
UNIT-III

Knowledge and Reasoning

3.1 Building a Knowledge Base

Knowledge:-

Knowledge representation and reasoning (KR, KRR) is the part of Artificial intelligence which

concerned with AI agents thinking and how thinking contributes to intelligent behavior of agents.

It is also a way which describes how we can represent knowledge in artificial intelligence.

Reasoning:-

Reasoning: ... Or we can say, "Reasoning is a way to infer facts from existing data." It is a

general process of thinking rationally, to find valid conclusions. In artificial intelligence,

the reasoning is essential so that the machine can also think rationally as a human brain, and can

perform like a human.

A knowledge-based system (KBS) is a form of artificial intelligence (AI) that aims to capture

the knowledge of human experts to support decision-making. ... Some systems encode

expert knowledge as rules and are therefore referred to as rule-based systems. Another approach,

case-based reasoning, substitutes cases for rules.

3.2 Propositional Logic

Propositional Logic (sometimes called Propositional Calculus) is a branch of logic that defiens

way to combine statements or sentences together.

In previous systems seen above there is no way to say that something is not. For

example, Not CompetesInPremierLeauge(LiverpoolFC) which denotes that LiverpoolFC does not

play in the premier leauge is not possible in previous systems.

You also cannot connect sentences using “or”. Today I will sleep or I will study.

A proposition is a statement that can be true or false, but not both at the same time.

3.2.1 Compound Propositional Statements

Given knowledge, which is the below paragraph:

The meeting can take place if all members have been informed in advance, and it is quorate. It is

quorate provided that there are at least 15 people present. Members will have been informed in

advance if there is not a postal strike. Therefore, if the meeting was cancelled, we conclude that

there were fewer than 15 members present, or there was a postal strike

We can turn it into a propositional statement. Atomic propositions are created from statements,

the simplest statements from the paragraph are shown below:

M: The meeting takes place

A: all members have been informed

P: There is a postal strike

Q: The meeting is quorate.

F: there are at least 15 members present

Remember, the above statement was changed into atomic propositions to allow the computer to

read it easily.

We can turn this into a statement

If A and Q then M. If F then Q. If not P then A.

And we can conclude

If not M then not F or P.

Propositions may be combinded with other propositions to form compound propositions. The

connects used to combind propositions together are:

Some authors use different notations, these are given in brackets.

3.2.2 Propositional formulae

An atomic proposition is a proposition that cannot be broken down anymore. For example, the

proposition

I really like pizza or I hate bridges

Contains a connective and 2 propositional statements. An atomic proposition is one that has no

sub-propositions and no connectives such as “I like pizza”. If P and Q are atomic propositions

then the following can apply:

P ^ Q

P v Q

P <=> Q

P => Q

The meanings of each symbol are

P ^ Q = P and Q

p v Q = P or Q

P <=> Q = P is true if and only if Q is true

P => Q = P entails, implies, or has a consequence Q.

¬P = Not P.

If P is a propositional formula then ¬P is a propositional formula as well.

3.2.3 Truth Values of Propositonal Statements

All propositional statements have a truth value, either True or False. An interpertation “i” gives a

truth value to every atomic proposition. Symbolically this is shown as I(p)∈{0,1}. The value p can

either be 0 (false) or 1 (true).

3.2.3.1 Truth Tables

A trurth table is a table showing the truth value of an atomic proposition under certain

circumstances.

Seen above is an example of a truth table. T represents True, F represents False.

3.2.3.2Conjunction

Conjunction is the name used to mean “and” in propositional logic. True and True would equal

True whereas True and False would equal False.

Below is a truth table for the statement (P ^ Q) which is (P and Q).

Below are propositional statements in example format.

3.2.3.3 Disjunction

Disjunction is the name used to mean “or” in propositional logic. True or False would equate to

True.

Below is an image showing the disjunction of (P v Q) otherwise known as (P or Q) and the truth

table for it.

Below is an image showing different examples of the disjunction

3.2.3.4 Equivilance

Given P < = > Q, True is only returned if P is the same as Q. In other words, they have to hold the

same value for it to be true.

Below is the truth table for equivilance.

Below is an image showing different examples of equivilance

3.2.3.5 Implication

Logical Implication is a type of relationship between two statements where one implies the other.

The statement can be read as “logically implies” or just “Implies”. If A and B represent statements

then A implies B or A → B.

Many students of logic find implication the hardest, so let’s start with what implication is not.

 It doesn’t mean “suggests”.

If you say Bill doesn’t want to go to dinner with you friday night implies Bill doesn’t like you,

this may be a perfectly good statement in English but in logic it’s not a good statement. All it

implies is some sort of suggestion of something, such as Bill not liking you.

 It doesn’t mean “causes”

There is no caustation in implication. One could say that green is a colour implies January is a

month and that is a logical true implication even though there is no causaility in that. Just because

green is a colour does not cause January to be a month.

 Statements with implications must always hold a truth value

We have to give truth values even in cases where you might not think it needs a truth value

Below is an image showing the truth table of implications.

One might care to notice that if Q is false then the statement is true.

Logical implication doesn’t work both ways. A → B does not equal B → A. However, the

negation of the statement is equal to the original statement.

 A -> B = -A -> -B

Below is an image showing different examples for implication

Logical implication when shown in this format is weak. A → B has little meaning for readers.

Instead I invite the reader to look at a real world example of implication.

It is often possible to assert a universal statement using logical implication, as seen below.

x > 2 ∧ x is prime ⟹ x is odd.

