TOC

UNIT-2

Vision and Mission of Institute
Vision:

To become a renowned centre of outcome based learning, and work towards academic,
professional, cultural and social enrichment of the lives of individuals and communities.

Mission:
e Focus on evaluation of learning outcomes and motivate students to inculcate research

aptitude by project based learning.

e ldentify areas of focus and provide platform to gain knowledge and solutions based on
informed perception of Indian, regional and global needs.

e Offer opportunities for interaction between academia and industry.

e Develop human potential to its fullest extent so that intellectually capable and
imaginatively gifted leaders can emerge in a range of professions.

Vision and Mission of Department of Information Technology

Vision:

To establish outcome based excellence in teaching, learning and commitment to support IT
Industry.

Mission:
ML1: To provide outcome based education.

M2: To provide fundamental & Intellectual knowledge with essential skills to meet current and
future need of IT Industry across the globe.

M3: To inculcate the philosophy of continuous learning, ethical values & Social Responsibility.

Syllabus:

Credit: 3
3L+0T+0P

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

SYLLABUS
II Year- IV Semester: B.Tech. (Information Technology)

4IT4-06: Theory of Computation

Max. Marks: 150(IA:30, ETE:120)
End Term Exam: 3 Hours

SN

Contents

Hours

Introduction: Objective, scope and outcome of the course.

1

Finite Automata & Regular Expression: Basic machine, Finite state
machine, Transition graph, Transition matrix, Deterministic and non-
deterministic finite automation, Equivalence of DFA and NDFA,
Decision properties, minimization of finite automata, Mealy & Moore
machines.

Alphabet, words, Operations, Regular sets, relationship and conversion
between Finite automata and regular expression and vice versa,
designing regular expressions, closure properties of regular sets,
Pumping lemma and regular sets, Myhill- Nerode theorem , Application
of pumping lemma, Power of the languages.

Context Free Grammars (CFG), Derivations and Languages,
Relationship between derivation and derivation trees, leftmost and
rightmost derivation, sentential {forms, parsing and ambiguity,
simplification of CFG, normal forms, Greibach and Chomsky Normal
form , Problems related to CNF and GNF including membership
problem.

Nondeterministic PDA, Definitions, PDA and CFL, CFG for PDA,
Deterministic PDA, and Deterministic PDA and Deterministic CFL , The
pumping lemma for CFL’s, Closure Properties and Decision properties
for CFL, Deciding properties of CFL.

Turing Machines: Introduction, Definition of Turing Machine, TM
language Acceptors and Transducers, Computable Languages and functi
Universal TM & Other modification, multiple tracks Turing Machine.
Hierarchy of Formal languages: Recursive & recursively enumerable
languages, Properties of RL and REL, Introduction of Context sensitive
grammers and languages, The Chomsky Hierarchy.

Tractable and Untractable Problems: P, NP, NP complete and NP hard
problems, Un-decidability, examples of these problems like vertex cover
problem, Hamiltonian path problem, traveling sales man problem.

Total

40

Ulfice of Dean Academic Affairs
Rajasthan Technical University, Kota

Syllabus of 2 Year B. Tech. (IT) for students admitted in Session 2017-18 onwards.

Page 7

Program Educational Objectives (PEO):

1.

To enrich students with fundamental knowledge, effective computing, problem solving and
communication skills enable them to have successful career in Information Technology.
To enable students in acquiring Information Technology's latest tools, technologies and
management principles to give them an ability to solve multidisciplinary engineering
problems.

To impart students with ethical values and commitment towards sustainable development
in collaborative mode.

To imbibe students with research oriented and innovative approaches which help them to
identify, analyze, formulate and solve real life problems and motivates them for lifelong
learning.

To empower students with leadership quality and team building skills that prepare them
for employment, entrepreneurship and to become competent professionals to serve
societies and global needs.

Program Outcomes (PO):

10.

11.

12.

Engineering Knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems in IT.

Problem analysis: Identify, formulate, research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences in IT.

