a computer system capable of processing several programs at the same time. Most 

multiprocessor and multi-computer systems can be classified in this category.  

Flynn's classification depends on the distinction between the performance of the control unit and the data 

processing unit. It emphasizes the behavioral characteristics of the computer system rather than its operational and 

structural interconnections. One type of parallel processing that does not fit Flynn's classification is pipelining.  

 

Parallel Processing 

PARALLEL PROCESSING is a term used to denote a large class of techniques that are used to provide 

simultaneous data-processing tasks for the purpose of increasing the computational speed of a computer system. 

Instead of processing each instruction sequentially as in a conventional computer, a parallel processing system is 

able to perform concurrent data processing to achieve faster execution time. For example, while an instruction is 

being executed in the ALU, the next instruction can be read from memory. The system may have two or more 

ALUs and be able to execute two or more instructions at the same time. Furthermore, the system may have two or 



 

more processors operating concurrently. The purpose of parallel processing is to speed up the computer processing 

capability and increase its throughput, that is, the amount of processing that can be accomplished during a given 

interval of time. With the increase in parallel processing, the cost of the system increases. However, technological 

developments have reduced hardware costs to the point where parallel processing techniques are economically 

feasible.  

Here we are considering parallel processing under the following main topics:  

1.  Pipeline processing 

2.  Vector processing  

3.  Array processors  

Pipeline processing is an implementation technique where arithmetic sub operations or the phases of a computer 

instruction cycle overlap in execute vector-processing deals with computations involving large vectors and 

matrices. Array processors compute on large arrays of data.  

 

Pipelining: Pipelining is the process of accumulating instruction from the processor through a pipeline. It allows 

storing and executing instructions in an orderly process. It is also known as pipeline processing. 

Pipelining is a technique where multiple instructions are overlapped during execution. Pipeline is divided into 

stages and these stages are connected with one another to form a pipe like structure. Instructions enter from one 

end and exit from another end. 

Pipelining increases the overall instruction throughput. 

In pipeline system, each segment consists of an input register followed by a combinational circuit. The register is 

used to hold data and combinational circuit performs operations on it. The output of combinational circuit is 

applied to the input register of the next segment. 

 

 

 



 

Types of Pipeline 

It is divided into 2 categories: 

1. Arithmetic Pipeline 

2. Instruction Pipeline 

 

Arithmetic Pipeline 

Arithmetic pipelines are usually found in most of the computers. They are used for floating point operations, 

multiplication of fixed point numbers etc. For example: The input to the Floating Point Adder pipeline is: 

X = A*2^a 

Y = B*2^b 

Here A and B are mantissas (significant digit of floating point numbers), while a and b are exponents. 

The floating point addition and subtraction is done in 4 parts: 

1. Compare the exponents. 

2. Align the mantissas. 

3. Add or subtract mantissas 

4. Produce the result. 

Registers are used for storing the intermediate results between the above operations. 

 

Instruction Pipeline 

In this a stream of instructions can be executed by overlapping fetch, decode and execute phases of an instruction 

cycle. This type of technique is used to increase the throughput of the computer system. 

An instruction pipeline reads instruction from the memory while previous instructions are being executed in other 

segments of the pipeline. Thus we can execute multiple instructions simultaneously. The pipeline will be more 

efficient if the instruction cycle is divided into segments of equal duration. 

 

1. A typical instruction cycle can be divided into many sub cycles like Fetch instruction, Decode instruction, 

Execute and Store. The instruction cycle and the corresponding sub cycles are performed for each 

instruction. These sub cycles for different instructions can thus be interleaved or in other words these sub 

cycles of many instructions can be carried out simultaneously, resulting in reduced overall execution time. 

This is called instruction pipelining. 

2. As mentioned above, to effectively apply pipelining to the process of instruction execution, the instruction 

cycle must be divided into following phases or sub cycles: 

i) Fetch instruction (F): In this phase, the CPU reads the next instruction from the memory. 



 

ii) Decode instruction (D): The instruction fetched in the previous phase is decoded and interpreted any data 

operand(s) if needed can also be fetched by the CPU at this time. 

iii) Execute (E): The decoded instructions are finally executed by the CPU. 

iv) Store(S): The result obtained as a result can then be stored back to the memory. This marks the end of 

the current instruction cycle. 

3. Here instruction processing is divided into four stages. Hence it is also called four stage instruction 

pipelining. If the instruction cycle is divided into more phases, more pipelining can be achieved. Thus more 

efficient execution is also possible. 

4. When there is no pipelining, a typical processor would take 12 clock cycles to execute three instructions 

(Assuming that each sub cycle takes one clock cycle to complete). 

5. However when a pipelining is used, three instructions would be executed in 6 clock cycles as shown in 

Figure 5 

 

1. In the third clock cycle, the decoding phase of the second instruction is done simultaneously with the 

fetching of the third instruction and execution of the first instruction. Similar interleaving of sub cycles 

occurs at all clock cycles except the first and the last one. This is responsible for speeding up the entire 

process. 

2. In this case, the processor hardware needs to be divided into four independent functional units so that the 

fetch, decode, execute and store phases could be done simultaneously. The need for separate hardware units 

is sometimes considered. 

3. The pipeline works normally only if there are no branch instructions and no interrupts occur. In case of 

branch instructions or interrupts, the pipeline is flushed. Thus making the pipelining useless. 

   



 

 

RISC pipeline 
In the history of computer hardware, some early reduced instruction set computer central processing units (RISC CPUs) used 

a very similar architectural solution, now called a classic RISC pipeline. Those CPUs were: MIPS, SPARC, Motorola 88000, 

and later the notional CPU DLX invented for education. 

Each of these classic scalar RISC designs fetched and tried to execute one instruction per cycle. The main common concept of 

each design was a five-stage execution instruction pipeline. During operation, each pipeline stage worked on one instruction at 

a time. Each of these stages consisted of an initial set of flip-flops and combinational logic that operated on the outputs of 

those flip-flops. 

 

Five stage RISC pipeline 

 

Instruction fetch 

The Instruction Cache on these machines had a latency of one cycle, meaning that if the instruction was in the cache, it would 

be ready on the next clock cycle. During the Instruction Fetch stage, a 32-bit instruction was fetched from the cache. 

The Program Counter, or PC, is a register that holds the address of the current instruction. It feeds into the PC predictor, which 

then sends the Program Counter (PC) to the Instruction Cache to read the current instruction. At the same time, the PC 

predictor predicts the address of the next instruction by incrementing the PC by 4 (all instructions were 4 bytes long). This 

prediction was always wrong in the case of a taken branch, jump, or exception (see delayed branches, below). Later 

machines would use more complicated and accurate algorithms (branch prediction and branch target prediction) to guess the 

next instruction address. 

Instruction decode 

Unlike earlier microcoded machines, the first RISCmachines had no microcode. Once fetched from the instruction cache, the 

instruction bits were shifted down the pipeline, so that simple combinational logic in each pipeline stage could produce the 

control signals for the datapath directly from the instruction bits. As a result, very little decoding is done in the stage 



 

traditionally called the decode stage. A consequence of this lack of decoding meant however that more instruction bits had to 

be used specifying what the instruction should do (and also, what it should not), and that leaves fewer bits for things like 

register indices. 

All MIPS, SPARC, and DLX instructions have at most two register inputs. During the decode stage, these two register names 

are identified within the instruction, and the two registers named are read from the register file. In the MIPS design, the 

register file had 32 entries. 

At the same time the register file was read, instruction issue logic in this stage determined if the pipeline was ready to execute 

the instruction in this stage. If not, the issue logic would cause both the Instruction Fetch stage and the Decode stage to stall. 

On a stall cycle, the stages would prevent their initial flip-flops from accepting new bits. 

If the instruction decoded was a branch or jump, the target address of the branch or jump was computed in parallel with 

reading the register file. The branch condition is computed after the register file is read, and if the branch is taken or if the 

instruction is a jump, the PC predictor in the first stage is assigned the branch target, rather than the incremented PC that has 

been computed. Some architectures made use of the ALU in the Execute stage, at the cost of slightly decreased instruction 

throughput. 

The decode stage ended up with quite a lot of hardware: MIPS had the possibility of branching if two registers were equal, so 

a 32-bit-wide AND tree ran in series after the register file read, making a very long critical path through this stage. Also, the 

branch target computation generally required a 16 bit add and a 14 bit incrementer. Resolving the branch in the decode stage 

made it possible to have just a single-cycle branch mispredict penalty. Since branches were very often taken (and thus 

mispredicted), it was very important to keep this penalty low. 

Execute 

The Execute stage is where the actual computation occurs. Typically this stage consists of an Arithmetic and Logic Unit, and 

also a bit shifter. It may also include a multiple cycle multiplier and divider. 

The Arithmetic and Logic Unit is responsible for performing boolean operations (and, or, not, nand, nor, xor, xnor) and also 

for performing integer addition and subtraction. Besides the result, the ALU typically provides status bits such as whether or 

not the result was 0, or if an overflow occurred. 

