
UNIT-III 

Knowledge and Reasoning 

3.1 Building a Knowledge Base 

Knowledge:- 

Knowledge representation and reasoning (KR, KRR) is the part of Artificial intelligence which 

concerned with AI agents thinking and how thinking contributes to intelligent behavior of agents. 

It is also a way which describes how we can represent knowledge in artificial intelligence. 

Reasoning:- 

Reasoning: ... Or we can say, "Reasoning is a way to infer facts from existing data." It is a 

general process of thinking rationally, to find valid conclusions. In artificial intelligence, 

the reasoning is essential so that the machine can also think rationally as a human brain, and can 

perform like a human. 

A knowledge-based system (KBS) is a form of artificial intelligence (AI) that aims to capture 

the knowledge of human experts to support decision-making. ... Some systems encode 

expert knowledge as rules and are therefore referred to as rule-based systems. Another approach, 

case-based reasoning, substitutes cases for rules. 

 

3.2 Propositional Logic 

Propositional Logic (sometimes called Propositional Calculus) is a branch of logic that defiens 

way to combine statements or sentences together. 

In previous systems seen above there is no way to say that something is not. For 

example, Not CompetesInPremierLeauge(LiverpoolFC) which denotes that LiverpoolFC does not 

play in the premier leauge is not possible in previous systems. 

You also cannot connect sentences using “or”. Today I will sleep or I will study. 

A proposition is a statement that can be true or false, but not both at the same time. 

 



3.2.1 Compound Propositional Statements 

Given knowledge, which is the below paragraph: 

The meeting can take place if all members have been informed in advance, and it is quorate. It is 

quorate provided that there are at least 15 people present. Members will have been informed in 

advance if there is not a postal strike. Therefore, if the meeting was cancelled, we conclude that 

there were fewer than 15 members present, or there was a postal strike 

We can turn it into a propositional statement. Atomic propositions are created from statements, 

the simplest statements from the paragraph are shown below: 

M: The meeting takes place 

A: all members have been informed 

P: There is a postal strike 

Q: The meeting is quorate. 

F: there are at least 15 members present 

Remember, the above statement was changed into atomic propositions to allow the computer to 

read it easily. 

We can turn this into a statement 

If A and Q then M. If F then Q. If not P then A. 

And we can conclude 

If not M then not F or P. 

Propositions may be combinded with other propositions to form compound propositions. The 

connects used to combind propositions together are: 

 

 



Some authors use different notations, these are given in brackets. 

3.2.2 Propositional formulae 

An atomic proposition is a proposition that cannot be broken down anymore. For example, the 

proposition 

I really like pizza or I hate bridges 

Contains a connective and 2 propositional statements. An atomic proposition is one that has no 

sub-propositions and no connectives such as “I like pizza”. If P and Q are atomic propositions 

then the following can apply: 

P ^ Q 

P v Q 

P <=> Q 

P => Q 

The meanings of each symbol are 

P ^ Q = P and Q 

p v Q = P or Q 

P <=> Q = P is true if and only if Q is true 

P => Q = P entails, implies, or has a consequence Q. 

¬P = Not P. 

If P is a propositional formula then ¬P is a propositional formula as well. 

3.2.3 Truth Values of Propositonal Statements 

All propositional statements have a truth value, either True or False. An interpertation “i” gives a 

truth value to every atomic proposition. Symbolically this is shown as I(p)∈{0,1}. The value p can 

either be 0 (false) or 1 (true). 

3.2.3.1 Truth Tables 

A trurth table is a table showing the truth value of an atomic proposition under certain 

circumstances. 

 



 

Seen above is an example of a truth table. T represents True, F represents False. 

3.2.3.2Conjunction 

Conjunction is the name used to mean “and” in propositional logic. True and True would equal 

True whereas True and False would equal False. 

Below is a truth table for the statement (P ^ Q) which is (P and Q). 

 



 

Below are propositional statements in example format. 

 

 

 



3.2.3.3 Disjunction 

Disjunction is the name used to mean “or” in propositional logic. True or False would equate to 

True. 

Below is an image showing the disjunction of (P v Q) otherwise known as (P or Q) and the truth 

table for it. 

 

 

Below is an image showing different examples of the disjunction 

 



 

3.2.3.4 Equivilance 

Given P < = > Q, True is only returned if P is the same as Q. In other words, they have to hold the 

same value for it to be true. 

Below is the truth table for equivilance. 

 

 



Below is an image showing different examples of equivilance 

 

 

3.2.3.5 Implication 

Logical Implication is a type of relationship between two statements where one implies the other. 

The statement can be read as “logically implies” or just “Implies”. If A and B represent statements 

then A implies B or A → B. 

Many students of logic find implication the hardest, so let’s start with what implication is not. 

 It doesn’t mean “suggests”. 

If you say Bill doesn’t want to go to dinner with you friday night implies Bill doesn’t like you, 

this may be a perfectly good statement in English but in logic it’s not a good statement. All it 

implies is some sort of suggestion of something, such as Bill not liking you. 

 It doesn’t mean “causes” 

There is no caustation in implication. One could say that green is a colour implies January is a 

month and that is a logical true implication even though there is no causaility in that. Just because 

green is a colour does not cause January to be a month. 

 Statements with implications must always hold a truth value 

We have to give truth values even in cases where you might not think it needs a truth value 



Below is an image showing the truth table of implications. 

 

One might care to notice that if Q is false then the statement is true. 

Logical implication doesn’t work both ways. A → B does not equal B → A. However, the 

negation of the statement is equal to the original statement. 

 A -> B = -A -> -B 

Below is an image showing different examples for implication 

 



 

Logical implication when shown in this format is weak. A → B has little meaning for readers. 