X is more than 2 and X is prime implies that X is odd. What makes this statement useful is that

there isn’t a single number that holds for X where it is greater than 2 and prime, but not odd.

Truth under an interpretation

Given an interpretation (that is, an assignment of meaning to the symbols. Often giving meaning

such as words or numbers to algebraic symbols) we can compute the truth value of any

proposition under I (interpretation).

I(P) = 1, therefore under this interpretation P is true.

I(p) = 0, therefore under this interpretation P is false.

Satisfiability

A proposition is considered satisfiable if there exists an interpretation under which it is true. The

formula

I(p∧¬p)

Is not satisfiable because it will always result in 0 (try making p 1 or 0 yourself)

Again, a proposition is satisfiable if there exists an input that results in the proposition being true.

I(P) is satisfiable if for some interpretation P is True. In this case, P is true when it is equal to 1, or

it is true when it is true.

** There are 2^n interpretations if P has n propositional atoms. **

Thus to generate a truth table a table with 2^n rows is needed. This is not practical and will take

forever to compute, even with a small number of interpretations such as 100. This will cause a

combinatorial explosion.

Knowledge Bases

Let’s go back to the knowledge base question first purposed at the start of this article:

The meeting can take place if all members have beeninformed in advance, and it is quorate. It is

quorateprovided that there are at least 15 people present.Members will have been informed in advance

if there isnot a postal strike. Therefore, if the meeting wascancelled, we conclude that there were fewer

than 15members present, or there was a postal strike

Then that gives us the propositional statements:

m : “the meeting takes place”a: “all members have been informed”p: “there is a postal strike”q: “the

meeting is quorate”f: “there are at least 15 members present”

Which we can formalise as:

((a∧q)⇒m),(f⇒q),(¬p⇒a)

This was simply to remind you of knowledge bases.

Propositional Knowledge Bases and Reasoning

A propositional knowledge base is a finite set of propositional formulae, just like normal

knowledge bases.

Suppose a propositional knowledge base, X, is given to us. Then a propositional formula, P,

follows from X, if the following holds for every interpretation, I.

If I(Q) = 1 for all Q∈X, then I(P) = 1.

This can be read as:

X |= P

Which just means that P is provable from the knowledge base X. The proposition is provable

from the knowledge base X. Propositional knowledge bases and reasoning is pretty much the

same as ordinary knowledge base and reasoning discussed earlier.

3.3 First Order Logic

 The prepositional logic only deals with the facts, that may be true or false.

 The first order logic assumes that the world contains objects, relations and

functions.

Propositional logic provides a good start at describing the general principles of logical reasoning,

but it does not go far enough. Some of the limitations are apparent even in the “Malice and

Alice” example from Chapter 2. Propositional logic does not give us the means to express a

general principle that tells us that if Alice is with her son on the beach, then her son is with

Alice; the general fact that no child is older than his or her parent; or the general fact that if

someone is alone, they are not with someone else. To express principles like these, we need a

way to talk about objects and individuals, as well as their properties and the relationships

between them. These are exactly what is provided by a more expressive logical framework

known as first-order logic, which will be the topic of the next few chapters.

Functions, Predicates, and Relations

Consider some ordinary statements about the natural numbers:

 Every natural number is even or odd, but not both.

 A natural number is even if and only if it is divisible by two.

 If some natural number, xx, is even, then so is x2x2.

 A natural number xx is even if and only if x+1x+1 is odd.

 Any prime number that is greater than 2 is odd.

 For any three natural numbers xx, yy, and zz, if xx divides yy and yy divides zz,

then xx divides zz.

These statements are true, but we generally do not think of them as logically valid: they depend

on assumptions about the natural numbers, the meaning of the terms “even” and “odd,” and so

on. But once we accept the first statement, for example, it seems to be a logical consequence that

the number of stairs in the White House is either even or odd, and, in particular, if it is not even,

it is odd. To make sense of inferences like these, we need a logical system that can deal with

objects, their properties, and relations between them.

Rather than fix a single language once and for all, first-order logic allows us to specify the

symbols we wish to use for any given domain of interest. In this section, we will use the

following running example:

https://leanprover.github.io/logic_and_proof/propositional_logic.html#propositional-logic

 The domain of interest is the natural numbers, NN.

 There are objects, 00, 11, 22, 33, ….

 There are functions, addition and multiplication, as well as the square function, on this

domain.

 There are predicates on this domain, “even,” “odd,” and “prime.”

 There are relations between elements of this domain, “equal,” “less than”, and “divides.”

For our logical language, we will choose symbols 1, 2,

3, addadd, mulmul, squaresquare, eveneven, oddodd, primeprime, ltlt, and so on, to denote these

things. We will also have variables xx, yy, and zz ranging over the natural numbers. Note all of

the following.

 Functions can take different numbers of arguments: if xx and yy are natural numbers, it

makes sense to write mul(x,y)mul(x,y) and square(x)square(x). So mulmul takes two

arguments, and squaresquare takes only one.

 Predicates and relations can also be understood in these terms. The

predicates even(x)even(x) and prime(x)prime(x) take one argument, while the binary

relations divides(x,y)divides(x,y) and lt(x,y)lt(x,y) take two arguments.

 Functions are different from predicates! A function takes one or more arguments, and

returns a value. A predicate takes one or more arguments, and is either true or false. We can

think of predicates as returning propositions, rather than values.

 In fact, we can think of the constant symbols 1,2,3,…1,2,3,… as special sorts of function

symbols that take zero arguments. Analogously, we can consider the predicates that take

zero arguments to be the constant logical values, ⊤⊤ and ⊥⊥.