The bit shifter is responsible for shift and rotations. 

Instructions on these simple RISC machines can be divided into three latency classes according to the type of the operation: 

 Register-Register Operation (Single-cycle latency): Add, subtract, compare, and logical operations. During the 

execute stage, the two arguments were fed to a simple ALU, which generated the result by the end of the execute 

stage. 

 Memory Reference (Two-cycle latency). All loads from memory. During the execute stage, the ALU added the two 

arguments (a register and a constant offset) to produce a virtual address by the end of the cycle. 

 Multi-cycle Instructions (Many cycle latency). Integer multiply and divide and all floating-point operations. During 

the execute stage, the operands to these operations were fed to the multi-cycle multiply/divide unit. The rest of the 

pipeline was free to continue execution while the multiply/divide unit did its work. To avoid complicating the 

writeback stage and issue logic, multicycle instruction wrote their results to a separate set of registers. 

Memory access 

If data memory needs to be accessed, it is done so in this stage. 



 

During this stage, single cycle latency instructions simply have their results forwarded to the next stage. This forwarding 

ensures that both one and two cycle instructions always write their results in the same stage of the pipeline so that just one 

write port to the register file can be used, and it is always available. 

For direct mapped and virtually tagged data caching, the simplest by far of the numerous data cache organizations, 

two SRAMs are used, one storing data and the other storing tags. 

Writeback 

During this stage, both single cycle and two cycle instructions write their results into the register file. 

 

  



 

Vector Processing 

Vector processing performs the arithmetic operation on the large array of integers or floating-point number. Vector 

processing operates on all the elements of the array in parallel providing each pass is independent of the other. 

Vector processing avoids the overhead of the loop control mechanism that occurs in general-purpose computers. 

In this section, we will have a brief introduction on vector processing, its characteristics, about vector instructions and how the 

performance of the vector processing can be enhanced? So lets us start. 

Introduction 

We need computers that can solve mathematical problems for us which include, arithmetic operations on the large arrays of 

integers or floating-point numbers quickly. The general-purpose computer would use loops to operate on an array of integers 

or floating-point numbers. But, for large array using loop would cause overhead to the processor. 

To avoid the overhead of processing loops and fasten the computation, some kind of parallelism must be introduced. Vector 

processing operates on the entire array in just one operation i.e. it operates on elements of the array in parallel. But, vector 

processing is possible only if the operations performed in parallel are independent. 

Look at the figure below, and compare the vector processing with the general computer processing, you will notice the 

difference. Below, instructions in both the blocks are set to add two arrays and store the result in the third array. Vector 

processing adds both the array in parallel by avoiding the use of the loop. 

 

Operating on multiple data in just one instruction is also called Single Instruction Multiple Data (SIMD) or they are also 

termed as Vector instructions. Now, the data for vector instruction are stored in vector registers. 

Each vector register is capable of storing several data elements at a time. These several data elements in a vector register is 

termed as a vector operand. So, if there are n number of elements in a vector operand then n is the length of the vector. 

Supercomputers were evolved to deal with billions of floating-point operations/second. Supercomputer optimizes numerical 

computations (vector computations). 

But, along with vector processing supercomputers are also capable of doing scalar processing. Later, Array processor was 

introduced which particularly deals with vector processing; they do not indulge in scalar processing. 

 



 

The pipelined vector processors can be classified into two types based on from where the operand is being fetched for vector 

processing. The two architectural classifications are Memory-to-Memory and Register-to-Register. 

In Memory-to-Memory vector processor the operands for instruction, the intermediate result and the final result all these are 

retrieved from the main memory. TI-ASC, CDC STAR-100, and Cyber-205 use memory-to-memory format for vector 

instructions. 

In Register-to-Register vector processor the source operands for instruction, the intermediate result, and the final result all 

are retrieved from vector or scalar registers. Cray-1 and Fujitsu VP-200 use register-to-register format for vector 

instructions. 

 

 

Array Processors 

The classical structure of an SIMD array architecture is conceptually simple, and is 

illustrated in Figure 1. In such architectures a program consists of a mixture of scalar 

and array instructions. The scalar instructions are sent to the scalar processor and the 

array instructions are broadcast to all array elements in parallel. Array elements are 

incapable of operating autonomously, and must be driven by the control unit. 

There are two important control mechanisms: a local control mechanism by which 

array elements use local state information to determine whether they should execute a 

broadcast instruction or ignore it, and a global control mechanism by which the control 

unit extracts global information from the array elements to determine the outcome of a 

conditional control transfer within the user's program. Global information can be 

extracted in one of two ways. Either the control unit reads state information from one, 

or a group, of array elements, or it senses a boolean control line representing the logical 

OR (or possibly the logical AND) of a particular local state variable from every array 

element. 

The three major components of an array structure are the array units, the memory they 

access, and the connections between the two. There are two ways in which these 

components can be organised. Figure 2 shows the basic structure of an array processor 

in which memory is shared between the array elements and Figure 3 illustrates the basic 

structure of an array processor in which all memory is distributed amongst the array 

elements. 

If all memory is shared then the switch network connecting the array units to the 

memory must be capable of sustaining a high rate of data transfer, 

since every instruction will require massive movement of data between these two 

components. Alternatively, if the memory is distributed then the majority of operands 

will hopefully reside within the local memory of each processing element (where 

processing element = arithmetic unit + memory module), and a much lower 

performance from the switch network can be tolerated. The design of the switch 

network is of central importance, a topic is covered in the section on Networks. 



 

Early examples of these two styles of array processor architecture were the highly 

influential ILLIAC IV machine, which had a fully distributed memory, and the ill-fated 

Burroughs Scientific Processor (BSP), which had a shared memory. 

 
Figure 1. Classical SIMD Array Architecture 

 

 

Figure 2. Array Processor with Shared Memory 

 

 

 

  



 

UNIT 5 

COMPUTER ARITHMETIC 

Introduction: 
 

Data is manipulated by using the arithmetic instructions in digital computers. Data is manipulated to produce 

results necessary to give solution for the computation problems. The Addition, subtraction, multiplication and 

division are the four basic arithmetic operations. If we want then we can derive other operations by using these 

four operations. 

To execute arithmetic operations there is a separate section called arithmetic processing unit in central 

processing unit. The arithmetic instructions are performed generally on binary or decimal data. Fixed-point 

numbers are used to represent integers or fractions. We can have signed or unsigned negative numbers. Fixed-

point addition is the simplest arithmetic operation. 

If we want to solve a problem then we use a sequence of well-defined steps. These steps are collectively called 

algorithm. To solve various problems we give algorithms. 

In order to solve the computational problems, arithmetic instructions are used in digital computers that 

manipulate data. These instructions perform arithmetic calculations. 

And these instructions perform a great activity in processing data in a digital computer. As we already 

stated that with the four basic arithmetic operations addition, subtraction, multiplication and division, it 

is possible to derive other arithmetic operations and solve scientific problems by means of numerical 

analysis methods. 

A processor has an arithmetic processor(as a sub part of it) that executes arithmetic operations. The data 

type, assumed to reside in processor, registers during the execution of an arithmetic instruction. 

Negative numbers may be in a signed magnitude or signed complement representation. There are three 

ways of representing negative fixed point - binary numbers signed magnitude, signed 1’s complement or 

signed 2’s complement. Most computers use the signed magnitude representation for the mantissa. 

Addition and Subtraction : 
 

Addition and Subtraction with Signed –Magnitude Data 
 

We designate the magnitude of the two numbers by A and B. Where the signed numbers are added or 

subtracted, we find that there are eight different conditions to consider, depending on the sign of the 

numbers and the operation performed. These conditions are listed in the first column of Table 4.1. The 

other columns in the table show the actual operation to be performed with the magnitude of the 

numbers. The last column is needed to present a negative zero. In other words, when two equal numbers 

are subtracted, the result should be +0 not -0. 

The algorithms for addition and subtraction are derived from the table and can be stated as follows (the 

words parentheses should be used for the subtraction algorithm) 



 

Addition and Subtraction of Signed-Magnitude Numbers 
 

Computer Arithmetic 2 Addition and Subtraction 

SIGNED MAGNITUDEADDITION AND SUBTRACTION 

Addition: A + B ; A: Augend; B: Addend 

Subtraction: A - B: A: Minuend; B: Subtrahend 
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END END 

Augend in AC 

Addend in B 

Add Subtract 
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AC     AC  + B 

V    overflow 
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Minuend in AC 
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AC 
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Operation 

Add 

Magnitude 

Subtract Magnitude 

When A>B When A<B When A=B 

(+A) + (+B) 
(+A) + (- B) 
(- A) + (+B) 
(- A) + (- B) 
(+A) - (+B) 
(+A) -  (- B) 
(- A)  - (+B) 
(- A) -  (- B) 

+(A + B) 

 

- (A + B) 
 

+(A + B) 
- (A + B) 

 
+(A - B) 
- (A - B) 
 

+(A - B) 

 

- (A - B) 

 

- (B - A) 
+(B - A) 
 

- (B - A) 

 

+(B - A) 

 
+(A - B) 
+(A - B) 
 

+(A - B) 

 

+(A - B) 

 



 

Algorithm: 
 
The flowchart is shown in Figure 7.1. The two signs A, and B, are compared by an exclusive-OR gate. 
 