Instead I invite the reader to look at a real world example of implication. 

It is often possible to assert a universal statement using logical implication, as seen below. 

x > 2 ∧ x is prime ⟹ x is odd. 

X is more than 2 and X is prime implies that X is odd. What makes this statement useful is that 

there isn’t a single number that holds for X where it is greater than 2 and prime, but not odd. 

Truth under an interpretation 

Given an interpretation (that is, an assignment of meaning to the symbols. Often giving meaning 

such as words or numbers to algebraic symbols) we can compute the truth value of any 

proposition under I (interpretation). 

I(P) = 1, therefore under this interpretation P is true. 

I(p) = 0, therefore under this interpretation P is false. 



Satisfiability 

A proposition is considered satisfiable if there exists an interpretation under which it is true. The 

formula 

I(p∧¬p) 

Is not satisfiable because it will always result in 0 (try making p 1 or 0 yourself) 

Again, a proposition is satisfiable if there exists an input that results in the proposition being true. 

I(P) is satisfiable if for some interpretation P is True. In this case, P is true when it is equal to 1, or 

it is true when it is true. 

** There are 2^n interpretations if P has n propositional atoms. ** 

Thus to generate a truth table a table with 2^n rows is needed. This is not practical and will take 

forever to compute, even with a small number of interpretations such as 100. This will cause a 

combinatorial explosion. 

Knowledge Bases 

Let’s go back to the knowledge base question first purposed at the start of this article: 

The meeting can take place if all members have beeninformed in advance, and it is quorate. It is 

quorateprovided that there are at least 15 people present.Members will have been informed in advance 

if there isnot a postal strike. Therefore, if the meeting wascancelled, we conclude that there were fewer 

than 15members present, or there was a postal strike 

Then that gives us the propositional statements: 

m : “the meeting takes place”a: “all members have been informed”p: “there is a postal strike”q: “the 

meeting is quorate”f: “there are at least 15 members present” 

Which we can formalise as: 

((a∧q)⇒m),(f⇒q),(¬p⇒a) 

This was simply to remind you of knowledge bases. 

Propositional Knowledge Bases and Reasoning 

A propositional knowledge base is a finite set of propositional formulae, just like normal 

knowledge bases. 



Suppose a propositional knowledge base, X, is given to us. Then a propositional formula, P, 

follows from X, if the following holds for every interpretation, I. 

If I(Q) = 1 for all Q∈X, then I(P) = 1. 

This can be read as: 

X |= P 

Which just means that P is provable from the knowledge base X. The proposition is provable 

from the knowledge base X. Propositional knowledge bases and reasoning is pretty much the 

same as ordinary knowledge base and reasoning discussed earlier. 

 

  



3.3 First Order Logic 

 The prepositional logic only deals with the facts, that may be true or false. 

 The first order logic assumes that the world contains objects, relations and 

functions. 

Propositional logic provides a good start at describing the general principles of logical reasoning, 

but it does not go far enough. Some of the limitations are apparent even in the “Malice and 

Alice” example from Chapter 2. Propositional logic does not give us the means to express a 

general principle that tells us that if Alice is with her son on the beach, then her son is with 

Alice; the general fact that no child is older than his or her parent; or the general fact that if 

someone is alone, they are not with someone else. To express principles like these, we need a 

way to talk about objects and individuals, as well as their properties and the relationships 

between them. These are exactly what is provided by a more expressive logical framework 

known as first-order logic, which will be the topic of the next few chapters. 

Functions, Predicates, and Relations 

Consider some ordinary statements about the natural numbers: 

 Every natural number is even or odd, but not both. 

 A natural number is even if and only if it is divisible by two. 

 If some natural number, xx, is even, then so is x2x2. 

 A natural number xx is even if and only if x+1x+1 is odd. 

 Any prime number that is greater than 2 is odd. 

 For any three natural numbers xx, yy, and zz, if xx divides yy and yy divides zz, 

then xx divides zz. 

These statements are true, but we generally do not think of them as logically valid: they depend 

on assumptions about the natural numbers, the meaning of the terms “even” and “odd,” and so 

on. But once we accept the first statement, for example, it seems to be a logical consequence that 

the number of stairs in the White House is either even or odd, and, in particular, if it is not even, 

it is odd. To make sense of inferences like these, we need a logical system that can deal with 

objects, their properties, and relations between them. 

Rather than fix a single language once and for all, first-order logic allows us to specify the 

symbols we wish to use for any given domain of interest. In this section, we will use the 

following running example: 

https://leanprover.github.io/logic_and_proof/propositional_logic.html#propositional-logic


 The domain of interest is the natural numbers, NN. 

 There are objects, 00, 11, 22, 33, …. 

 There are functions, addition and multiplication, as well as the square function, on this 

domain. 

 There are predicates on this domain, “even,” “odd,” and “prime.” 

 There are relations between elements of this domain, “equal,” “less than”, and “divides.” 

For our logical language, we will choose symbols 1, 2, 

3, addadd, mulmul, squaresquare, eveneven, oddodd, primeprime, ltlt, and so on, to denote these 

things. We will also have variables xx, yy, and zz ranging over the natural numbers. Note all of 

the following. 

 Functions can take different numbers of arguments: if xx and yy are natural numbers, it 

makes sense to write mul(x,y)mul(x,y) and square(x)square(x). So mulmul takes two 

arguments, and squaresquare takes only one. 

 Predicates and relations can also be understood in these terms. The 

predicates even(x)even(x) and prime(x)prime(x) take one argument, while the binary 

relations divides(x,y)divides(x,y) and lt(x,y)lt(x,y) take two arguments. 