 In ordinary mathematics, we often use “infix” notation for binary functions and relations.

For example, we usually write x×yx×y or x⋅yx⋅y instead of mul(x,y)mul(x,y), and we

write x<yx<y instead of lt(x,y)lt(x,y). We will use these conventions when writing proofs in

natural deduction, and they are supported in Lean as well.

 We will treat the equality relation, x=yx=y, as a special binary relation that is included in

every first-order language.

First-order logic allows us to build complex expressions out of the basic ones. Starting with the

variables and constants, we can use the function symbols to build up compound expressions like

these:

 x+y+zx+y+z

 (x+1)×y×y(x+1)×y×y

 square(x+y×z)square(x+y×z)

Such expressions are called “terms.” Intuitively, they name objects in the intended domain of

discourse.

Now, using the predicates and relation symbols, we can make assertions about these expressions:

 even(x+y+z)even(x+y+z)

 prime((x+1)×y×y)prime((x+1)×y×y)

 square(x+y×z)=wsquare(x+y×z)=w

 x+y<zx+y<z

Even more interestingly, we can use propositional connectives to build compound expressions

like these:

 even(x+y+z)∧prime((x+1)×y×y)even(x+y+z)∧prime((x+1)×y×y)

 ¬(square(x+y×z)=w)∨x+y<z¬(square(x+y×z)=w)∨ x+y<z

 x<y∧ even(x)∧ even(y)→x+1<yx<y∧ even(x)∧ even(y)→x+1<y

The second one, for example, asserts that either (x+yz)2(x+yz)2 is not equal to ww, or x+yx+y is

less than zz. Remember, these are expressions in symbolic logic; in ordinary mathematics, we

would express the notions using words like “is even” and “if and only if,” as we did above. We

will use notation like this whenever we are in the realm of symbolic logic, for example, when we

write proofs in natural deduction. Expressions like these are called formulas. In contrast to terms,

which name things, formulas say things; in other words, they make assertions about objects in

the domain of discourse.

3.4 Situation Calculus:-

The idea behind situation calculus is that (reachable) states are definable in terms of the actions

required to reach them. These reachable states are called situations. What is true in a situation

can be defined in terms of relations with the situation as an argument. Situation calculus can be

seen as a relational version of the feature-based representation of actions.

Here we only consider single agents, a fully observable environment, and deterministic actions.

Situation calculus is defined in terms of situations. A situation is either

 init, the initial situation, or

 do(A,S), the situation resulting from doing action A in situation S, if it is possible to do

action A in situation S.

Example 14.1: Consider the domain of Figure 3.1. Suppose in the initial situation, init, the robot,

Rob, is at location o109 and there is a key k1 at the mail room and a package at storage.

do(move(rob,o109,o103), init)

is the situation resulting from Rob moving from position o109 in situation init to position o103.

In this situation, Rob is at o103, the key k1 is still at mail, and the package is at storage.

The situation

do(move(rob,o103,mail),

do(move(rob,o109,o103),

init))

is one in which the robot has moved from position o109 to o103 to mail and is currently at mail.

Suppose Rob then picks up the key, k1. The resulting situation is

do(pickup(rob,k1),

do(move(rob,o103,mail),

do(move(rob,o109,o103),

init))).

In this situation, Rob is at position mail carrying the key k1.

A situation can be associated with a state. There are two main differences between situations and

states:

 Multiple situations may refer to the same state if multiple sequences of actions lead to the

same state. That is, equality between situations is not the same as equality between states.

 Not all states have corresponding situations. A state is reachable if a sequence of actions

exists that can reach that state from the initial state. States that are not reachable do not

have a corresponding situation.

https://artint.info/html/ArtInt_203.html
https://artint.info/html/ArtInt_48.html#graph-ex
https://artint.info/html/ArtInt_48.html#graph-ex

Some do(A,S) terms do not correspond to any state. However, sometimes an agent must reason

about such a (potential) situation without knowing if A is possible in state S, or if S is possible.

Example 14.2: The term do(unlock(rob,door1),init) does not denote a state at all, because it is

not possible for Rob to unlock the door when Rob is not at the door and does not have the key.

A static relation is a relation for which the truth value does not depend on the situation; that is, its

truth value is unchanging through time. A dynamic relation is a relation for which the truth value

depends on the situation. To represent what is true in a situation, predicate symbols denoting

dynamic relations have a situation argument so that the truth can depend on the situation. A

predicate symbol with a situation argument is called a fluent.

Example 14.3: The relation at(O,L,S) is true when object O is at location L in situation S.

Thus, at is a fluent.

The atom

at(rob,o109,init)

is true if the robot rob is at position o109 in the initial situation. The atom

at(rob,o103,do(move(rob,o109,o103), init))

is true if robot rob is at position o103 in the situation resulting from rob moving from

position o109 to position o103 from the initial situation. The atom

at(k1,mail,do(move(rob,o109,o103), init))

is true if k1 is at position mail in the situation resulting from rob moving from position o109 to

position o103 from the initial situation.

A dynamic relation is axiomatized by specifying the situations in which it is true. Typically, this

is done inductively in terms of the structure of situations.

 Axioms with init as the situation parameter are used to specify what is true in the initial

situation.

 A primitive relation is defined by specifying when it is true in situations of the

form do(A,S) in terms of what is true in situation S. That is, primitive relations are defined

in terms of what is true at the previous situation.

 A derived relation is defined using clauses with a variable in the situation argument. The

truth of a derived relation in a situation depends on what else is true in the same situation.