If the output of the gate is 0 the signs are identical; If it is 1, the signs are 
different. 
 

 
 For an add operation, identical signs dictate that the magnitudes be added. For a subtract operation, 
different signs dictate that the magnitudes be added. 
 
 The magnitudes are added with a microoperation EA A + B, where EA is a register that combines E and A. The 
carry in E after the addition constitutes an overflow if it is equal to 1. The value of E is transferred into the add-
overflow flip-flop AVF. 
 
 The two magnitudes are subtracted if the signs are different for an add operation or identical for a subtract 
operation. The magnitudes are subtracted by adding A to the 2's complemented B. No overflow can occur if the 
numbers are subtracted so AVF is cleared to 0. 

 
 1 in E indicates that A >= B and the number in A is the correct result. If this numbs is zero, the sign A must be 
made positive to avoid a negative zero. 

 
 0 in E indicates that A < B. For this case it is necessary to take the 2's complement of the value in A. The 
operation can be done with one microoperation A A' +1. 

 However, we assume that the A register has circuits for microoperations complement and increment, so the 2's 
complement is obtained from these two microoperations. 

 
 In other paths of the flowchart, the sign of the result is the same as the sign of A. so no change in A is required. 
However, when A < B, the sign of the result is the complement of the original sign of A. It is then necessary to 
complement A, to obtain the correct sign. 

 
 The final result is found in register A and its sign in As. The value in AVF provides an overflow indication. 
The final value of E is immaterial. 

 
Figure 7.2 shows a block diagram of the hardware for implementing the addition and subtraction operations. 

It consists of registers A and B and sign flip-flops As and Bs. Subtraction is done by 

adding A to the 2's complement of B. 

 
The output carry is transferred to flip-flop E , where it can be checked to determine the relative magnitudes 
of two numbers. 

The add-overflow flip-flop AVF holds the overflow bit when A and B are added. 

 
The A register provides other microoperations that may be needed when we specify the sequence of steps in 
the algorithm. 



 

 

 

 

 
 

Multiplication Algorithm: 

 

In the beginning, the multiplicand is in B and the multiplier in Q. Their corresponding signs are in Bs and Qs 

respectively. We compare the signs of both A and Q and set to corresponding sign of the product since a double-

length product will be stored in registers A and Q. Registers A and E are cleared and the sequence counter SC is 

set to the number of bits of the multiplier. Since an operand must be stored with its sign, one bit of the word will 

be occupied by the sign and the magnitude will consist of n-1 bits. 

 

 

Now, the low order bit of the multiplier in Qn is tested. If it is 1, the multiplicand (B) is added to present partial 

product (A), 0 otherwise. Register EAQ is then shifted once to the right to form the new partial product. The 

sequence counter is decremented by 1 and its new value checked. If it is not equal to zero, the process is 

repeated and a new partial product is formed. When SC = 0 we stops the process. 



 

 
 

 

 

 

 

 

Booth’s algorithm : 
 

Booth algorithm gives a procedure for multiplying binary integers in signed- 2’s complement 
representation. 

It operates on the fact that strings of 0’s in the multiplier require no addition but just 



 

shifting, and a string of 1’s in the multiplier from bit weight 2k to weight 2m can be treated as 2k+1 – 2m. 
 

For example, the binary number 001110 (+14) has a string 1’s from 23 to 21 (k=3, m=1). The number can be 
represented as 2k+1 – 2m. = 24 – 21 = 16 – 2 = 14. Therefore, the multiplication M X 14, where M is the 
multiplicand and 14 the multiplier, can be done as M X 24 – M X 21. 

Thus the product can be obtained by shifting the binary multiplicand M four times to the left and 
subtracting M shifted left once. 

 

 

 

As in all multiplication schemes, booth algorithm requires examination of the multiplier bits and 
shifting of partial product. 

 
Prior to the shifting, the multiplicand may be added to the partial product, subtracted from the partial, or 

left unchanged according to the following rules: 



 

1. The multiplicand is subtracted from the partial product upon encountering the 
first least significant 1 in a string of 1’s in the multiplier. 

 
2. The multiplicand is added to the partial product upon encountering the first 0 

in a string of 0’s in the multiplier. 

 
3. The partial product does not change when multiplier bit is identical to the 

previous multiplier bit. 

 
The algorithm works for positive or negative multipliers in 2’s complement representation.  

 
This is because a negative multiplier ends with a string of 1’s and the last operation will be a subtraction 

of the appropriate weight. 

The two bits of the multiplier in Qn and Qn+1 are inspected. 

 
If the two bits are equal to 10, it means that the first 1 in a string of 1 's has been encountered. This requires 

a subtraction of the multiplicand from the partial product in AC. 

 
If the two bits are equal to 01, it means that the first 0 in a string of 0's has been encountered. This requires 

the addition of the multiplicand to the partial product in AC. 

When the two bits are equal, the partial product does not change. 

 
 

Division Algorithms 
 

Division of two fixed-point binary numbers in signed magnitude representation is performed with paper and 

pencil by a process of successive compare, shift and subtract operations. Binary division is much simpler than 

decimal division because here the quotient digits are either 0 or 1 and there is no need to estimate how many 

times the dividend or partial remainder fits into the divisor. The division process is described in Figure 
 

 

The devisor is compared with the five most significant bits of the dividend. Since the 5-bit number is 

smaller than B, we again repeat the same process. Now the 6-bit number is greater than B, so we 

place a 1 for the quotient bit in the sixth position above the dividend. Now we shift the divisor once 

to the right and subtract it from the dividend. The difference is known as a partial remainder because 

the division could have stopped here to obtain a quotient of 1 and a remainder equal to the partial 



 

remainder. Comparing a partial remainder with the divisor continues the process. If the partial 

remainder is greater than or equal to the divisor, the quotient bit is equal to 

1. The divisor is then shifted right and subtracted from the partial remainder. If the partial remainder 

is smaller than the divisor, the quotient bit is 0 and no subtraction is needed. The divisor is shifted 

once to the right in any case. Obviously the result gives both a quotient and a remainder. 

 

Hardware Implementation for Signed-Magnitude Data 
 

In hardware implementation for signed-magnitude data in a digital computer, it is convenient to 

change the process slightly. Instead of shifting the divisor to the right, two dividends, or partial 

remainders, are shifted to the left, thus leaving the two numbers in the required relative position. 

Subtraction is achieved by adding A to the 2's complement of B. End carry gives the information 

about the relative magnitudes. 

The hardware required is identical to that of multiplication. Register EAQ is now shifted to the left 

with 0 inserted into Qn and the previous value of E is lost. The example is given in Figure 4.10 to 

clear the proposed division process. The divisor is stored in the B register and the double-length 

dividend is stored in registers A and Q. The dividend is shifted to the left and the divisor is 

subtracted by adding its 2's complement value. E 
 

 
Hardware Implementation for Signed-Magnitude Data 

 

 

 

 

 

 

 

 

 

Algorithm: 



 

 
 

Example of Binary Division with Digital Hardware 

 

 

 

 



 

Floating-point Arithmetic operations : 

In many high-level programming languages we have a facility for specifying floating-point numbers. The most 

common way is by a real declaration statement. High level programming languages must have a provision for 

handling floating-point arithmetic operations. The operations are generally built in the internal hardware. If no 

hardware is available, the compiler must be designed with a package of floating-point software subroutine. 

Although the hardware method is more expensive, it is much more efficient than the software method. 

Therefore, floating- point hardware is included in most computers and is omitted only in very small ones. 

Basic Considerations : 
 

There are two part of a floating-point number in a computer - a mantissa m and an exponent e. The two parts 

represent a number generated from multiplying m times a radix r raised to the value of e. Thus 
 

m x re
 

 

The mantissa may be a fraction or an integer. The position of the radix point and the value of the radix r are not 

included in the registers. For example, assume a fraction representation and a radix 

10. The decimal number 537.25 is represented in a register with m = 53725 and e = 3 and is interpreted to 

represent the floating-point number 

 

.53725 x 103
 

 

A floating-point number is said to be normalized if the most significant digit of the mantissa in nonzero. So the 

mantissa contains the maximum possible number of significant digits. We cannot normalize a zero because it 

does not have a nonzero digit. It is represented in floating-point by all 0’s in the mantissa and exponent. 