 Functions are different from predicates! A function takes one or more arguments, and 

returns a value. A predicate takes one or more arguments, and is either true or false. We can 

think of predicates as returning propositions, rather than values. 

 In fact, we can think of the constant symbols 1,2,3,…1,2,3,… as special sorts of function 

symbols that take zero arguments. Analogously, we can consider the predicates that take 

zero arguments to be the constant logical values, ⊤⊤ and ⊥⊥. 

 In ordinary mathematics, we often use “infix” notation for binary functions and relations. 

For example, we usually write x×yx×y or x⋅yx⋅y instead of mul(x,y)mul(x,y), and we 

write x<yx<y instead of lt(x,y)lt(x,y). We will use these conventions when writing proofs in 

natural deduction, and they are supported in Lean as well. 

 We will treat the equality relation, x=yx=y, as a special binary relation that is included in 

every first-order language. 

First-order logic allows us to build complex expressions out of the basic ones. Starting with the 

variables and constants, we can use the function symbols to build up compound expressions like 

these: 

 x+y+zx+y+z 

 (x+1)×y×y(x+1)×y×y 

 square(x+y×z)square(x+y×z) 



Such expressions are called “terms.” Intuitively, they name objects in the intended domain of 

discourse. 

Now, using the predicates and relation symbols, we can make assertions about these expressions: 

 even(x+y+z)even(x+y+z) 

 prime((x+1)×y×y)prime((x+1)×y×y) 

 square(x+y×z)=wsquare(x+y×z)=w 

 x+y<zx+y<z 

Even more interestingly, we can use propositional connectives to build compound expressions 

like these: 

 even(x+y+z)∧prime((x+1)×y×y)even(x+y+z)∧prime((x+1)×y×y) 

 ¬(square(x+y×z)=w)∨x+y<z¬(square(x+y×z)=w)∨ x+y<z 

 x<y∧ even(x)∧ even(y)→x+1<yx<y∧ even(x)∧ even(y)→x+1<y 

The second one, for example, asserts that either (x+yz)2(x+yz)2 is not equal to ww, or x+yx+y is 

less than zz. Remember, these are expressions in symbolic logic; in ordinary mathematics, we 

would express the notions using words like “is even” and “if and only if,” as we did above. We 

will use notation like this whenever we are in the realm of symbolic logic, for example, when we 

write proofs in natural deduction. Expressions like these are called formulas. In contrast to terms, 

which name things, formulas say things; in other words, they make assertions about objects in 

the domain of discourse. 

 

 

 

 

 

 

 



3.4 Situation Calculus:- 

The idea behind situation calculus is that (reachable) states are definable in terms of the actions 

required to reach them. These reachable states are called situations. What is true in a situation 

can be defined in terms of relations with the situation as an argument. Situation calculus can be 

seen as a relational version of the feature-based representation of actions. 

Here we only consider single agents, a fully observable environment, and deterministic actions. 

Situation calculus is defined in terms of situations. A situation is either 

 init, the initial situation, or 

 do(A,S), the situation resulting from doing action A in situation S, if it is possible to do 

action A in situation S. 

Example 14.1: Consider the domain of Figure 3.1. Suppose in the initial situation, init, the robot, 

Rob, is at location o109 and there is a key k1 at the mail room and a package at storage. 

do(move(rob,o109,o103), init) 

is the situation resulting from Rob moving from position o109 in situation init to position o103. 

In this situation, Rob is at o103, the key k1 is still at mail, and the package is at storage. 

The situation 

                                                                        
 

 
do(move(rob,o103,mail), 

  
do(move(rob,o109,o103), 

   
init)) 

is one in which the robot has moved from position o109 to o103 to mail and is currently at mail. 

Suppose Rob then picks up the key, k1. The resulting situation is 

                                                                        
 

 
do(pickup(rob,k1), 

  
do(move(rob,o103,mail), 

   
do(move(rob,o109,o103), 

    
init))). 

In this situation, Rob is at position mail carrying the key k1. 

A situation can be associated with a state. There are two main differences between situations and 

states: 

 Multiple situations may refer to the same state if multiple sequences of actions lead to the 

same state. That is, equality between situations is not the same as equality between states. 

 Not all states have corresponding situations. A state is reachable if a sequence of actions 

exists that can reach that state from the initial state. States that are not reachable do not 

have a corresponding situation. 

https://artint.info/html/ArtInt_203.html
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Some do(A,S) terms do not correspond to any state. However, sometimes an agent must reason 

about such a (potential) situation without knowing if A is possible in state S, or if S is possible. 

Example 14.2: The term do(unlock(rob,door1),init) does not denote a state at all, because it is 

not possible for Rob to unlock the door when Rob is not at the door and does not have the key. 

A static relation is a relation for which the truth value does not depend on the situation; that is, its 

truth value is unchanging through time. A dynamic relation is a relation for which the truth value 

depends on the situation. To represent what is true in a situation, predicate symbols denoting 

dynamic relations have a situation argument so that the truth can depend on the situation. A 

predicate symbol with a situation argument is called a fluent. 

Example 14.3: The relation at(O,L,S) is true when object O is at location L in situation S. 

Thus, at is a fluent. 

The atom 

at(rob,o109,init) 

is true if the robot rob is at position o109 in the initial situation. The atom 

at(rob,o103,do(move(rob,o109,o103), init)) 

is true if robot rob is at position o103 in the situation resulting from rob moving from 

position o109 to position o103 from the initial situation. The atom 

at(k1,mail,do(move(rob,o109,o103), init)) 

is true if k1 is at position mail in the situation resulting from rob moving from position o109 to 

position o103 from the initial situation. 

A dynamic relation is axiomatized by specifying the situations in which it is true. Typically, this 

is done inductively in terms of the structure of situations. 