 Static relations are defined without reference to the situation.

Example 14.4: Suppose the delivery robot, Rob, is in the domain depicted in Figure 3.1. Rob is at

location o109, the parcel is in the storage room, and the key is in the mail room. The following

axioms describe this initial situation:

at(rob,o109,init).

at(parcel,storage,init).

at(k1,mail,init).

The adjacent relation is a dynamic, derived relation defined as follows:

adjacent(o109,o103,S).

adjacent(o103,o109,S).

https://artint.info/html/ArtInt_48.html#graph-ex
https://artint.info/html/ArtInt_48.html#graph-ex

adjacent(o109,storage,S).

adjacent(storage,o109,S).

adjacent(o109,o111,S).

adjacent(o111,o109,S).

adjacent(o103,mail,S).

adjacent(mail,o103,S).

adjacent(lab2,o109,S).

adjacent(P1,P2,S)←

 between(Door,P1,P2)∧

 unlocked(Door,S).

Notice the free S variable; these clauses are true for all situations. We cannot omit the S because

which rooms are adjacent depends on whether a door is unlocked. This can change from situation

to situation.

The between relation is static and does not require a situation variable:

between(door1,o103,lab2).

We also distinguish whether or not an agent is being carried. If an object is not being carried, we

say that the object is sitting at its location. We distinguish this case because an object being

carried moves with the object carrying it. An object is at a location if it is sitting at that location

or is being carried by an object at that location. Thus, at is a derived relation:

at(Ob,P,S)←

 sitting_at(Ob,P,S).

at(Ob,P,S)←

 carrying(Ob1,Ob,S)∧

 at(Ob1,P,S).

Note that this definition allows for Rob to be carrying a bag, which, in turn, is carrying a book.

The precondition of an action specifies when it is possible to carry out the action. The

relation poss(A,S) is true when action A is possible in situation S. This is typically a derived

relation.

Example 14.5: An agent can always put down an object it is carrying:

poss(putdown(Ag,Obj),S) ←

 carrying(Ag,Obj,S).

For the move action, an autonomous agent can move from its current position to an adjacent

position:

poss(move(Ag,P1,P2),S) ←

 autonomous(Ag) ∧

 adjacent(P1,P2,S)∧

 sitting_at(Ag,P1,S) .

https://artint.info/html/ArtInt_201.html#precond-defn

The precondition for the unlock action is more complicated. The agent must be at the correct side

of the door and carrying the appropriate key:

poss(unlock(Ag,Door),S)←

 autonomous(Ag)∧

 between(Door,P1,P2)∧

 at(Ag,P1,S)∧

 opens(Key,Door)∧

 carrying(Ag,Key,S).

We do not assume that the between relation is symmetric. Some doors can only open one way.

We define what is true in each situation recursively in terms of the previous situation and of what

action occurred between the situations. As in the feature-based representation of actions, causal

rules specify when a relation becomes true and frame rules specify when a relation remains true.

3.6 Planning:-

What is planning in AI?

 The planning in Artificial Intelligence is about the decision making tasks performed by the

robots or computer programs to achieve a specific goal.

 The execution of planning is about choosing a sequence of actions with a high likelihood to

complete the specific task.

Blocks-World planning problem

 The blocks-world problem is known as Sussman Anomaly.

 Noninterleaved planners of the early 1970s were unable to solve this problem, hence it is

considered as anomalous.

 When two subgoals G1 and G2 are given, a noninterleaved planner produces either a plan for

G1 concatenated with a plan for G2, or vice-versa.

 In blocks-world problem, three blocks labeled as 'A', 'B', 'C' are allowed to rest on the flat

surface. The given condition is that only one block can be moved at a time to achieve the goal.

 The start state and goal state are shown in the following diagram.

https://artint.info/html/ArtInt_203.html

Components of Planning System

The planning consists of following important steps:

 Choose the best rule for applying the next rule based on the best available heuristics.

 Apply the chosen rule for computing the new problem state.

 Detect when a solution has been found.

 Detect dead ends so that they can be abandoned and the system’s effort is directed in more

fruitful directions.

 Detect when an almost correct solution has been found.

Goal stack planning

This is one of the most important planning algorithms, which is specifically used by STRIPS.

 The stack is used in an algorithm to hold the action and satisfy the goal. A knowledge base is

used to hold the current state, actions.

 Goal stack is similar to a node in a search tree, where the branches are created if there is a

choice of an action.

The important steps of the algorithm are as stated below:

i. Start by pushing the original goal on the stack. Repeat this until the stack becomes empty. If

stack top is a compound goal, then push its unsatisfied subgoals on the stack.

ii. If stack top is a single unsatisfied goal then, replace it by an action and push the action’s

precondition on the stack to satisfy the condition.

iii. If stack top is an action, pop it from the stack, execute it and change the knowledge base by

the effects of the action.

iv. If stack top is a satisfied goal, pop it from the stack.

Non-linear planning
This planning is used to set a goal stack and is included in the search space of all possible

subgoal orderings. It handles the goal interactions by interleaving method.

Advantage of non-Linear planning

Non-linear planning may be an optimal solution with respect to plan length (depending on search

strategy used).

Disadvantages of Nonlinear planning

 It takes larger search space, since all possible goal orderings are taken into consideration.

 Complex algorithm to understand.