Floating-point representation increases the range of numbers for a given register. Consider a computer with 48-

bit words. Since one bit must be reserved for the sign, the range of fixed-point integer numbers will be + (247 – 

1), which is approximately + 1014. The 48 bits can be used to represent a floating-point number with 36 bits for 

the mantissa and 12 bits for the exponent. Assuming fraction representation for the mantissa and taking the two 

sign bits into consideration, the range of numbers that can be represented is 

 

+ (1 – 2-35) x 22047
 

 

 

This number is derived from a fraction that contains 35 1’s, an exponent of 11 bits (excluding its sign), and 

because 211–1 = 2047. The largest number that can be accommodated is approximately 10615. The mantissa that 

can accommodated is 35 bits (excluding the sign) and if considered as an integer it can store a number as large 

as (235 –1). This is approximately equal to 1010, which is equivalent to a decimal number of 10 digits. 

Computers with shorter word lengths use two or more words to represent a floating-point number. An 8-bit 

microcomputer uses four words to represent one floating-point number. One word of 8 bits are reserved for the 

exponent and the 24 bits of the other three words are used in the mantissa. 



 

Arithmetic operations with floating-point numbers are more complicated than with fixed-point numbers. Their 

execution also takes longer time and requires more complex hardware. Adding or subtracting two numbers 

requires first an alignment of the radix point since the exponent parts must be made equal before adding or 

subtracting the mantissas. We do this alignment by shifting one mantissa while its exponent is adjusted until it 

becomes equal to the other exponent. Consider the sum of the following floating-point numbers: 

.5372400 x 102
 

 

+ .1580000 x 10-1
 

 

 

 

 

 

 
Floating-point multiplication and division need not do an alignment of the mantissas. Multiplying the two 

mantissas and adding the exponents can form the product. Dividing the mantissas and subtracting the exponents 

perform division. 

The operations done with the mantissas are the same as in fixed-point numbers, so the two can share the same 

registers and circuits. The operations performed with the exponents are compared and incremented (for aligning 

the mantissas), added and subtracted (for multiplication) and division), and decremented (to normalize the 

result). We can represent the exponent in any one of the three representations - signed-magnitude, signed 2’s 

complement or signed 1’s complement. 

 

 

 
Biased exponents have the advantage that they contain only positive numbers. Now it becomes simpler to 

compare their relative magnitude without bothering about their signs. Another advantage is that the smallest 

possible biased exponent contains all zeros. The floating-point representation of zero is then a zero mantissa and 

the smallest possible exponent. 

Register Configuration 
 

The register configuration for floating-point operations is shown in figure 4.13. As a rule, the same registers and 

adder used for fixed-point arithmetic are used for processing the mantissas. The difference lies in the way the 

exponents are handled. 

The register organization for floating-point operations is shown in Fig. 4.13. Three registers are there, BR, AC, 

and QR. Each register is subdivided into two parts. The mantissa part has the same uppercase letter symbols as 

in fixed-point representation. The exponent part may use corresponding lower-case letter symbol. 



 

QR 

AC 

E 

BR 

Registers for Floating Point Arithmetic 

FLOATING POINT ARITHMETIC OPERATIONS 

Q Qs 

B Bs 

q 

a 

Parallel Adder 

and Comparator 

Parallel Adder 

b 

F = m x re
 

where m: Mantissa 

r: Radix 

e: Exponent 
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Figure 4.13: Registers for Floating Point arithmetic operations 
 

Assuming that each floating-point number has a mantissa in signed-magnitude representation and a biased 

exponent. Thus the AC has a mantissa whose sign is in As, and a magnitude that is in A. The diagram shows the 

most significant bit of A, labeled by A1. The bit in his position must be a 1 to normalize the number. Note that 

the symbol AC represents the entire register, that is, the concatenation of As, A and a. 

In the similar way, register BR is subdivided into Bs, B, and b and QR into Qs, Q and q. A parallel-adder adds 

the two mantissas and loads the sum into A and the carry into E. A separate parallel adder can be used for the 

exponents. The exponents do not have a district sign bit because they are biased but are represented as a biased 

positive quantity. It is assumed that the floating- point number are so large that the chance of an exponent 

overflow is very remote and so the exponent overflow will be neglected. The exponents are also connected to a 

magnitude comparator that provides three binary outputs to indicate their relative magnitude. 

The number in the mantissa will be taken as a fraction, so they binary point is assumed to reside to the left of the 

magnitude part. Integer representation for floating point causes certain scaling problems during multiplication 

and division. To avoid these problems, we adopt a fraction representation. 

 

The numbers in the registers should initially be normalized. After each arithmetic operation, the result will be 

normalized. Thus all floating-point operands are always normalized. 



 

Addition and Subtraction of Floating Point Numbers 
 

During addition or subtraction, the two floating-point operands are kept in AC and BR. The sum or difference is 

formed in the AC. The algorithm can be divided into four consecutive parts: 

 
1. Check for zeros. 

 

2. Align the mantissas. 

 

3. Add or subtract the mantissas 

 

4. Normalize the result 

 
A floating-point number cannot be normalized, if it is 0. If this number is used for computation, the result may 

also be zero. Instead of checking for zeros during the normalization process we check for zeros at the beginning 

and terminate the process if necessary. The alignment of the mantissas must be carried out prior to their 

operation. After the mantissas are added or subtracted, the result may be un-normalized. The normalization 

procedure ensures that the result is normalized before it is transferred to memory. 

 

 

If the magnitudes were subtracted, there may be zero or may have an underflow in the result. If the mantissa is 

equal to zero the entire floating-point number in the AC is cleared to zero. Otherwise, the mantissa must have at 

least one bit that is equal to 1. The mantissa has an underflow if the most significant bit in position A1, is 0. In 

that case, the mantissa is shifted left and the exponent decremented. The bit in A1 is checked again and the 

process is repeated until A1 = 1. When A1 = 1, the mantissa is normalized and the operation is completed. 
 



 

 

 
 

 
 

Algorithm for Floating Point Addition and Subtraction 



 

Multiplication: 
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FLOATING POINT DIVISION 
 BR  Divisor AC  

Dividend 

 

  

  =0 
BR

 

 0 

  =0 AC 

 0 

QR  0 

divide 

by 0 

 
  1     

E      0  

A>=B   A<B 

 

A  A+B A  A+B 
shr A a  a+1 

 
a  a+b’+1 a  a+bias q  a 

 

Divide Magnitude of mantissa as in fixed point numbers  

  
 

 

 

 

 

 

 

 

Qs   As + Bs 
Q   0  SC   

n-1 

EA   A+B’+1 
  

 



 

INPUT-OUTPUT ORGANIZATION 
 

 
 
MODES OF DATA TRANSFER WITH I/O DEVICES 
1. Programmed I/O  
2. Interrupt Driven I/O  
3. Direct Memory Access  
 
 
Programmed I/O  

The simplest strategy for handling communication between the CPU and an I/O 

module is programmed I/O. Using this strategy, the CPU is responsible for all 

communication with I/O modules, by executing instructions which control the 

attached devices, or transfer data.  

For example, if the CPU wanted to send data to a device using programmed I/O, it 

would first issue an instruction to the appropriate I/O module to tell it to expect data. 

The CPU must then wait until the module responds before sending the data. If the 

module is slower than the CPU, then the CPU may also have to wait until the transfer 

is complete. This can be very inefficient.  

Another problem exists if the CPU must read data from a device such as a keyboard. 

Every so often the CPU must issue an instruction to the appropriate I/O module to see 

if any keys have been pressed. This is also extremely inefficient. Consequently this 

strategy is only used in very small microprocessor controlled devices.  
 
 
 
Interrupt Driven I/O  

Virtually all computers provide a mechanism y which other modules (I/O, memory ) 

may interrupt the normal processing of the CPU. Table 3.1 lists the most common 

classes of interrupts. The specific nature of these interrupts is examined later in this 

book, especially in chapters 6 and 11. However, we need to introduce the concept 

now in order to understand more clearly the nature of the instruction cycle and the 

implications of interrupts on the interconnection structure. The reader need not be 

concerned at this stage about the details of the generation and processing of 

interrupts, but only focus on the communication between modules those results from 

interrupts. Interrupts are provided primarily as a way to improve processing 

efficiency.  
 
Interrupts are generated by: 

 Generated by some condition that occurs as a result of an instruction 

execution, such as arithmetic overflow, division by zero, attempt to execute 

an illegal machine instruction, and reference outside a allowed memory 

space.  

 Generated by a timer within the processor, This allows the operating system 

to perform certain functions on a regular basis.  

 Generated by an I/O controller, to signal normal completion of an operation or 

to signal a variety of error conditions.  

 

An I/O module interrupts the CPU simply by activating a control line in the control 

bus. The sequence of events is as follows.  

1. The I/O module interrupts the CPU.  



 

2. The CPU finishes executing the current instruction.  

3. The CPU acknowledges the interrupt.  

4. The CPU saves its current state.  

5. The CPU jumps to a sequence of instructions which will handle the interrupt.  
 
Interrupts and the Instruction Cycle  

With interrupts, the processor can be engaged in executing other instructions while an 

I/O operation is in progress. Consider the flow of control in Figure 3.7b.As before , 

the user program reaches a point at which it makes a system call in the form of a 

WRITE call . The I/O program that is invoked in this case consists only of the 

preparation code and the actual I/O command. After these few instructions have been 

executed, control returns to the user program. Meanwhile, the external device is busy 

accepting data from computer memory and printing it. This I/O operation is 

conducted concurrently with the execution of instructions in the user program.  