 Axioms with init as the situation parameter are used to specify what is true in the initial 

situation. 

 A primitive relation is defined by specifying when it is true in situations of the 

form do(A,S) in terms of what is true in situation S. That is, primitive relations are defined 

in terms of what is true at the previous situation. 

 A derived relation is defined using clauses with a variable in the situation argument. The 

truth of a derived relation in a situation depends on what else is true in the same situation. 

 Static relations are defined without reference to the situation. 

Example 14.4: Suppose the delivery robot, Rob, is in the domain depicted in Figure 3.1. Rob is at 

location o109, the parcel is in the storage room, and the key is in the mail room. The following 

axioms describe this initial situation: 

at(rob,o109,init). 

at(parcel,storage,init). 

at(k1,mail,init). 

The adjacent relation is a dynamic, derived relation defined as follows: 

adjacent(o109,o103,S). 

adjacent(o103,o109,S). 

https://artint.info/html/ArtInt_48.html#graph-ex
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adjacent(o109,storage,S). 

adjacent(storage,o109,S). 

adjacent(o109,o111,S). 

adjacent(o111,o109,S). 

adjacent(o103,mail,S). 

adjacent(mail,o103,S). 

adjacent(lab2,o109,S). 

adjacent(P1,P2,S)← 

     between(Door,P1,P2)∧ 

     unlocked(Door,S). 

Notice the free S variable; these clauses are true for all situations. We cannot omit the S because 

which rooms are adjacent depends on whether a door is unlocked. This can change from situation 

to situation. 

The between relation is static and does not require a situation variable: 

between(door1,o103,lab2). 

We also distinguish whether or not an agent is being carried. If an object is not being carried, we 

say that the object is sitting at its location. We distinguish this case because an object being 

carried moves with the object carrying it. An object is at a location if it is sitting at that location 

or is being carried by an object at that location. Thus, at is a derived relation: 

at(Ob,P,S)← 

     sitting_at(Ob,P,S). 

at(Ob,P,S)← 

     carrying(Ob1,Ob,S)∧ 

     at(Ob1,P,S). 

Note that this definition allows for Rob to be carrying a bag, which, in turn, is carrying a book. 

The precondition of an action specifies when it is possible to carry out the action. The 

relation poss(A,S) is true when action A is possible in situation S. This is typically a derived 

relation. 

Example 14.5: An agent can always put down an object it is carrying: 

poss(putdown(Ag,Obj),S) ← 

     carrying(Ag,Obj,S). 

For the move action, an autonomous agent can move from its current position to an adjacent 

position: 

poss(move(Ag,P1,P2),S) ← 

     autonomous(Ag) ∧ 

     adjacent(P1,P2,S)∧ 

     sitting_at(Ag,P1,S) . 

https://artint.info/html/ArtInt_201.html#precond-defn


The precondition for the unlock action is more complicated. The agent must be at the correct side 

of the door and carrying the appropriate key: 

poss(unlock(Ag,Door),S)← 

     autonomous(Ag)∧ 

     between(Door,P1,P2)∧ 

     at(Ag,P1,S)∧ 

     opens(Key,Door)∧ 

     carrying(Ag,Key,S). 

We do not assume that the between relation is symmetric. Some doors can only open one way. 

We define what is true in each situation recursively in terms of the previous situation and of what 

action occurred between the situations. As in the feature-based representation of actions, causal 

rules specify when a relation becomes true and frame rules specify when a relation remains true. 

 

3.6 Planning:- 

What is planning in AI? 

 The planning in Artificial Intelligence is about the decision making tasks performed by the 

robots or computer programs to achieve a specific goal. 

 The execution of planning is about choosing a sequence of actions with a high likelihood to 

complete the specific task. 

Blocks-World planning problem 

 The blocks-world problem is known as Sussman Anomaly. 

 Noninterleaved planners of the early 1970s were unable to solve this problem, hence it is 

considered as anomalous. 

 When two subgoals G1 and G2 are given, a noninterleaved planner produces either a plan for 

G1 concatenated with a plan for G2, or vice-versa. 

 In blocks-world problem, three blocks labeled as 'A', 'B', 'C' are allowed to rest on the flat 

surface. The given condition is that only one block can be moved at a time to achieve the goal. 

 The start state and goal state are shown in the following diagram. 

https://artint.info/html/ArtInt_203.html


 

 

Components of Planning System 

The planning consists of following important steps: 

 Choose the best rule for applying the next rule based on the best available heuristics. 

 Apply the chosen rule for computing the new problem state. 

 Detect when a solution has been found. 

 Detect dead ends so that they can be abandoned and the system’s effort is directed in more 

fruitful directions. 

 Detect when an almost correct solution has been found. 

Goal stack planning 

This is one of the most important planning algorithms, which is specifically used by STRIPS. 

 The stack is used in an algorithm to hold the action and satisfy the goal.  A knowledge base is 

used to hold the current state, actions. 

 Goal stack is similar to a node in a search tree, where the branches are created if there is a 

choice of an action. 

The important steps of the algorithm are as stated below: 

 

i. Start by pushing the original goal on the stack. Repeat this  until the stack becomes empty. If 

stack top is a compound goal, then push its unsatisfied subgoals on the stack. 

ii. If stack top is a single unsatisfied goal then, replace it by an action and push the action’s 

precondition on the stack to satisfy the condition. 

iii. If stack top is an action, pop it from the stack, execute it and change the knowledge base by 

the effects of the action. 

iv. If stack top is a satisfied goal, pop it from the stack. 

 

 

 



Non-linear planning 
This planning is used to set a goal stack and is included in the search space of all possible 

subgoal orderings. It handles the goal interactions by interleaving method. 