Algorithm
1. Choose a goal 'g' from the goalset

2. If 'g' does not match the state, then

 Choose an operator 'o' whose add-list matches goal g

 Push 'o' on the opstack

 Add the preconditions of 'o' to the goalset

3. While all preconditions of operator on top of opstack are met in state

 Pop operator o from top of opstack

 state = apply(o, state)

 plan = [plan; o]

3.7 Partial-Order Planning

The forward and regression planners enforce a total ordering on actions at all stages of the

planning process. The CSP planner commits to the particular time that the action will be carried

out. This means that those planners have to commit to an ordering of actions that cannot occur

concurrently when adding them to a partial plan, even if there is no particular reason to put one

action before another.

The idea of a partial-order planner is to have a partial ordering between actions and only

commit to an ordering between actions when forced. This is sometimes also called a non-linear

planner, which is a misnomer because such planners often produce a linear plan.

A partial ordering is a less-than relation that is transitive and asymmetric. A partial-order

plan is a set of actions together with a partial ordering, representing a "before" relation on

actions, such that any total ordering of the actions, consistent with the partial ordering, will solve

the goal from the initial state. Write act0 < act1 if action act0 is before action act1 in the partial

order. This means that action act0 must occur before action act1.

For uniformity, treat start as an action that achieves the relations that are true in the initial state,

and treat finish as an action whose precondition is the goal to be solved. The

pseudoaction start is before every other action, and finish is after every other action. The use of

these as actions means that the algorithm does not require special cases for the initial situation

and for the goals. When the preconditions of finish hold, the goal is solved.

An action, other than start or finish, will be in a partial-order plan to achieve a precondition of an

action in the plan. Each precondition of an action in the plan is either true in the initial state, and

so achieved by start, or there will be an action in the plan that achieves it.

We must ensure that the actions achieve the conditions they were assigned to achieve. Each

precondition P of an action act1 in a plan will have an action act0 associated with it such

that act0 achieves precondition P for act1. The triple ⟨act0,P,act1⟩ is a causal link. The partial

order specifies that action act0 occurs before action act1, which is written as act0 < act1. Any

other action A that makes P false must either be before act0 or after act1.

Informally, a partial-order planner works as follows: Begin with the actions start and finish and

the partial order start < finish. The planner maintains an agenda that is a set of ⟨P,A⟩ pairs,

where A is an action in the plan and P is an atom that is a precondition of A that must be

achieved. Initially the agenda contains pairs ⟨G,finish⟩, where G is an atom that must be true in

the goal state.

At each stage in the planning process, a pair ⟨G,act1⟩ is selected from the agenda, where P is a

precondition for action act1. Then an action, act0, is chosen to achieve P. That action is either

already in the plan - it could be the start action, for example - or it is a new action that is added

to the plan. Action act0 must happen before act1 in the partial order. It adds a causal link that

records that act0 achieves P for action act1. Any action in the plan that deletes P must happen

either before act0 or after act1. If act0 is a new action, its preconditions are added to the agenda,

and the process continues until the agenda is empty.

This is a non-deterministic procedure. The "choose" and the "either ...or ..." form choices that

must be searched over. There are two choices that require search:

 which action is selected to achieve G and

 whether an action that deletes G happens before act0 or after act1.

non-deterministic procedure PartialOrderPlanner(Gs)

2: Inputs

3: Gs: set of atomic propositions to achieve

4: Output

5: linear plan to achieve Gs

6: Local

7: Agenda: set of ⟨P,A⟩ pairs where P is atom and A an action

8: Actions: set of actions in the current plan

9: Constraints: set of temporal constraints on actions

10: CausalLinks: set of ⟨act0,P,act1⟩ triples

11: Agenda ←{⟨G,finish⟩:G ∈Gs}

12: Actions ←{start,finish}

13: Constraints ←{start<finish}

14: CausalLinks ←{}

15: repeat

16: select and remove ⟨G,act1⟩ from Agenda

17: either

18: choose act0 ∈Actions such that act0 achieves G

19: or

20: choose act0 ∉Actions such that act0 achieves G

21: Actions ←Actions ∪{act0}

22: Constraints ←add_const(start<act0,Constraints)

23: for each CL∈CausalLinks do

24: Constraints ←protect(CL,act0,Constraints)

25:

26: Agenda ←Agenda ∪{⟨P,act0⟩: P is a precondition of act0 }

27:

28 : Constraints ←add_const(act0<act1,Constraints)

29: CausalLinks ∪ {⟨acto,G,act1⟩}

30: for each A∈Actions do

31: Constraints ←protect(⟨acto,G,act1⟩,A,Constraints)

32:

33: until Agenda={}

34: return total ordering of Actions consistent with Constraints

Figure 8.5: Partial-order planner

The function add_const(act0<act1,Constraints) returns the constraints formed by adding the

constraint act0<act1 to Constraints, and it fails if act0<act1 is incompatible with Constraints.

There are many ways this function can be implemented.

The function protect(⟨acto,G,act1⟩,A,Constraints) checks

whether A≠act0 and A≠act1 and A deletes G. If so, it returns either { A<act0 } ∪ Constraints or {

act1<A } ∪ Constraints. This is a non-deterministic choice that is searched over. Otherwise it

returns Constraints.

Example: Consider the goal ¬swc ∧ ¬mw, where the initial state

contains RLoc=lab, swc, ¬rhc, mw, ¬rhm.

Initially the agenda is

⟨ ¬swc,finish⟩,⟨ ¬mw,finish⟩.

Suppose ⟨ ¬swc,finish⟩ is selected and removed from the agenda. One action exists that can

achieve ¬swc, namely deliver coffee, dc, with preconditions off and rhc. At the end of

the repeat loop, Agenda contains

⟨off,dc⟩,⟨rhc,dc⟩,⟨ ¬mw,finish⟩.