When the external device becomes ready to be serviced, that is , when it is ready to 

accept more data from the processor , the I/O module for that external device sends an 

interrupt request signal to the processor. The processor responds by suspending 

operation of the current program , branching off to a program to service that particular 

I/O device, known as an interrupt handler, and resuming the original execution after 

the device is serviced. The points at which such interrupts occur are indicated by an 

asterisk (*) in Figure.  

 
 
 
Priority Interrupt  

A priority interrupt establishes a priority to decide which condition is to be serviced 

first when two or more requests arrive simultaneously. The system may also 

determine which conditions are permitted to interrupt the computer while another 

interrupt is being serviced. Higher-priority interrupt levels are assigned to requests, 

which if delayed or interrupted, could have serious consequences. Devices with high- 

speed transfers are given high priority, and slow devices receive low priority. When 

two devices interrupt the computer at the same time, the computer services the 

device, with the higher priority first. Establishing the priority of simultaneous 

interrupts can be done by software or hardware. We can use a polling procedure to 

identify the highest-priority. There is one common branch address for all interrupts. 

The program that takes care of interrupts begins at the branch address and polls the 

interrupt sources in sequence. The order in which they are tested determines the 

priority of each interrupt. We test the highest-priority source first, and if its interrupt 

signal is on, control branches to a service routine for this source. Otherwise, the next-

lower-priority source is tested, and so on. Thus the initial service routine interrupts 

consists of a program that tests the interrupt sources in sequence and branches to one 

of many possible service routines. The particular service routine reached belongs to 

the highest-priority device among all devices that interrupted the computer.  
 
 
Interrupt Cycle  

The interrupt makes flip-flop IEN so that can be set or cleared by program 

instructions. When IEN is cleared, the interrupt request coming from 1ST is neglected 

by the CPU. The program-controlled IEN bit allows the programmer to choose 

whether to use the interrupt facility. If an instruction to clear IEN has been inserted 

in the program, it means that the user does not want his program to be interrupted. An 



 

instruction to set IEN indicates that the interrupt facility will be used while the 

current program is running. Most computers include internal hardware that clears IEN 

to 0 every time an interrupt is acknowledged by the processor.  

 

CPU checks IEN and the interrupt signal from IST at the end of each instruction cycle 

the. If either 0, control continues with the next instruction. If both IEN and IST are 

equal to 1, the CPU goes to an interrupt cycle. During the interrupt cycle the CPU  

performs the following sequence of micro-operations:  

SP  SP - 1  Decrement stack pointer  

M [SP]   PC  Push PC into stack  

INTACK  1  Enable interrupt 

acknowledge PC  VAD  Transfer vector address to PC  

I EN  0  Disable further interrupts  

Go to fetch next instruction  

 

Direct Memory Access  

Although interrupt driven I/O is much more efficient than program controlled I/O, all 

data is still transferred through the CPU. This will be inefficient if large quantities of 

data are being transferred between the peripheral and memory. The transfer will be 

slower than necessary, and the CPU will be unable to perform any other actions while 

it is taking place.  
 
 
DMA Controller  

Many systems therefore use an additional strategy, known as direct memory access 

(DMA). DMA uses an additional piece of hardware - a DMA controller. The DMA 

controller can take over the system bus and transfer data between an I/O module and 

main memory without the intervention of the CPU. Whenever the CPU wants to 

transfer data, it tells the DMA controller the direction of the transfer, the I/O module 

involved, the location of the data in memory, and the size of the block of data to be 

transferred. It can then continue with other instructions and the DMA controller will 

interrupt it when the transfer is complete.  

The CPU and the DMA controller cannot use the system bus at the same time, so 

some way must be found to share the bus between them. One of two methods is 

normally used.  

Burst mode  

 

The DMA controller transfers blocks of data by halting the CPU and controlling the 

system bus for the duration of the transfer. The transfer will be as quick as the 

weakest link in the I/O module/bus/memory chain, as data does not pass through the 

CPU, but the CPU must still be halted while the transfer takes place.  

Cycle stealing  

 

The DMA controller transfers data one word at a time, by using the bus during a part 

of an instruction cycle when the CPU is not using it, or by pausing the CPU for a 

single clock cycle on each instruction. This may slow the CPU down slightly overall, 

but will still be very efficient.  
 
 
Channel I/O  



 

This is a system traditionally used on mainframe computers, but is becoming more 

common on smaller systems. It is an extension of the DMA concept, where the DMA 

controller becomes a full-scale computer system itself which handles all 

communication with the I/O modules.  
 
 
I/O Interfaces  

The interface of an I/O module is the connection to the peripheral(s) attached to it. 

The  

interface handles synchronisation and control of the peripheral, and the actual transfer 

of data. For example, to send data to a peripheral, the sequence of events would be as 

follows.  

a) The I/O module sends a control signal to the peripheral requesting permission to 

send data.  

b) The peripheral acknowledges the request.  

c) The I/O module sends the data (this may be either a word at a time or a block at a  

time depending on the peripheral).  

d) The peripheral acknowledges receipt of the data.  

This process of synchronisation is known as handshaking.  

The internal buffer allows the I/O module to compensate for some of the difference 

in the speed at which the interface can communicate with the peripheral, and the 

speed of the system bus.  

I/O interfaces can be divided into two main types.  
 
 

 

I/O Function  

This section introduces the concepts of input/output devices, modules and interfaces. 

It considers the various strategies used for communication between the CPU and I/O 

modules, and the interface between an I/O module and the device(s) connected to it. 

Some common I/O devices are considered in the last section.  
 
 
 
DMA Transfer  

There are three independent channels for DMA transfers. Each channel receives its 

trigger for the transfer through a large multiplexer that chooses from among a large 

number of signals. When these signals activate, the transfer occurs. 

 
 
Input-output Processor (IOP)  

The CPU or processor is the part that makes the computer smart. It is a single 

integrated circuit referred to as a microprocessor. The earlier microprocessors were 

Intel 8080 or 8086, they were very slow. Then came faster models from Intel such as 

80286, 80386, 80486 and now Pentium processors. Each of these vary in speed of  

their operation. The AT compatibles - 80286 onwards, run in one of the two 

modes:  

• Real mode  
 
• Protected mode  

 

The processor complex is the name of the circuit board that contains the main system 



 

processor and any other circuitry directly related to it, such as clock control, cache, 

and so forth. The processor complex design allows the user to easily upgrade the 

system later to a new processor type by changing one card. In effect, it amounts to a 

modular motherboard with a replaceable processor section.  

  

 

The block diagram of a computer with two processors is shown in Figure 6.39. The 

memory unit occupies a central position and can communicate with each processor by 

means of direct memory access. The CPU is responsible for processing data needed in 

the solution of computational tasks. The IOP provides a path for transfer of data 

between various peripheral devices and the memory unit.  
 
 
 
 



 

 
CPU-IOP Communication  

There are many form of the communication between CPU and IOP. These are 

depending on the particular computer considered. In most cases the memory unit acts 

as a message center where each processor leaves information for the other. To 

appreciate the operation of a typical IOP, we will illustrate by a specific example the 

method by which the CPU and IOP communicate. This is a simplified example that 

omits many operating details in order to provide an overview of basic concepts.  

 

The sequence of operations may be carried out as shown in the flowchart of Fig. 6.40. 

The CPU sends an instruction to test the IOP path. The IOP responds by inserting a 

status word in memory for the CPU to check. The bits of the status word indicate the 

condition of the IOP and I/O device, such as IOP overload condition, device busy 

with another transfer, or device ready for I/O transfer. The CPU refers to the status 

word in memory to decide what to do next. If all is in order, the CPU sends the 

instruction to start I/O transfer. The memory address received with this instruction 

tells the IOP where to find its program.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: CPU IOP Communication 



 

 

Unit 6 

MEMORY ORGANIZATION:  

Memory Hierarchy, Main Memory, Auxiliary memory, Associative Memory, Cache Memory, Virtual Memory 

Memory Hierarchy : 
 

Memory Organization 2 Memory Hierarchy 

MEMORY HIERARCHY 

 
Memory Hierarchy is to obtain the highest possible 

access speed while minimizing the total cost of the memory system 

Auxiliary memory Magnetic 
tapes I/O Main 
processor memory 

Magnetic disks 

 
CPU    Cache 
memory 

 

 
Register 

 
 

Cache 

 

 
Main Memory 

 

 

Magnetic Disk 

 Magnetic Tape  

  

memory address map of RAM and ROM. 
 

Main Memory 
 

The main memory is the central storage unit in a computer system. 
 

Primary memory holds only those data and instructions on which computer is currently working. 

It has limited capacity and data is lost when power is switched off. It is generally 
made up of semiconductor device. 