Design/development of solutions: Design solutions for complex engineering problems
and design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations using IT.

Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data, and
synthesis of the information to provide valid conclusions using IT.

Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex
engineering activities with an understanding of the limitations in IT.

The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent responsibilities
relevant to the professional engineering practice using IT.

Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and
need for sustainable development in IT.

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice using IT.

Individual and team work: Function effectively as an individual, and as a member or
leader in diverse teams, and in multidisciplinary settings in IT.

Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give
and receive clear instructions.

Project Management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member
and leader in a team, to manage IT projects and in multidisciplinary environments.

Life —long Learning: Recognize the need for, and have the preparation and ability to
engage in independent and life-long learning in the broadest context of technological
changes needed in IT.

41T4-06: Theory of Computation

Course Outcomes (COs)

CO1- Able to design and understand and basic properties of DFA & NDFA and formal
languages and formal grammars.

CO2- Able to understand the relation between types of languages and types of finite automata
and the Context free languages and grammar’s, and also Normalizing CFG

CO3- Able to design & understand the minimization of deterministic and nondeterministic finite
automata & the concept of Pushdown automata and its application.

CO4- Able to understand basic properties of Turing machines and computing with Turing
machines and concepts of tractability and decidability, the concepts of NP-completeness and NP-
hard Problem, the challenges for Theoretical Computer Science and its contribution to other
sciences.

CO-PO Mapping:

H=3, M=2, L=1
PO1|PO2|PO3|PO4|PO5|PO6|PO7|PO8|PO9|PO10|PO12|PO12
4IT4-06: |co1l H (M| H|H | M |[M|M]| - M | M |L M

v Sem. | Theory (?f L
Computation/CO-2|l H | H|{ H| H| M| M| M - M

L
CO3lH{ M| H|{HIM|M|M]| - M

CO4lH{ M| H|{HIM|M|M]| - M M

Context-Free Grammars,
Context-Free Languages, Parse Trees
and Ogden’s Lemma

6.1 Context-Free Grammars

A context-free grammar basically consists of a finite set of grammar rules. In order to define
grammar rules, we assume that we have two kinds of symbols: the terminals, which are the
symbols of the alphabet underlying the languages under consideration, and the nonterminals,
which behave like variables ranging over strings of terminals. A rule is of the form A — a,
where A is a single nonterminal, and the right-hand side « is a string of terminal and/or
nonterminal symbols. As usual, first we need to define what the object is (a context-free
grammar), and then we need to explain how it is used. Unlike antomata, grammars are used
to generate strings, rather than recognize strings.

Definition 6.1. A contexi-free grammar (for short, CFG) is a quadruple G = (V. X, P, S),
where

e V is a finite set of symbols called the vocabulary (or set of grammar symbols);
e ¥ C V is the set of terminal symbols (for short, terminals);
e S e (V—1Y)is a designated symbol called the start symbol;
e PC(V —%)x V*is a finite set of productions (or rewrite rules, or rules).
The set N = V' —X is called the set of nonterminal symbols (for short, nonterminals). Thus,

P C N x V*, and every production (A, a) is also denoted as A — a. A production of the
form A — ¢ 1s called an epsilon rule, or null rule.

Remark: Context-free grammars are sometimes defined as G = (Vy, Vi, P, S). The
correspondence with our definition is that ¥ = Vp and N = Vi, so that V' = Vi UV, Thus,
in this other definition, it is necessary to assume that Vy N Vy = 0.

Ezample 1. G1 = ({E,a,b},{a,b}, P, E), where P is the set of rules

E —s aFEb,
E — ab.

As we will see shortly, this grammar generates the langnage Ly = {a"b" | n > 1}, which
1s not regular.

Ezample 2. Ga = ({E,+,*,(,),a},{+,%,(,),a}, P, E), where P is the set of rules

E—FE+FE,
EF— EFxFE,
E— (E),
E—a.

This grammar generates a set of arithmetic expressions.