 

Advantage of non-Linear planning 

Non-linear planning may be an optimal solution with respect to plan length (depending on search 

strategy used). 

 

Disadvantages of Nonlinear planning 

 

 It takes larger search space, since all possible goal orderings are taken into consideration. 

 Complex algorithm to understand. 

 

Algorithm 
1. Choose a goal 'g' from the goalset 

2. If 'g' does not match the state, then 

 Choose an operator 'o' whose add-list matches goal g 

 Push 'o' on the opstack 

 Add the preconditions of 'o' to the goalset 

3. While all preconditions of operator on top of opstack are met in state 

 Pop operator o from top of opstack 

 state = apply(o, state) 

 plan = [plan; o] 

 

3.7 Partial-Order Planning 

The forward and regression planners enforce a total ordering on actions at all stages of the 

planning process. The CSP planner commits to the particular time that the action will be carried 

out. This means that those planners have to commit to an ordering of actions that cannot occur 

concurrently when adding them to a partial plan, even if there is no particular reason to put one 

action before another. 

The idea of a partial-order planner is to have a partial ordering between actions and only 

commit to an ordering between actions when forced. This is sometimes also called a non-linear 

planner, which is a misnomer because such planners often produce a linear plan. 

A partial ordering is a less-than relation that is transitive and asymmetric. A partial-order 

plan is a set of actions together with a partial ordering, representing a "before" relation on 

actions, such that any total ordering of the actions, consistent with the partial ordering, will solve 

the goal from the initial state. Write act0 < act1 if action act0 is before action act1 in the partial 

order. This means that action act0 must occur before action act1. 



For uniformity, treat start as an action that achieves the relations that are true in the initial state, 

and treat finish as an action whose precondition is the goal to be solved. The 

pseudoaction start is before every other action, and finish is after every other action. The use of 

these as actions means that the algorithm does not require special cases for the initial situation 

and for the goals. When the preconditions of finish hold, the goal is solved. 

An action, other than start or finish, will be in a partial-order plan to achieve a precondition of an 

action in the plan. Each precondition of an action in the plan is either true in the initial state, and 

so achieved by start, or there will be an action in the plan that achieves it. 

We must ensure that the actions achieve the conditions they were assigned to achieve. Each 

precondition P of an action act1 in a plan will have an action act0 associated with it such 

that act0 achieves precondition P for act1. The triple ⟨act0,P,act1⟩ is a causal link. The partial 

order specifies that action act0 occurs before action act1, which is written as act0 < act1. Any 

other action A that makes P false must either be before act0 or after act1. 

Informally, a partial-order planner works as follows: Begin with the actions start and finish and 

the partial order start < finish. The planner maintains an agenda that is a set of ⟨P,A⟩ pairs, 

where A is an action in the plan and P is an atom that is a precondition of A that must be 

achieved. Initially the agenda contains pairs ⟨G,finish⟩, where G is an atom that must be true in 

the goal state. 

At each stage in the planning process, a pair ⟨G,act1⟩ is selected from the agenda, where P is a 

precondition for action act1. Then an action, act0, is chosen to achieve P. That action is either 

already in the plan - it could be the start action, for example - or it is a new action that is added 

to the plan. Action act0 must happen before act1 in the partial order. It adds a causal link that 

records that act0 achieves P for action act1. Any action in the plan that deletes P must happen 

either before act0 or after act1. If act0 is a new action, its preconditions are added to the agenda, 

and the process continues until the agenda is empty. 

This is a non-deterministic procedure. The "choose" and the "either ...or ..." form choices that 

must be searched over. There are two choices that require search: 

 which action is selected to achieve G and 

 whether an action that deletes G happens before act0 or after act1. 

 
non-deterministic procedure PartialOrderPlanner(Gs) 

2:           Inputs 

3:                     Gs: set of atomic propositions to achieve 

4:           Output 

5:                     linear plan to achieve Gs 

6:           Local 

7:                     Agenda: set of ⟨P,A⟩ pairs where P is atom and A an action 

8:                     Actions: set of actions in the current plan 

9:                     Constraints: set of temporal constraints on actions 

10:                     CausalLinks: set of ⟨act0,P,act1⟩ triples 

11:           Agenda ←{⟨G,finish⟩:G ∈Gs} 

12:           Actions ←{start,finish} 

13:           Constraints ←{start<finish} 

14:           CausalLinks ←{} 

15:           repeat 

16:                     select and remove ⟨G,act1⟩ from Agenda 



17:                     either 

18:                               choose act0 ∈Actions such that act0 achieves G 

19:                     or 

20:                               choose act0 ∉Actions such that act0 achieves G 

21:                               Actions ←Actions ∪{act0} 

22:                               Constraints ←add_const(start<act0,Constraints) 

23:                               for each CL∈CausalLinks do 

24:                                         Constraints ←protect(CL,act0,Constraints) 

25:                                

26:                               Agenda ←Agenda ∪{⟨P,act0⟩: P is a precondition of act0 } 

27:                      

28 :                    Constraints ←add_const(act0<act1,Constraints) 

29:                     CausalLinks ∪ {⟨acto,G,act1⟩} 

30:                     for each A∈Actions do 

31:                               Constraints ←protect(⟨acto,G,act1⟩,A,Constraints) 

32:                                

33:           until Agenda={} 

34:           return total ordering of Actions consistent with Constraints 

Figure 8.5: Partial-order planner 

 
The function add_const(act0<act1,Constraints) returns the constraints formed by adding the 

constraint act0<act1 to Constraints, and it fails if act0<act1 is incompatible with Constraints. 

There are many ways this function can be implemented. 