These memories are not as fast as registers. 

The data and instruction required to be processed reside in main memory. It is divided into 
two subcategories RAM and ROM. 

Memory address map of RAM and ROM 

The designer of a computer system must calculate the amount of memory required for the particular 
application and assign it to either RAM or ROM. 

 
The interconnection between memory and processor is then established from knowledge of the size of memory 

needed and the type of RAM and ROM chips available. 

 
The addressing of memory can be established by means of a table that specifies the memory address 

assigned to each chip. 

 
The table, called a memory address map, is a pictorial representation of assigned address space for each chip 

in the system, shown in table 9.1. 



 

To demonstrate with a particular example, assume that a computer system needs 512 bytes of RAM and 512 
bytes of ROM. 

The RAM and ROM chips to be used are specified in figure 9.1 and figure 9.2. 

Memory address map of RAM and ROM 
 

 
Figure 9.1: Typical RAM chip 

 
 

 
Figure 9.2: Typical ROM chip 

 
 

 

The component column specifies whether a RAM or a ROM chip is used. 

 
The hexadecimal address column assigns a range of hexadecimal equivalent addresses for each chip. 

The address bus lines are listed in the third column. 

 
Although there are 16 lines in the address bus, the table shows only 10 lines because the other 6 are not used in 

this example and are assumed to be zero. 

 
The small x's under the address bus lines designate those lines that must be connected to the address inputs 

in each chip. 

 
The RAM chips have 128 bytes and need seven address lines. The ROM chip has 512 bytes and needs 9 

address lines. 

 
The x's are always assigned to the low-order bus lines: lines 1 through 7 for the RAM and lines 1 through 9 for 

the ROM. 



 

It is now necessary to distinguish between four RAM chips by assigning to each a different address. For this 
particular example we choose bus lines 8 and 9 to represent four distinct binary combinations. 

 
The table clearly shows that the nine low-order bus lines constitute a memory space for RAM equal to 29 = 

512 bytes. 

The distinction between a RAM and ROM address is done with another bus line. Here we choose line 10 for this 
purpose. 
 

When line 10 is 0, the CPU selects a RAM, and when this line is equal to 1, it selects the ROM 
 

Memory connections to CPU : 
 

- RAM and ROM chips are connected to a CPU through the data and address buses 
 

- The low-order lines in the address bus select the byte within the chips and other lines in the address bus select a 
particular chip through its chip select inputs. 
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Auxiliary Memory : 

 
 Magnetic Tape: Magnetic tapes are used for large computers like mainframe computers where large volume 

of data is stored for a longer time. In PC also you can use tapes in the form of cassettes. The cost of storing 
data in tapes is inexpensive. Tapes consist of magnetic materials that store data permanently. It can be 12.5 

mm to 25 mm wide plastic film-type and 500 meter to 1200 meter long which is coated with magnetic 

material. The deck is connected to the central processor and information is fed into or read from the tape 
through the processor. It’s similar to cassette tape recorder. 
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Magnetic tape is an information storage medium consisting of a magnetisable coating on a thin plastic strip. Nearly all 

recording tape is of this type, whether used for video with a video cassette recorder, audio storage (reel-to-reel tape, 

compact audio cassette, digital audio tape (DAT), digital linear tape (DLT) and other formats including 8-track 
cartridges) or general purpose digital data storage using a computer (specialized tape formats, as well as the above- 

mentioned compact audio cassette, used with home computers of the 1980s, and DAT, used for backup in workstation 

installations of the 1990s). 

 
 Magneto-optical and optical tape storage products have been developed using many of the same concepts as 

magnetic storage, but have achieved little commercial success. 

 
 Magnetic Disk: You might have seen the gramophone record, which is circular like a disk and coated with 

magnetic material. Magnetic disks used in computer are made on the same principle. It rotates with very high 

speed inside the computer drive. Data is stored on both the surface of the disk. Magnetic disks are most 
popular for direct access storage device. Each disk consists of a number of invisible concentric circles called 

tracks. Information is recorded on tracks of a disk surface in the form of tiny magnetic spots. The presence of 

a magnetic spot represents one bit and its absence represents zero bit. The information stored in a disk can be 

read many times without affecting the stored data. So the reading operation is non-destructive. But if you 
want to write a new data, then the existing data is erased from the disk and new data is recorded. For 

Example-Floppy Disk. 

 
The primary computer storage device. Like tape, it is magnetically recorded and can be re-recorded over and over. 
Disks are rotating platters with a mechanical arm that moves a read/write head between the outer and inner edges of the 

platter's surface. It can take as long as one second to find a location on a floppy disk to as little as a couple of 

milliseconds on a fast hard disk. See hard disk for more details. 

 
The disk surface is divided into concentric tracks (circles within circles). The thinner the tracks, the more storage. The 
data bits are recorded as tiny magnetic spots on the tracks. The smaller the spot, the more bits per inch and the greater 

the storage. 

 
Sectors 

Tracks are further divided into sectors, which hold a block of data that is read or written at one time; for example, 

READ SECTOR 782, WRITE SECTOR 5448. In order to update the disk, one or more sectors are read into the 

computer, changed and written back to disk. The operating system figures out how to fit data into these fixed spaces. 
Modern disks have more sectors in the outer tracks than the inner ones because the outer radius of the platter is greater 

than the inner radius 
 

Block diagram of Magnetic Disk 



 

Optical Disk: With every new application and software there is greater demand for memory capacity. It is the 

necessity to store large volume of data that has led to the development of optical disk storage medium. Optical disks 

can be divided into the following categories: 

 
1. Compact Disk/ Read Only Memory (CD-ROM 

2. Write Once, Read Many (WORM) 

3. Erasable Optical Disk 

 

Associative Memory :Content Addressable Memory (CAM). 

 

The time required to find an item stored in memory can be reduced considerably if stored data can be identified for 
access by the content of the data itself rather than by an address. 

 
A memory unit accessed by content is called an associative memory or content addressable memory 

(CAM). 

 
This type of memory is accessed simultaneously and in parallel on the basis of data content rather than by 

specific address or location. 

The block diagram of an associative memory is shown in figure 9.3. 
 
 

 
It consists of a memory array and logic form words with n bits per word. 
The argument register A and key register K each have n bits, one for each bit of a word. The match register 

M has m bits, one for each memory word. 
Each word in memory is compared in parallel with the content of the argument register. 

 
The words that match the bits of the argument register set a corresponding bit in the match register. 

 
After the matching process, those bits in the match register that have been set indicate the fact that their 

corresponding words have been matched. 

 
Reading is accomplished by a sequential access to memory for those words whose corresponding bits in the 

match register have been set. 

 

Hardware Organization 

The key register provides a mask for choosing a particular field or key in the argument word. The entire 

argument is compared with each memory word if the key register contains all 1's. 



 

Otherwise, only those bits in the argument that have 1st in their corresponding position of the key register are 
compared. 
 

Thus the key provides a mask or identifying piece of information which specifies how the reference to 
memory is made. 

 
To illustrate with a numerical example, suppose that the argument register A and the key register K have the bit 

configuration shown below. 

 
Only the three leftmost bits of A are compared with memory words because K has 1's in these position. 

A 101 111100  

K 111 000000 
 

Word1 100 111100 no match 

Word2 101 000001 match 

 
Word 2 matches the unmasked argument field because the three leftmost bits of the argument and the word 

are equal. 
 

 

Figure 9.4: Associative memory of m word, n cells per word. 
 

The relation between the memory array and external registers in an associative memory is shown in figure 9.4. 

The cells in the array are marked by the letter C with two subscripts. 
 

The first subscript gives the word number and the second specifies the bit position in the word. Thus cell Cij 

is the cell for bit j in words i. 

A bit Aj in the argument register is compared with all the bits in column j of the array provided that Kj =1. 

This is done for all columns j = 1, 2... n. 

 
If a match occurs between all the unmasked bits of the argument and the bits in word i, the corresponding 

bit Mi in the match register is set to 1. 
 

If one or more unmasked bits of the argument and the word do not match, Mi is cleared to 0. 

 
Cache Memory : 

Cache is a fast small capacity memory that should hold those information which are most likely to be 
accessed. 
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The basic operation of the cache is, when the CPU needs to access memory, the cache is 
examined. 

 
If the word is found in the cache, it is read from the fast memory. If the word addressed by the 

CPU is not found in the cache, the main memory is accessed to read the word. 

 
The transformation of data from main memory to cache memory is referred to as a mapping 

process. 
 

Associative mapping 
 

Consider the main memory can store 32K words of 12 bits each. 

The cache is capable of storing 512 of these words at any given time. 
For every word stored in cache, there is a duplicate copy in main memory. The 

CPU communicates with both memories. 
It first sends a 15-bit address to cache. If there is a hit, the CPU accepts the 12-bit data from cache, if 
there is miss, the CPU reads the word from main memory and the word is then transferred to cache. 