Constraints is {start<finish, start < dc, dc <finish}. There is one causal link, ⟨dc, ¬swc,finish⟩.
This causal link means that no action that undoes ¬swc is allowed to happen after dc and

before finish.

Suppose ⟨ ¬mw,finish⟩ is selected from the agenda. One action exists that can achieve this, pum,

with preconditions mw and RLoc=mr. The causal link ⟨pum, ¬mw,finish⟩ is added to the set of

causal links; ⟨mw,pum⟩ and ⟨mr,pum⟩ are added to the agenda.

Suppose ⟨mw,pum⟩ is selected from the agenda. The action start achieves mw, because mw is

true initially. The causal link ⟨start,mw,pum⟩ is added to the set of causal links. Nothing is added

to the agenda.

At this stage, there is no ordering imposed between dc and pum.

Suppose ⟨off,dc⟩ is removed from the agenda. There are two actions that can

achieve off: mc_cs with preconditions cs, and mcc_lab with preconditions lab. The algorithm

searches over these choices. Suppose it chooses mc_cs. Then the causal link ⟨mc_cs,off,dc⟩ is

added.

The first violation of a causal link occurs when a move action is used to achieve ⟨mr,pum⟩. This

action violates the causal link ⟨mc_cs,off,dc⟩, and so must happen after dc (the robot goes to the

mail room after delivering coffee) or before mc_cs.

The preceding algorithm has glossed over one important detail. It is sometimes necessary to

perform some action more than once in a plan. The preceding algorithm will not work in this

case, because it will try to find a partial ordering with both instances of the action occurring at

the same time. To fix this problem, the ordering should be between action instances, and not

actions themselves. To implement this, assign an index to each instance of an action in the plan,

and the ordering is on the action instance indexes and not the actions themselves. This is left as

an exercise.

3.8 Uuncertain Knowledge and Reasoning

Why Reason Probabilistically?

 In many problem domains it isn't possible to create complete, consistent models of the

world. Therefore agents (and people) must act in uncertain worlds (which the real world

is).

 Want an agent to make rational decisions even when there is not enough information to

prove that an action will work.

 Some of the reasons for reasoning under uncertainty:

o True uncertainty. E.g., flipping a coin.

o Theoretical ignorance. There is no complete theory which is known about the

problem domain. E.g., medical diagnosis.

o Laziness. The space of relevant factors is very large, and would require too much

work to list the complete set of antecedents and consequents. Furthermore, it

would be too hard to use the enormous rules that resulted.

o Practical ignorance. Uncertain about a particular individual in the domain

because all of the information necessary for that individual has not been collected.

 Probability theory will serve as the formal language for representing and reasoning with

uncertain knowledge.

Representing Belief about Propositions

 Rather than reasoning about the truth or falsity of a proposition, reason about the belief

that a proposition or event is true or false

 For each primitive proposition or event, attach a degree of belief to the sentence

 Use probability theory as a formal means of manipulating degrees of belief

 Given a proposition, A, assign a probability, P(A), such that 0 <= P(A) <= 1, where if A

is true, P(A)=1, and if A is false, P(A)=0. Proposition A must be either true or false, but

P(A) summarizes our degree of belief in A being true/false.

 Examples

o P(Weather=Sunny) = 0.7 means that we believe that the weather will be Sunny

with 70% certainty. In this case Weather is a random variable that can take on

values in a domain such as {Sunny, Rainy, Snowy, Cloudy}.

o P(Cavity=True) = 0.05 means that we believe there is a 5% chance that a person

has a cavity. Cavity is a Boolean random variable since it can take on possible

values True and False.

o Example: P(A=a ^ B=b) = P(A=a, B=b) = 0.2, where A=My_Mood, a=happy,

B=Weather, and b=rainy, means that there is a 20% chance that when it's raining

my mood is happy.

 Obtaining and Interpreting Probabilities

There are several senses in which probabilities can be obtained and interpreted, among

them the following:

o Frequentist Interpretation
The probability is a property of a population of similar events. E.g., if set S = P

union N, and P intersection N is the empty set, then the probability of an object

being in set P is |P|/|S|. Hence, in this interpretation probabilities come from

experiments and determining the population associated with a given proposition.

o Subjectivist Interpretation
A subjective degree of belief in a proposition or the occurrence of an event. E.g.,

the probability that you'll pass the Final Exam based on your own subjective

evaluation of the amount of studying you've done and your understanding of the

material. Hence, in this interpretation probabilities characterize the agent's beliefs.

 We will assume that in a given problem domain, the programmer and expert identify all

of the relevant propositional variables that are needed to reason about the domain. Each

of these will be represented as a random variable, i.e., a variable that can take on values

from a set of mutually exclusive and exhaustive values called the sample

space or partition of the random variable. Usually this will mean a sample space

{True, False}. For example, the proposition Cavity has possible

values True and False indicating whether a given patient has a cavity or not. A random

variable that has True and False as its possible values is called a Boolean random

variable.

More generally, propositions can include the equality predicate with random variables

and the possible values they can have. For example, we might have a random

variable Color with possible values red, green, blue, and other. Then P(Color=red)

indicates the likelihood that the color of a given object is red. Similarly, for Boolean

random variables we can ask P(A=True), which is abbreviated to P(A), and P(A=False),

which is abbreviated to P(~A).