6.2 Derivations and Context-Free Languages

The productions of a grammar are used to derive strings. In this process, the productions
are used as rewrite rules. Formally, we define the derivation relation associated with a
context-free grammar. First, let us review the concepts of transitive closure and reflexave
and transitive closure of a binary relation.

Given a set A, a binary relation R on A is any set of ordered pairs, 1.e. # C A x A. For
short, instead of binary relation, we often simply say relation. Given any two relations R, S
on A, their composition R o S 1s defined as

RoS={(r.y)e AxA|3z€ A, (z, z) € Rand (2, y) € S}.
The identity relation T4 on A is the relation I4 defined such that
Ia ={(z, z) | = € A}
For short, we often denote Iy as I. Note that
Rol=IcR=R
for every relation R on A. Given a relation K on A, for any n > 0 we define R™ as follows:

R'=1,
R = R"oR.

It is obvious that R! = R. It is also easily verified by induction that " o R = R o R™.
The transitive closure R of the relation R is defined as

R*:LJHR

nx1

It is easily verified that BT is the smallest transitive relation containing R, and that
(x,y) € R™ iff there is some n > 1 and some zg, x1,...,2n € A such that z0 = =, 2, = ¥,
and (x;, 1;.4) € Rforalli, 0 <i < n — 1. The transitive and reflexive closure R* of the
relation I 1s defined as

R =R

n=0

Clearly, R* = R* U I. It is easily verified that R* is the smallest transitive and reflexive
relation containing fi.

Definition 6.2. Given a context-free grammar G = (V, X, P, S), the (one-step) derivation
relation = associated with G 1s the binary relation =4 C V™ x V* defined as follows:
for all a, € V7, we have

0O = 3

iff there exist A, p € V*, and some production (4 —) € P, such that
a=Ap and 5= Ayp.

.. . + . ..
The transitive closure of =4 1s denoted as = and the reflexave and transitive closure of
— is denoted as = 4.

When the grammar & is clear from the context, we usually omit the subscript G in =4,
:+3’G.- and :‘2’5n

A string o € V* such that S == o is called a sentential form, and a string w € X* such
that § — w 1s called a senfence. A derivation o« = [involving n steps 1s denoted as
T
o= f3.

Note that a derivation step
0 —a ,-5'

is rather nondetermimstic. Indeed, one can choose among various occurrences of nontermi-
nals A i a, and also among various productions A — ~ with left-hand side A.

For example, using the grammar Gy = ({E,a, b}, {a, b}, P.), where P is the set of rules

E — aEb,
FE — ab,

every derivation from F 1s of the form
E = a"Eb" = a"abb™ = a" 15",
or
E = a"Eb* = a"aEbb" = " Eb",
where n > (.

Grammar (7; 1s very simple: every string a"b" has a unmique derivation. This 1s usually
not the case. For example, using the grammar Go = ({E, +,,(,), a}, {+. %, (,),a}, P. E),
where P is the set of rules

F—FE+FE,
F—FExFE,
E — (E),
E—a.

the string a + a * a has the following distinct derivations, where the boldface indicates which
occurrence of E 1s rewritten:

E—E+«xF—E+ExE
—a+ExF—=a+ax*xE—=a+ax*a,

and

E—E+F=—a+E
—a+ExF—a+ax*xE—=—=a+ax*a.

In the above derivations, the leftmost occurrence of a nonterminal 1s chosen at each step.
Such derivations are called leftmost derivations. We could systematically rewrite the right-
most occurrence of a nonterminal, getting rightmost derivations. The string a + a % a also
has the following two rightmost derivations, where the boldface indicates which oceurrence
of E 1s rewritten:

E—=F+E=—=F+FExE
— F+Esa—E+axa— a+a=*a,

and

E—Fs+sE—FE=xa
— F+Exa=—=E+4+axa=— a+ax*a.

The language generated by a context-free grammar is defined as follows.

Definition 6.3. Given a context-free grammar G = (V, X, P, S), the language generated by
(7 1s the set
LG ={we X | S= w).

A language L C ¥* is a contexi-free language (for short. CFL) iff L = L(G) for some
context-free grammar G.