 

Figure 9.5: Associative 

mapping cache (all 

numbers in octal) 

 

 

 

 

 

 
The associative memory stores both the address and content (data) of the memory word. 

This permits any location in cache to store any word from main memory. 

The figure 9.5 shows three words presently stored in the cache. The address value of 15 bits is shown 
as a five-digit octal number and its corresponding 12-bit word is shown as a four-digit octal number. 

 
A CPU address of 15 bits is placed in the argument register and the associative memory is 

searched for a matching address. 

If the address is found the corresponding 12-bit data is read and sent to CPU. If no 

match occurs, the main memory is accessed for the word. 

The address data pairs then transferred to the associative cache memory. 

 
If the cache is full, an address data pair must be displaced to make room for a pair that is needed 

and not presently in the cache. 

This constitutes a first-in first-one (FIFO) replacement policy. 

 

 

 

 

 

 

 



 

direct mapping in organization of cache memory: 
 

The CPU address of 15 bits is divided into two fields. 

 
The nine least significant bits constitute the index field and the remaining six bits from the tag 

field. 
 

The figure 9.6 shows that main memory needs an address that includes both the tag and the index. 

 
 

 

 

 

 

 

 

Figure 9.6: Addressing relationships between main and cache memories 
 

The number of bits in the index field is equal to the number of address bits required to access the 
cache memory. 

The internal organization of the words in the cache memory is as shown in figure 9.7. 
 

 
Figure 9.7: Direct mapping cache organization 
 

 

 

 

Each word in cache consists of the data word and its associated tag. 
 

When a new word is first brought into the cache, the tag bits are stored alongside the data bits. 

 
When the CPU generates a memory request the index field is used for the address to access the 

cache. 
 

The tag field of the CPU address is compared with the tag in the word read from the cache. 

If the two tags match, there is a hit and the desired data word is in cache. 

If there is no match, there is a miss and the required word is read from main memory. It is 
then stored in the cache together with the new tag, replacing the previous value. 
 

The word at address zero is presently stored in the cache (index = 000, tag = 00, data = 1220). 
Suppose that the CPU now wants to access the word at address 02000. 
 

The index address is 000, so it is used to access the cache. The two tags are then compared. The 

cache tag is 00 but the address tag is 02, which does not produce a match. 



 

Therefore, the main memory is accessed and the data word 5670 is transferred to the CPU. The 

cache word at index address 000 is then replaced with a tag of 02 and data of 5670. 

The disadvantage of direct mapping is that two words with the same index in their address but with 
different tag values cannot reside in cache memory at the same time. 

The comparison logic is done by an associative search of the tags in the set similar to an 
associative memory search: thus the name "set-associative”. 

 
When a miss occurs in a set-associative cache and the set is full, it is necessary to replace one of the 
tag-data items with a new value. 

 
The most common replacement algorithms used are: random replacement, first-in first-out (FIFO), and 
least recently used (LRU). 

 

Write-through and Write-back cache write method. 

Write Through 
 

The simplest and most commonly used procedure is to update main memory with every memory 
write operation. 

 
The cache memory being updated in parallel if it contains the word at the specified address. This is 

called the write-through method. 
 

This method has the advantage that main memory always contains the same data as the cache. 

This characteristic is important in systems with direct memory access transfers. 

It ensures that the data residing in main memory are valid at all times so that an I/O device 
communicating through DMA would receive the most recent updated data. 

Write-Back (Copy-Back) 
 

The second procedure is called the write-back method. 

In this method only the cache location is updated during a write operation. 

 
The location is then marked by a flag so that later when the word is removed from the cache it is 

copied into main memory. 

 
The reason for the write-back method is that during the time a word resides in the cache, it may be 

updated several times. 

 
However, as long as the word remains in the cache, it does not matter whether the copy in main 

memory is out of date, since requests from the word are filled from the cache. 

 
It is only when the word is displaced from the cache that an accurate copy need be rewritten into 

main memory. 

 

 

Virtual Memory 
 

 
Virtual memory is used to give programmers the illusion that they have a very large memory at 

their disposal, even though the computer actually has a relatively small main memory. 
 

A virtual memory system provides a mechanism for translating program-generated addresses into 
correct main memory locations. 

Address space 



 

 

An address used by a programmer will be called a virtual address, and the set of such addresses is 
known as address space. 

Memory space 

An address in main memory is called a location or physical address. The set of such locations is 
called the memory space. 
 

 

 

Program 1 
 

 

 

 

 
 

 

Program 2 

 

Data 2,1 

 

 

Address space 1024k=210
 

As an illustration, consider a computer with a main-memory capacity of 32K words (K = 1024). 
Fifteen bits are needed to specify a physical address in memory since 32K = 215. 

Suppose that the computer has available auxiliary memory for storing 220 = 1024K words. 
 

Thus auxiliary memory has a capacity for storing information equivalent to the capacity of 32 
main memories. 
 

Denoting the address space by N and the memory space by M, we then have for this example N 
= 1024K and M = 32K. 

 
In a multiprogramming computer system, programs and data are transferred to and from auxiliary 

memory and main memory based on demands imposed by the CPU. 

 
Suppose that program 1 is currently being executed in the CPU. Program 1 and a portion of its 

associated data are moved from auxiliary memory into main memory as shown in figure 9.9. 
 

Portions of programs and data need not be in contiguous locations  in memory since information is 
being moved in and out, and empty spaces may be available in scattered locations in memory. 

 
In our example, the address field of an instruction code will consist of 20 bits but physical 

memory addresses must be specified with only 15 bits. 
 

Thus CPU will reference instructions and data with a 20-bit address, but the information at this 
address must be taken from physical memory because access to auxiliary storage for individual words 
will be too long. 
 

Address mapping using pages. 
AThe table implementation of the address mapping is simplified if the information in the address 

space and the memory space are each divided into groups of fixed size. 

 

Auxiliary Memory Main Memory 32k= 

Data 1,1 

Data 1,2 



 

The physical memory is broken down into groups of equal size called blocks, which may 
range from 64 to 4096 words each. 

The term page refers to groups of address space of the same size. 

Consider a computer with an address space of 8K and a memory space of 4K. 

 
If we split each into groups of 1K words we obtain eight pages and four blocks as shown in 

figure 9.9 

 
At any given time, up to four pages of address space may reside in main memory in any one of 

the four blocks. 

 

 

 

 

 

 

 

 

 
 

 

Figure 9.10 Address and Memory space split into group of 1K words 

 

 

 

 

 

 

 

 

 



 

 
 

Figure 9.11: Memory table in paged system 
 

 
The organization of the memory mapping table in a paged system is shown in figure 9.10. 

The memory-page table consists of eight words, one for each page. 

 
The address in the page table denotes the page number and the content of the word give the block 

number where that page is stored in main memory. 

 
The table shows that pages 1, 2, 5, and 6 are now available in main memory in blocks 3, 0, 1, 

and 2, respectively. 
A presence bit in each location indicates whether the page has been transferred from auxiliary 

memory into main memory. 

A 0 in the presence bit indicates that this page is not available in main memory. 

The CPU references a word in memory with a virtual address of 13 bits. 

 
The three high-order bits of the virtual address specify a page number and also an address for the 
memory-page table. 

 
The content of the word in the memory page table at the page number address is read out into the 
memory table buffer register. 

 
If the presence bit is a 1, the block number thus read is transferred to the two high- order bits of the 
main memory address register. 

 
The line number from the virtual address is transferred into the 10 low-order bits of the memory 
address register. 

 
A read signal to main memory transfers the content of the word to the main memory buffer 
register ready to be used by the CPU. 

 
If the presence bit in the word read from the page table is 0, it signifies that the content of the 
word referenced by the virtual address does not reside in main memory. 
 

 
Segment 

A segment is a set of logically related instructions or data elements associated with a given name. 

 
Logical address 
 

The address generated by segmented program is called a logical address. 



 

 
Segmented page mapping 
 

 
The length of each segment is allowed to grow and contract according to the needs of the program 

being executed. Consider logical address shown in figure 9.12. 
 
Figure 9.12: Logical to physical address mapping 
 
 

 

 The logical address is partitioned into three fields. 

 

 The segment field specifies a segment number. 
 

The page field specifies the page within the segment and word field gives specific word within 
the page. 

A page field of k bits can specify up to 2k pages. 
A segment number may be associated with just one page or with as many as 2k pages. 

 
Thus the length of a segment would vary according to the number of pages that are assigned to it. 

 
The mapping of the logical address into a physical address is done by means of two tables, as 

shown in figure 9.12. 

The segment number of the logical address specifies the address for the segment table. 

The entry in the segment table is a pointer address for a page table base. 
The page table base is added to the page number given in the logical address. The sum produces 

a pointer address to an entry in the page table. 



1 

 

 

The concatenation of the block field with the word field produces the final physical 
mapped address. 

 
The two mapping tables may be stored in two separate small memories or in main memory. 

 
In either case, memory reference from the CPU will require three accesses to memory: one 

from the segment table, one from the page table and the third from main memory. 