3.9 Probability

Axioms of Probability Theory

Probability Theory provides us with the formal mechanisms and rules for manipulating

propositions represented probabilistically. The following are the three axioms of probability

theory:

 0 <= P(A=a) <= 1 for all a in sample space of A

 P(True)=1, P(False)=0

 P(A v B) = P(A) + P(B) - P(A ^ B)

From these axioms we can show the following properties also hold:

 P(~A) = 1 - P(A)

 P(A) = P(A ^ B) + P(A ^ ~B)

 Sum{P(A=a)} = 1, where the sum is over all possible values a in the sample space of A

Joint Probability Distribution

Given an application domain in which we have determined a sufficient set of random variables to

encode all of the relevant information about that domain, we can completely specify all of the

possible probabilistic information by constructing the full joint probability distribution,

P(V1=v1, V2=v2, ..., Vn=vn), which assigns probabilities to all possible combinations of values

to all random variables.

For example, consider a domain described by three Boolean random variables, Bird, Flier, and

Young. Then we can enumerate a table showing all possible interpretations and associated

probabilities:

Bird Flier Young Probability

T T T 0.0

T T F 0.2

T F T 0.04

T F F 0.01

F T T 0.01

F T F 0.01

F F T 0.23

F F F 0.5

Notice that there are 8 rows in the above table representing the fact that there are 23 ways to

assign values to the three Boolean variables. More generally, with n Boolean variables the table

will be of size 2n. And if n variables each had k possible values, then the table would be size kn.

Also notice that the sum of the probabilities in the right column must equal 1 since we know that

the set of all possible values for each variable are known. This means that for n Boolean random

variables, the table has 2n-1 values that must be determined to completely fill in the table.

If all of the probabilities are known for a full joint probability distribution table, then we can

compute any probabilistic statement about the domain. For example, using the table above, we

can compute

 P(Bird=T) = P(B) = 0.0 + 0.2 + 0.04 + 0.01 = 0.25

 P(Bird=T, Flier=F) = P(B, ~F) = P(B, ~F, Y) + F(B, ~F, ~Y) = 0.04 + 0.01 = 0.05

Conditional Probabilities

 Conditional probabilities are key for reasoning because they formalize the process of

accumulating evidence and updating probabilities based on new evidence. For example,

if we know there is a 4% chance of a person having a cavity, we can represent this as

the prior (aka unconditional) probability P(Cavity)=0.04. Say that person now has a

symptom of a toothache, we'd like to know what is the posterior probability of a Cavity

given this new evidence. That is, compute P(Cavity | Toothache).

 If P(A|B) = 1, this is equivalent to the sentence in Propositional Logic B => A. Similarly,

if P(A|B) =0.9, then this is like saying B => A with 90% certainty. In other words, we've

made implication fuzzy because it's not absolutely certain.

 Given several measurements and other "evidence", E1, ..., Ek, we will formulate queries

as P(Q | E1, E2, ..., Ek) meaning "what is the degree of belief that Q is true given that we

know E1, ..., Ek and nothing else."

 Conditional probability is defined as: P(A|B) = P(A ^ B)/P(B) = P(A,B)/P(B)
One way of looking at this definition is as a normalized (using P(B)) joint probability

(P(A,B)).

 Example Computing Conditional Probability from the Joint Probability Distribution

Say we want to compute P(~Bird | Flier) and we know the full joint probability

distribution function given above. We can do this as follows:

 P(~B|F) = P(~B,F) / P(F)

 = (P(~B,F,Y) + P(~B,F,~Y)) / P(F)

 = (.01 + .01)/P(F)

Next, we could either compute the marginal probability P(F) from the full joint

probability distribution, or, as is more commonly done, we could do it by using a process

called normalization, which first requires computing

 P(B|F) = P(B,F) / P(F)

 = (P(B,F,Y) + P(B,F,~Y)) / P(F)

 = (0.0 + 0.2)/P(F)

Now we also know that P(~B|F) + P(B|F) = 1, so substituting from above and solving for

P(F) we get P(F) = 0.22. Hence, P(~B|F) = 0.02/0.22 = 0.091.

While this is an effective procedure for computing conditional probabilities, it is

intractable in general because it means that we must compute and store the full joint

probability distribution table, which is exponential in size.

 Some important rules related to conditional probability are:

o Rewriting the definition of conditional probability, we get the Product Rule:

P(A,B) = P(A|B)P(B)

o Chain Rule: P(A,B,C,D) = P(A|B,C,D)P(B|C,D)P(C|D)P(D), which generalizes

the product rule for a joint probability of an arbitrary number of variables. Note

that ordering the variables results in a different expression, but all have the same

resulting value.

o Conditionalized version of the Chain Rule: P(A,B|C) = P(A|B,C)P(B|C)

o Bayes's Rule: P(A|B) = (P(A)P(B|A))/P(B), which can be written as follows to

more clearly emphasize the "updating" aspect of the rule: P(A|B) = P(A) *

[P(B|A)/P(B)] Note: The terms P(A) and P(B) are called the prior (or marginal)

probabilities. The term P(A|B) is called the posterior probability because it is

derived from or depends on the value of B.

o Conditionalized version of Bayes's Rule: P(A|B,C) = P(B|A,C)P(A|C)/P(B|C)

o Conditioning (aka Addition) Rule: P(A) = Sum{P(A|B=b)P(B=b)} where the

sum is over all possible values b in the sample space of B.

o P(~B|A) = 1 - P(B|A)

3.10 Bayesian Networks

 • To do probabilistic reasoning, you need to know the joint probability distribution

 • But, in a domain with N propositional variables, one needs 2N numbers to specify the joint probability

distribution.