It 1s technically very useful to consider derivations i which the leftmost nonterminal 1s
always selected for rewriting, and dually, derivations in which the rightmost nonterminal is
always selected for rewriting.

Definition 6.4. Given a context-free grammar G = (V, X, P, S), the (one-step) leftmost
derivation relation —> associated with G 1s the binary relation = C V' x V™ defined as
m

Im
follows: for all v, 3 € V*, we have

o — 3
Im

iff there exist u € ¥*, p € V*, and some production (A —) € P, such that
a=uAp and = uyp.

- . + . -
The transitive closure of ;z:» 1s denoted as i:> and the reflexive and transitive closure of
T M

= 15 denoted as %5: The (one-step) rightmaost derivation relation — associated with
m] rm

G 1s the binary relation = C V* x V* defined as follows: for all o, 7 € V*, we have

o — 3
iff there exist A € V*, v € £*, and some production (A —) € P, such that
a=Av and J= Ay

.. . + . .
The transitive closure of — 1s denoted as — and the reflexive and transitive closure of
T rm

— is denoted as —.
rm T

Remarks: 1t 18 customary to use the symbols a,b, e, d, e for terminal symbols, and the
symbols A, B, C, D, E for nonterminal symbols. The symbols u, v, w, =, y, z denote terminal
strings, and the symbols a, 3,7, A, p, g denote strings in V. The symbols XY, Z usually
denote symbols in V.

Given a context-free grammar ' = (V. X, P, S), parsing a string w consists in finding out
whether w € L(G), and if so, in producing a derivation for w. The following proposition 1s
technically very important. It shows that leftmost and nghtmost derivations are “universal”.
This has some important practical implications for the complexity of parsing algorithms.

Proposition 6.1. Let G = (V.X. P, S) be a context-free grammar. For every w € ¥*, for
every derivation S == w, there is a leftmost derivation S % w, and there is a rightmost
m

derivation § = w.
i
Proof. Of course, we have to somehow use induction on derivations, but this i1s a little

tricky, and it is necessary to prove a stronger fact. We treat leftmost derivations, rightmost
derivations being handled in a similar way.

Claim: For every w € ¥*, for every a € VT, for every n > 1, if @ == w, then there is a

- . m
leftmost derivation o ::»i w.
m

The claim 1s proved by induction on n.

For n = 1, there exist some A, p € V* and some production A — ~, such that a = AAp
and w = Avyp. Since w 18 a terminal string, A, p, and ~, are terminal strings. Thus, A 1s the

only nonterminal in «, and the derivation step o L. w is a leftmost step (and a rightmost
stepl).

If n = 1. then the derivation o —= w is of the form
n—1
0 =] —> .

There are two subcases.

Case 1. If the derivation step o = a; 1s a leftmost step a => ay, by the mduction
m

hypothesis, there 15 a leftmost derivation ay r:é w, and we get the leftmost derivation
m

-1
a = o = w.
Im Im

Case 2. The derivation step & = a1 is a not a leftmost step. In this case, there must
be some u € X*, p, p € V7, some nonterminals A and B, and some production B — 4, such
that

a=uApBp and oy =uApdp,

where A 1s the leftmost nonterminal m «. Since we have a derivation oy 21w of length
n — 1, by the induction hypothesis, there 1s a leftmost derivation

n—1
] —— u.
Im

Since @y = uApdp where A is the leftmost terminal in «q, the first step in the leftmost

L 1 .
derivation oy ﬂ1:> w 1s of the form
Tm

uApdp = uypdp,
Im

for some production A — ~. Thus, we have a derivation of the form
o = uApBp — uAudp = uypdp T:é%» w.

We can commute the first two steps involving the productions B — & and A — «, and we
get the derivation
a=uApBp = uypBp = uypdp g:é% w.
m m

This may no longer be a leftmost derivation, but the first step 1s leftmost, and we are
back in case 1. Thus, we conclude by applying the induction hypothesis to the derivation

uypBp e w, as in case 1. U

Proposition 6.1 implies that
LG)={weX|S %}»w}:{wEE* | § == w}.