 
This would slow the system significantly when compared to a conventional system that 

requires only one reference to memory. 
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Multiprocessors 

 Characteristics of multiprocessors 

 A multiprocessor system is an interconnection of two or more CPUs with memory 

and input-output equipment. 

 The term “processor” in multiprocessor can mean either a central processing unit 

(CPU) or an input-output processor (IOP). 

 Multiprocessors are classified as multiple instruction stream, multiple data stream 

(MIMD) systems 

 The similarity and distinction between multiprocessor and multicomputer are 

o Similarity 
 Both support concurrent operations 

o Distinction 

 The network consists of several autonomous computers that may  

or may not communicate with each other. 

 A multiprocessor system is controlled by one operating system that 

provides interaction between processors and all the components of 

the system cooperate in the solution of a problem. 

 Multiprocessing improves the reliability of the system. 

 The benefit derived from a multiprocessor organization is an improved system 

performance. 

o Multiple independent jobs can be made to operate in parallel. 

o A single job can be partitioned into multiple parallel tasks. 

 Multiprocessing can improve performance by decomposing a program into 

parallel executable tasks. 
o The user can explicitly declare that certain tasks of the program be 

executed in parallel. 

 This must be done prior to loading the program by specifying the 

parallel executable segments. 

o The other is to provide a compiler with multiprocessor software that can 
automatically detect parallelism in a user’s program. 

 Multiprocessor are classified by the way their memory is organized. 

o A multiprocessor system with common shared memory is classified as a 
shared-memory or tightly coupled multiprocessor. 

 Tolerate a higher degree of interaction between tasks. 

o Each processor element with its own private local memory is classified as 
a distributed-memory or loosely coupled system. 

 Are most efficient when the interaction between tasks is minimal 
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 Interconnection Structures 

 The components that form a multiprocessor system are CPUs, IOPs connected to input- 

output devices, and a memory unit. 

 The interconnection between the components can have different physical configurations, 

depending on the number of transfer paths that are available 

o Between the processors and memory in a shared memory system 

o Among the processing elements in a loosely coupled system 

 There are several physical forms available for establishing an interconnection network. 

o Time-shared common bus 

o Multiport memory 

o Crossbar switch 

o Multistage switching network 

o Hypercube system 
Time Shared Common Bus 

 A common-bus multiprocessor system consists of a number of processors connected 

through a common path to a memory unit. 

 Disadv.: 

o Only one processor can communicate with the memory or another processor at 
any given time. 

o As a consequence, the total overall transfer rate within the system is limited by 
the speed of the single path 

 A more economical implementation of a dual bus structure is depicted in Fig. below. 

 Part of the local memory may be designed as a cache memory attached to the CPU. 
 

Fig: Time shared common bus organization 
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Fig: System bus structure for multiprocessorsa 

 

Multiport Memory 

 A multiport memory system employs separate buses between each memory module and 

each CPU. 

 The module must have internal control logic to determine which port will have access to 

memory at any given time. 

 Memory access conflicts are resolved by assigning fixed priorities to each memory port. 

 Adv.: 

o The high transfer rate can be achieved because of the multiple paths. 

 Disadv.: 

o It requires expensive memory control logic and a large number of cables and 
connections 

 

 

Fig: Multiport memory organization 
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Crossbar Switch 

 Consists of a number of crosspoints that are placed at intersections between processor 

buses and memory module paths. 

 The small square in each crosspoint is a switch that determines the path from a processor 

to a memory module. 

 Adv.: 

o Supports simultaneous transfers from all memory modules 

 Disadv.: 
o The hardware required to implement the switch can become quite large and 

complex. 

 Below fig. shows the functional design of a crossbar switch connected to one memory 

module. 

 
 

Fig: Crossbar switch 
 

Fig: Block diagram of crossbar switch 
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Multistage Switching Network 

 The basic component of a multistage network is a two-input, two-output interchange 
switch as shown in Fig. below. 

 

 Using the 2x2 switch as a building block, it is possible to build a multistage network to 

control the communication between a number of sources and destinations. 

o To see how this is done, consider the binary tree shown in Fig. below. 
o Certain request patterns cannot be satisfied simultaneously. i.e., if P1  000~011, 

then P2  100~111 

 One such topology is the omega switching network shown in Fig. below 

 

 

 

 

 

 

 

 

 
. 

 

Fig: 8 x 8 Omega Switching Network 



7 

 

 

 

 Some request patterns cannot be connected simultaneously. i.e., any two sources cannot 

be connected simultaneously to destination 000 and 001 

 In a tightly coupled multiprocessor system, the source is a processor and the destination 

is a memory module. 

 Set up the path  transfer the address into memory  transfer the data 

 In a loosely coupled multiprocessor system, both the source and destination are 

processing elements. 

 

Hypercube System 

 The hypercube or binary n-cube multiprocessor structure is a loosely coupled system 

composed of N=2n processors interconnected in an n-dimensional binary cube. 

o Each processor forms a node of the cube, in effect it contains not only a CPU but 
also local memory and I/O interface. 

o Each processor address differs from that of each of its n neighbors by exactly one 
bit position. 

 Fig. below shows the hypercube structure for n=1, 2, and 3. 

 Routing messages through an n-cube structure may take from one to n links from  a 

source node to a destination node. 

o A routing procedure can be developed by computing the exclusive-OR of the 
source node address with the destination node address. 

o The message is then sent along any one of the axes that the resulting binary value 
will have 1 bits corresponding to the axes on which the two nodes differ. 

 A representative of the hypercube architecture is the Intel iPSC computer complex. 

o It consists of 128(n=7) microcomputers, each node consists of a CPU, a floating- 
point processor, local memory, and serial communication interface units. 

Fig: Hypercube structures for n=1,2,3 
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 Inter processor Communication and Synchronization 

 The various processors in a multiprocessor system must be provided with a facility for 

communicating with each other. 
o A communication path can be established through a portion of memory or a 

common input-output channels. 

 The sending processor structures a request, a message, or a procedure, and places it in the 

memory mailbox. 

o Status bits residing in common memory 

o The receiving processor can check the mailbox periodically. 

o The response time of this procedure can be time consuming. 

 A more efficient procedure is for the sending processor to alert the receiving processor 

directly by means of an interrupt signal. 

 In addition to shared memory, a multiprocessor system may have other shared resources. 

e.g., a magnetic disk storage unit. 

 To prevent conflicting use of shared resources by several processors there must be a 

provision for assigning resources to processors. i.e., operating system. 

 There are three organizations that have been used in the design of operating system for 

multiprocessors: master-slave configuration, separate operating system, and distributed 

operating system. 

 In a master-slave mode, one processor, master, always executes the operating system 
functions. 

 In the separate operating system organization, each processor can execute the operating 

system routines it needs. This organization is more suitable for loosely coupled systems. 

 In the distributed operating system organization, the operating system routines are 

distributed among the available processors. However, each particular operating system 

function is assigned to only one processor at a time. It is also referred to as a floating 

operating system. 

 

Loosely Coupled System 

 There is no shared memory for passing information. 

 The communication between processors is by means of message passing through I/O 

channels. 

 The communication is initiated by one processor calling a procedure that resides in 

the memory of the processor with which it wishes to communicate. 

 The communication efficiency of the interprocessor network depends on the 

communication routing protocol, processor speed, data link speed, and the topology 

of the network. 

 

Interprocess Synchronization 

 The instruction set of a multiprocessor contains basic instructions that are used to 

implement communication and synchronization between cooperating processes. 

o Communication refers to the exchange of data between different processes. 
o Synchronization refers to the special case where the data used to communicate 

between processors is control information. 
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 Synchronization is needed to enforce the correct sequence of processes and to 

ensure 

mutually exclusive access to shared writable data. 

 Multiprocessor systems usually   include various mechanisms to deal with

the synchronization of resources. 

o Low-level primitives are implemented directly by the hardware. 
o These primitives are the basic mechanisms that enforce mutual exclusion for 

more complex mechanisms implemented in software. 

o A number of hardware mechanisms for mutual exclusion have been developed. 
 A binary semaphore 

 

Mutual Exclusion with Semaphore 

 A properly functioning multiprocessor system must provide a mechanism that will 

guarantee orderly access to shared memory and other shared resources. 

o Mutual exclusion: This is necessary to protect data from being changed 
simultaneously by two or more processors. 

o Critical section: is a program sequence that must complete execution before 
another processor accesses the same shared resource. 

 A binary variable called a semaphore is often used to indicate whether or not a 

processor is executing a critical section. 

 Testing and setting the semaphore is itself a critical operation and must be performed 

as a single indivisible operation. 

 A semaphore can be initialized by means of a test and set instruction in conjunction 

with a hardware lock mechanism. 

 The instruction TSL SEM will be executed in two memory cycles (the first to read 

and the second to write) as follows: R  M[SEM], M[SEM]  1 

 Note that the lock signal must be active during the execution of the test-and-set 

instruction. 
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