The function protect(⟨acto,G,act1⟩,A,Constraints) checks 

whether A≠act0 and A≠act1 and A deletes G. If so, it returns either { A<act0 } ∪ Constraints or { 

act1<A } ∪ Constraints. This is a non-deterministic choice that is searched over. Otherwise it 

returns Constraints. 

Example: Consider the goal ¬swc ∧ ¬mw, where the initial state 

contains RLoc=lab, swc, ¬rhc, mw, ¬rhm. 

Initially the agenda is 

⟨ ¬swc,finish⟩,⟨ ¬mw,finish⟩. 

Suppose ⟨ ¬swc,finish⟩ is selected and removed from the agenda. One action exists that can 

achieve ¬swc, namely deliver coffee, dc, with preconditions off and rhc. At the end of 

the repeat loop, Agenda contains 

⟨off,dc⟩,⟨rhc,dc⟩,⟨ ¬mw,finish⟩. 

Constraints is {start<finish, start < dc, dc <finish}. There is one causal link, ⟨dc, ¬swc,finish⟩. 
This causal link means that no action that undoes ¬swc is allowed to happen after dc and 

before finish. 



Suppose ⟨ ¬mw,finish⟩ is selected from the agenda. One action exists that can achieve this, pum, 

with preconditions mw and RLoc=mr. The causal link ⟨pum, ¬mw,finish⟩ is added to the set of 

causal links; ⟨mw,pum⟩ and ⟨mr,pum⟩ are added to the agenda. 

Suppose ⟨mw,pum⟩ is selected from the agenda. The action start achieves mw, because mw is 

true initially. The causal link ⟨start,mw,pum⟩ is added to the set of causal links. Nothing is added 

to the agenda. 

At this stage, there is no ordering imposed between dc and pum. 

Suppose ⟨off,dc⟩ is removed from the agenda. There are two actions that can 

achieve off: mc_cs with preconditions cs, and mcc_lab with preconditions lab. The algorithm 

searches over these choices. Suppose it chooses mc_cs. Then the causal link ⟨mc_cs,off,dc⟩ is 

added. 

The first violation of a causal link occurs when a move action is used to achieve ⟨mr,pum⟩. This 

action violates the causal link ⟨mc_cs,off,dc⟩, and so must happen after dc (the robot goes to the 

mail room after delivering coffee) or before mc_cs. 

The preceding algorithm has glossed over one important detail. It is sometimes necessary to 

perform some action more than once in a plan. The preceding algorithm will not work in this 

case, because it will try to find a partial ordering with both instances of the action occurring at 

the same time. To fix this problem, the ordering should be between action instances, and not 

actions themselves. To implement this, assign an index to each instance of an action in the plan, 

and the ordering is on the action instance indexes and not the actions themselves. This is left as 

an exercise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.8 Uuncertain Knowledge and Reasoning 

Why Reason Probabilistically? 

 In many problem domains it isn't possible to create complete, consistent models of the 

world. Therefore agents (and people) must act in uncertain worlds (which the real world 

is). 

 Want an agent to make rational decisions even when there is not enough information to 

prove that an action will work. 

 Some of the reasons for reasoning under uncertainty: 

o True uncertainty. E.g., flipping a coin. 

o Theoretical ignorance. There is no complete theory which is known about the 

problem domain. E.g., medical diagnosis. 

o Laziness. The space of relevant factors is very large, and would require too much 

work to list the complete set of antecedents and consequents. Furthermore, it 

would be too hard to use the enormous rules that resulted. 

o Practical ignorance. Uncertain about a particular individual in the domain 

because all of the information necessary for that individual has not been collected. 

 Probability theory will serve as the formal language for representing and reasoning with 

uncertain knowledge. 

Representing Belief about Propositions 

 Rather than reasoning about the truth or falsity of a proposition, reason about the belief 

that a proposition or event is true or false 

 For each primitive proposition or event, attach a degree of belief to the sentence 

 Use probability theory as a formal means of manipulating degrees of belief 

 Given a proposition, A, assign a probability, P(A), such that 0 <= P(A) <= 1, where if A 

is true, P(A)=1, and if A is false, P(A)=0. Proposition A must be either true or false, but 

P(A) summarizes our degree of belief in A being true/false. 

 Examples 

o P(Weather=Sunny) = 0.7 means that we believe that the weather will be Sunny 

with 70% certainty. In this case Weather is a random variable that can take on 

values in a domain such as {Sunny, Rainy, Snowy, Cloudy}. 

o P(Cavity=True) = 0.05 means that we believe there is a 5% chance that a person 

has a cavity. Cavity is a Boolean random variable since it can take on possible 

values True and False. 

o Example: P(A=a ^ B=b) = P(A=a, B=b) = 0.2, where A=My_Mood, a=happy, 

B=Weather, and b=rainy, means that there is a 20% chance that when it's raining 

my mood is happy. 

 Obtaining and Interpreting Probabilities 

There are several senses in which probabilities can be obtained and interpreted, among 

them the following: 

o Frequentist Interpretation 
The probability is a property of a population of similar events. E.g., if set S = P 

union N, and P intersection N is the empty set, then the probability of an object 



being in set P is |P|/|S|. Hence, in this interpretation probabilities come from 

experiments and determining the population associated with a given proposition. 

o Subjectivist Interpretation 
A subjective degree of belief in a proposition or the occurrence of an event. E.g., 

the probability that you'll pass the Final Exam based on your own subjective 

evaluation of the amount of studying you've done and your understanding of the 

material. Hence, in this interpretation probabilities characterize the agent's beliefs. 