We observed that if we consider the grammar Ga = ({E. +.%. (.).a}, {+.*.(,),a}, P.E),
where P is the set of rules
E—FE+FE,
E—FExFE,
E — a,
the string a + a * a has the following two distinct leftmost derivations, where the boldface
indicates which occurrence of E is rewritten:

E—E«xF—=E+ExFE

—a+ExF—=a+a*E = a+ax*a,
and

E=E+F=—=a+E

—a+E+E—a+a*E—a+tax*a.

When this happens, we say that we have an ambiguous grammars. In some cases, it is
possible to modify a grammar to make it unambiguous. For example, the grammar G5 can

be modified as follows.
Let Gy = ({E,T.F,+,*,(.),a}, {+.%,(,),a}, P, E), where P is the set of rules

E— E+T,

E—T,

T —TxF,

T — F,

F— (E),

F—a.

We leave as an exercise to show that L(Gg3) = L(G3), and that every string in L(G3) has
a unique leftmost derivation. Unfortunately, it is not always possible to modify a context-
free grammar to make 1t unambignous. There exist context-free langnages that have no
unambiguous context-free grammars. For example, the langnage

Ly ={a™b™c" | m,n = 1} U{a™b"" | m,n > 1}
1s context-free, since 1t 1s generated by the following context-free grammar:

S—}Sl,
S5 — Sq,
S — XC,
S — AY,
X — aXb,
X — ab,
Y — bYc,
Y — be,
A—=aA,
A —a,
C' — o,
C— e

However, it can be shown that Ly has no unambiguous grammars. All this motivates the
following definition.

Definition 6.5. A context-free grammar G = (V. X, P, §) is ambiguous if there is some string
w € L(G) that has two distinct leftmost derivations (or two distinct rightmost derivations).
Thus, a grammar G 1s unambiguous if every string w € L(G) has a unique leftmost derivation
(or a unique rightmost derivation). A context-free language L is inherently ambiguous if every
CFG @ for L 1s ambiguous.

Whether or not a grammar is ambiguous affects the complexity of parsing. Parsing algo-
rithms for unambiguous grammars are more efficient than parsing algorithms for ambiguous
grammars.

‘We now consider various normal forms for context-free grammars.

6.3 Normal Forms for Context-Free Grammars, Chom-
sky Normal Form

Omne of the main goals of this section is to show that every CFG & can be converted to an
equivalent grammar in Chomsky Normal Form (for short, CNF). A context-free grammar

G = (V, X, P.S) is in Chomsky Normal Form iff its productions are of the form

A— BC,
A—a or
S — e,

where A,B.C € N,ae X, § =+ eisin P iff e € L(G), and S does not occur on the
right-hand side of any production.

Note that a grammar in Chomsky Normal Form does not have e-rules, 1.e., rules of the
form A — e, except when e € L(G), in which case S — € is the only erule. It also does not
have chain rules, 1.e., rules of the form A — B, where A, B € N. Thus, in order to convert
a grammar to Chomsky Normal Form, we need to show how to eliminate e-rules and chain
rules. This is not the end of the story, since we may still have rules of the form A — & where
either |a| > 3 or |a| > 2 and « contains terminals. However, dealing with such rules is a
simple recoding matter, and we first focus on the elimination of e-rules and chain rules. It
turns out that e-rules must be eliminated first.

The first step to eliminate e-rules is to compute the set E(G) of erasable (or nullable)
nonterminals

E(G)={AeN|A=L ¢}

The set E(G) is computed using a sequence of approximations E; defined as follows:

Ey={AeN|(A—e¢ € P},
Ey=EU{A|3A—=By...B;... B)e P.B;e E;, 1<j<k}.

Clearly, the E; form an ascending chain
EBECEC---CECE,C---CN,

and since N is finite, there is a least i, say ip. such that E;, = E; ;. We claim that
E(G) = E,;,. Actually, we prove the following proposition.