Introduction to Bayesian Networks

Bayesian networks are a type of probabilistic graphical model that uses Bayesian inference for

probability computations. Bayesian networks aim to model conditional dependence, and therefore

causation, by representing conditional dependence by edges in a directed graph. Through these

relationships, one can efficiently conduct inference on the random variables in the graph through

the use of factors.

Probability

Before going into exactly what a Bayesian network is, it is first useful to review probability

theory.

First, remember that the joint probability distribution of random variables A_0, A_1, …, A_n,

denoted as P(A_0, A_1, …, A_n), is equal to P(A_1 | A_2, …, A_n) * P(A_2 | A_3, …, A_n) *

… * P(A_n) by the chain rule of probability. We can consider this a factorized representation of

the distribution, since it is a product of N factors that are localized probabilities.

https://en.wikipedia.org/wiki/Chain_rule_(probability)

Next, recall that conditional independence between two random variables, A and B, given

another random variable, C, is equivalent to satisfying the following property: P(A,B|C) = P(A|C)

* P(B|C). In other words, as long as the value of C is known and fixed, A and B are independent.

Another way of stating this, which we will use later on, is that P(A|B,C) = P(A|C).

The Bayesian Network

Using the relationships specified by our Bayesian network, we can obtain a compact, factorized

representation of the joint probability distribution by taking advantage of conditional

independence.

A Bayesian network is a directed acyclic graph in which each edge corresponds to a conditional

dependency, and each node corresponds to a unique random variable. Formally, if an edge (A, B)

exists in the graph connecting random variables A and B, it means that P(B|A) is a factor in the

joint probability distribution, so we must know P(B|A) for all values of B and A in order to

conduct inference. In the above example, since Rain has an edge going into WetGrass, it means

that P(WetGrass|Rain) will be a factor, whose probability values are specified next to the

WetGrass node in a conditional probability table.

Bayesian networks satisfy the local Markov property, which states that a node is conditionally

independent of its non-descendants given its parents. In the above example, this means that

P(Sprinkler|Cloudy, Rain) = P(Sprinkler|Cloudy) since Sprinkler is conditionally independent of

its non-descendant, Rain, given Cloudy. This property allows us to simplify the joint distribution,

obtained in the previous section using the chain rule, to a smaller form. After simplification, the

joint distribution for a Bayesian network is equal to the product of P(node|parents(node)) for all

nodes, stated below:

In larger networks, this property allows us to greatly reduce the amount of required computation,

since generally, most nodes will have few parents relative to the overall size of the network.

Inference

Inference over a Bayesian network can come in two forms.

The first is simply evaluating the joint probability of a particular assignment of values for each

variable (or a subset) in the network. For this, we already have a factorized form of the joint

distribution, so we simply evaluate that product using the provided conditional probabilities. If we

only care about a subset of variables, we will need to marginalize out the ones we are not

interested in. In many cases, this may result in underflow, so it is common to take the logarithm of

that product, which is equivalent to adding up the individual logarithms of each term in the

product.

The second, more interesting inference task, is to find P(x|e), or, to find the probability of some

assignment of a subset of the variables (x) given assignments of other variables (our evidence, e).

In the above example, an example of this could be to find P(Sprinkler, WetGrass | Cloudy), where

{Sprinkler, WetGrass} is our x, and {Cloudy} is our e. In order to calculate this, we use the fact

that P(x|e) = P(x, e) / P(e) = αP(x, e), where α is a normalization constant that we will calculate at

the end such that P(x|e) + P(¬x | e) = 1. In order to calculate P(x, e), we must marginalize the joint

probability distribution over the variables that do not appear in x or e, which we will denote as Y.

For the given example, we can calculate P(Sprinkler, WetGrass | Cloudy) as follows:

We would calculate P(¬x | e) in the same fashion, just setting the value of the variables in x to

false instead of true. Once both P(x | e) and P(¬x | e) are calculated, we can solve for α, which

equals 1 / (P(x | e) + P(¬x | e)).

Note that in larger networks, Y will most likely be quite large, since most inference tasks will

only directly use a small subset of the variables. In cases like these, exact inference as shown

above is very computationally intensive, so methods must be used to reduce the amount of

computation. One more efficient method of exact inference is through variable elimination, which

takes advantage of the fact that each factor only involves a small number of variables. This means

that the summations can be rearranged such that only factors involving a given variable are used

in the marginalization of that variable. Alternatively, many networks are too large even for this

method, so approximate inference methods such as MCMC are instead used; these provide

probability estimations that require significantly less computation than exact inference methods.

https://en.wikipedia.org/wiki/Variable_elimination
https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo

	3.2 Propositional Logic
	3.2.1 Compound Propositional Statements
	3.2.2 Propositional formulae
	3.2.3 Truth Values of Propositonal Statements
	3.2.3.1 Truth Tables
	3.2.3.2Conjunction
	3.2.3.3 Disjunction
	3.2.3.4 Equivilance
	3.2.3.5 Implication
	Truth under an interpretation
	Satisfiability
	Knowledge Bases

	Propositional Knowledge Bases and Reasoning
	3.3 First Order Logic
	Functions, Predicates, and Relations
	3.4 Situation Calculus:-
	What is planning in AI?
	Blocks-World planning problem
	Components of Planning System
	Goal stack planning
	Non-linear planning

	3.7 Partial-Order Planning
	Why Reason Probabilistically?
	Representing Belief about Propositions
	3.9 Probability
	Axioms of Probability Theory
	Joint Probability Distribution
	Conditional Probabilities

	Introduction to Bayesian Networks
	Probability
	The Bayesian Network
	Inference