 We will assume that in a given problem domain, the programmer and expert identify all 

of the relevant propositional variables that are needed to reason about the domain. Each 

of these will be represented as a random variable, i.e., a variable that can take on values 

from a set of mutually exclusive and exhaustive values called the sample 

space or partition of the random variable. Usually this will mean a sample space 

{True, False}. For example, the proposition Cavity has possible 

values True and False indicating whether a given patient has a cavity or not. A random 

variable that has True and False as its possible values is called a Boolean random 

variable. 

More generally, propositions can include the equality predicate with random variables 

and the possible values they can have. For example, we might have a random 

variable Color with possible values red, green, blue, and other. Then P(Color=red) 

indicates the likelihood that the color of a given object is red. Similarly, for Boolean 

random variables we can ask P(A=True), which is abbreviated to P(A), and P(A=False), 

which is abbreviated to P(~A). 

3.9 Probability 

Axioms of Probability Theory 

Probability Theory provides us with the formal mechanisms and rules for manipulating 

propositions represented probabilistically. The following are the three axioms of probability 

theory: 

 0 <= P(A=a) <= 1 for all a in sample space of A 

 P(True)=1, P(False)=0 

 P(A v B) = P(A) + P(B) - P(A ^ B) 

From these axioms we can show the following properties also hold: 

 P(~A) = 1 - P(A) 

 P(A) = P(A ^ B) + P(A ^ ~B) 

 Sum{P(A=a)} = 1, where the sum is over all possible values a in the sample space of A 

Joint Probability Distribution 

Given an application domain in which we have determined a sufficient set of random variables to 

encode all of the relevant information about that domain, we can completely specify all of the 

possible probabilistic information by constructing the full joint probability distribution, 



P(V1=v1, V2=v2, ..., Vn=vn), which assigns probabilities to all possible combinations of values 

to all random variables. 

For example, consider a domain described by three Boolean random variables, Bird, Flier, and 

Young. Then we can enumerate a table showing all possible interpretations and associated 

probabilities: 

Bird Flier Young Probability 

T T T 0.0 

T T F 0.2 

T F T 0.04 

T F F 0.01 

F T T 0.01 

F T F 0.01 

F F T 0.23 

F F F 0.5 

Notice that there are 8 rows in the above table representing the fact that there are 23 ways to 

assign values to the three Boolean variables. More generally, with n Boolean variables the table 

will be of size 2n. And if n variables each had k possible values, then the table would be size kn. 

Also notice that the sum of the probabilities in the right column must equal 1 since we know that 

the set of all possible values for each variable are known. This means that for n Boolean random 

variables, the table has 2n-1 values that must be determined to completely fill in the table. 

If all of the probabilities are known for a full joint probability distribution table, then we can 

compute any probabilistic statement about the domain. For example, using the table above, we 

can compute 

 P(Bird=T) = P(B) = 0.0 + 0.2 + 0.04 + 0.01 = 0.25 

 P(Bird=T, Flier=F) = P(B, ~F) = P(B, ~F, Y) + F(B, ~F, ~Y) = 0.04 + 0.01 = 0.05 

Conditional Probabilities 

 Conditional probabilities are key for reasoning because they formalize the process of 

accumulating evidence and updating probabilities based on new evidence. For example, 



if we know there is a 4% chance of a person having a cavity, we can represent this as 

the prior (aka unconditional) probability P(Cavity)=0.04. Say that person now has a 

symptom of a toothache, we'd like to know what is the posterior probability of a Cavity 

given this new evidence. That is, compute P(Cavity | Toothache). 

 If P(A|B) = 1, this is equivalent to the sentence in Propositional Logic B => A. Similarly, 

if P(A|B) =0.9, then this is like saying B => A with 90% certainty. In other words, we've 

made implication fuzzy because it's not absolutely certain. 

 Given several measurements and other "evidence", E1, ..., Ek, we will formulate queries 

as P(Q | E1, E2, ..., Ek) meaning "what is the degree of belief that Q is true given that we 

know E1, ..., Ek and nothing else." 

 Conditional probability is defined as: P(A|B) = P(A ^ B)/P(B) = P(A,B)/P(B) 
One way of looking at this definition is as a normalized (using P(B)) joint probability 

(P(A,B)). 

 Example Computing Conditional Probability from the Joint Probability Distribution 

Say we want to compute P(~Bird | Flier) and we know the full joint probability 

distribution function given above. We can do this as follows: 

    P(~B|F) = P(~B,F) / P(F) 

     = (P(~B,F,Y) + P(~B,F,~Y)) / P(F) 

            = (.01 + .01)/P(F) 

Next, we could either compute the marginal probability P(F) from the full joint 

probability distribution, or, as is more commonly done, we could do it by using a process 

called normalization, which first requires computing 

   P(B|F) = P(B,F) / P(F) 

   = (P(B,F,Y) + P(B,F,~Y)) / P(F) 

   = (0.0 + 0.2)/P(F) 

Now we also know that P(~B|F) + P(B|F) = 1, so substituting from above and solving for 

P(F) we get P(F) = 0.22. Hence, P(~B|F) = 0.02/0.22 = 0.091. 

While this is an effective procedure for computing conditional probabilities, it is 

intractable in general because it means that we must compute and store the full joint 

probability distribution table, which is exponential in size. 

 Some important rules related to conditional probability are: 

o Rewriting the definition of conditional probability, we get the Product Rule: 

P(A,B) = P(A|B)P(B) 

o Chain Rule: P(A,B,C,D) = P(A|B,C,D)P(B|C,D)P(C|D)P(D), which generalizes 

the product rule for a joint probability of an arbitrary number of variables. Note 

that ordering the variables results in a different expression, but all have the same 

resulting value. 

o Conditionalized version of the Chain Rule: P(A,B|C) = P(A|B,C)P(B|C) 

o Bayes's Rule: P(A|B) = (P(A)P(B|A))/P(B), which can be written as follows to 

more clearly emphasize the "updating" aspect of the rule: P(A|B) = P(A) * 

[P(B|A)/P(B)] Note: The terms P(A) and P(B) are called the prior (or marginal) 



probabilities. The term P(A|B) is called the posterior probability because it is 

derived from or depends on the value of B. 

o Conditionalized version of Bayes's Rule: P(A|B,C) = P(B|A,C)P(A|C)/P(B|C) 

o Conditioning (aka Addition) Rule: P(A) = Sum{P(A|B=b)P(B=b)} where the 

sum is over all possible values b in the sample space of B. 

o P(~B|A) = 1 - P(B|A) 

 

 

3.10 Bayesian Networks 

 • To do probabilistic reasoning, you need to know the joint probability distribution 

 • But, in a domain with N propositional variables, one needs 2N numbers to specify the joint probability 

distribution. 

Introduction to Bayesian Networks 

Bayesian networks are a type of probabilistic graphical model that uses Bayesian inference for 

probability computations. Bayesian networks aim to model conditional dependence, and therefore 

causation, by representing conditional dependence by edges in a directed graph. Through these 

relationships, one can efficiently conduct inference on the random variables in the graph through 

the use of factors. 

 

Probability 

Before going into exactly what a Bayesian network is, it is first useful to review probability 

theory. 

First, remember that the joint probability distribution of random variables A_0, A_1, …, A_n, 

denoted as P(A_0, A_1, …, A_n), is equal to P(A_1 | A_2, …, A_n) * P(A_2 | A_3, …, A_n) * 

… * P(A_n) by the chain rule of probability. We can consider this a factorized representation of 

the distribution, since it is a product of N factors that are localized probabilities. 

 

 

https://en.wikipedia.org/wiki/Chain_rule_(probability)


Next, recall that conditional independence between two random variables, A and B, given 

another random variable, C, is equivalent to satisfying the following property: P(A,B|C) = P(A|C) 

* P(B|C). In other words, as long as the value of C is known and fixed, A and B are independent. 

Another way of stating this, which we will use later on, is that P(A|B,C) = P(A|C). 

 

The Bayesian Network 

Using the relationships specified by our Bayesian network, we can obtain a compact, factorized 

representation of the joint probability distribution by taking advantage of conditional 

independence. 

 

 

A Bayesian network is a directed acyclic graph in which each edge corresponds to a conditional 

dependency, and each node corresponds to a unique random variable. Formally, if an edge (A, B) 

exists in the graph connecting random variables A and B, it means that P(B|A) is a factor in the 

joint probability distribution, so we must know P(B|A) for all values of B and A in order to 

conduct inference. In the above example, since Rain has an edge going into WetGrass, it means 

that P(WetGrass|Rain) will be a factor, whose probability values are specified next to the 

WetGrass node in a conditional probability table. 



Bayesian networks satisfy the local Markov property, which states that a node is conditionally 

independent of its non-descendants given its parents. In the above example, this means that 

P(Sprinkler|Cloudy, Rain) = P(Sprinkler|Cloudy) since Sprinkler is conditionally independent of 

its non-descendant, Rain, given Cloudy. This property allows us to simplify the joint distribution, 

obtained in the previous section using the chain rule, to a smaller form. After simplification, the 

joint distribution for a Bayesian network is equal to the product of P(node|parents(node)) for all 

nodes, stated below: 

 

 

In larger networks, this property allows us to greatly reduce the amount of required computation, 

since generally, most nodes will have few parents relative to the overall size of the network. 

 

Inference 

Inference over a Bayesian network can come in two forms. 

The first is simply evaluating the joint probability of a particular assignment of values for each 

variable (or a subset) in the network. For this, we already have a factorized form of the joint 

distribution, so we simply evaluate that product using the provided conditional probabilities. If we 

only care about a subset of variables, we will need to marginalize out the ones we are not 

interested in. In many cases, this may result in underflow, so it is common to take the logarithm of 

that product, which is equivalent to adding up the individual logarithms of each term in the 

product. 

The second, more interesting inference task, is to find P(x|e), or, to find the probability of some 

assignment of a subset of the variables (x) given assignments of other variables (our evidence, e). 

In the above example, an example of this could be to find P(Sprinkler, WetGrass | Cloudy), where 

{Sprinkler, WetGrass} is our x, and {Cloudy} is our e. In order to calculate this, we use the fact 

that P(x|e) = P(x, e) / P(e) = αP(x, e), where α is a normalization constant that we will calculate at 

the end such that P(x|e) + P(¬x | e) = 1. In order to calculate P(x, e), we must marginalize the joint 

probability distribution over the variables that do not appear in x or e, which we will denote as Y. 

 

 

For the given example, we can calculate P(Sprinkler, WetGrass | Cloudy) as follows: 



 
 

We would calculate P(¬x | e) in the same fashion, just setting the value of the variables in x to 

false instead of true. Once both P(x | e) and P(¬x | e) are calculated, we can solve for α, which 

equals 1 / (P(x | e) + P(¬x | e)). 

Note that in larger networks, Y will most likely be quite large, since most inference tasks will 

only directly use a small subset of the variables. In cases like these, exact inference as shown 

above is very computationally intensive, so methods must be used to reduce the amount of 

computation. One more efficient method of exact inference is through variable elimination, which 

takes advantage of the fact that each factor only involves a small number of variables. This means 

that the summations can be rearranged such that only factors involving a given variable are used 

in the marginalization of that variable. Alternatively, many networks are too large even for this 

method, so approximate inference methods such as MCMC are instead used; these provide 

probability estimations that require significantly less computation than exact inference methods. 

 

 

https://en.wikipedia.org/wiki/Variable_elimination
https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
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