Proposition 6.2. Given a context-free grammar G = (V.X, P, S). one can construct a
context-free grammar G' = (V' X, P, 8") such that:

(1) L(G") = L(G);
(2) P' contains no e-rules other than S" — ¢, and " — e € P' iffe € L(G);
(3) S" does not occur on the right-hand side of any production in P'.

Proof. We begin by proving that E(G) = E;,. For this, we prove that E(G) C Ej, and
E:, € E(G).

To prove that E;; C E(G), we proceed by induction on i. Since By = {A e N | (A —
e) € P}, we have A —L. ¢, and thus A € E(G). By the induction hypothesis, E; C

E(G). If A € E; 4. either A € E; and then A € E(G), or there is some production
(A — By...B;...Bg) € P, such that B; € E; for all j, 1 < j < k. By the induction

hypothesis, B; — ¢ for each 3, 1 =<4 <k and thus
A= B,...B;.. Bu=>By...B;...By == B, ... B, == ¢,

which shows that A € E(G).
To prove that E(G) C Ej,, we also proceed by induction, but on the length of a derivation
A= e If A= ¢ then A — e € P, and thus A € E since By = {A€ N | (A —¢) € P}.

If AZL ¢ then

A=— o= ¢
for some production A —+ o € P. If o contains terminals of nonterminals not in E({G), it 1s
impossible to derive ¢ from . and thus, we must have o = By ... B;... B, with B; € E(G),

for all j, 1 < 7 < k. However, B; =2, ¢ where n; < n, and by the induction hypothesis,
B; € Ej,. But then, we get A € Ej 11 = Ej,, as desired. O

Having shown that E(G) = Ej,, we construct the grammar G'. Its set of production P’
is defined as follows. First, we create the production S — S where S5’ € V', to make sure
that S" does not occur on the right-hand side of any rule in P'. Let

PP={A—aeP|lacVT}Uu{s — 5},
and let Py be the set of productions

P = {A S e S 2 s N a | | doy € V7, ..., E||’_‘t'j¢+1 cV*, 3B, ¢ E(G:l,dB; € E{G:l

A—oBias.. . opBrog i e P E=1, o .op 1 # E}.
Note that e € L(G) iff S € E(G). If S ¢ E(G), then let P' = PiUP,, and if S € E(G), then
let P'=PUP,U{S" — ¢}. We claim that L(G") = L(G), which is proved by showing that
every derivation using ' can be simulated by a derivation using &', and vice-versa. All the

conditions of the proposition are now met.]

From a practical point of view, the construction or Proposition 6.2 is very costly. For
example, given a grammar containing the productions
S —+ ABCDEF,
A— e
B — e
C'— e,
D — e,
E— e
F — e,

eliminating e-rules will create 26 — 1 = 63 new rules corresponding to the 63 nonempty
subsets of the set {A, B,C, D. E, F'}. We now turn to the elimination of chain rules.

It turns out that matters are greatly simphfied if we first apply Proposition 6.2 to the
input grammar &, and we explain the construction assuming that G' = (V. X, P, 5) satisfies
the conditions of Proposition 6.2. For every nonterminal A € N, we define the set

I,={BeN| A= B}.
The sets 14 are computed using approximations [4; defined as follows:

Ino={BeN|(A— B) e P},
Tiivi=14,,U{CeN|3B—-C)e P, and B € 14,}.
Clearly, for every A € N, the [4; form an ascending chain
TppCIy1 C---CIy; Cly1C---CN,

and since N is finite, there is a least i, say iy, such that I4; = [4,+1. We claim that
Iy = I44,. Actually, we prove the following proposition.

Proposition 6.3. Given a contert-free grammar G = (V. X, P,S), one can construct a
context-free grammar G' = (V', 3, P', 8") such that:

(1) L(G') = L(G);

(2) Every rule in P' is of the form A — o where || = 2, or A — a where a € X, or
S"—eiffee L(G);

(3) S" does not occur on the right-hand side of any production in P'.

Proof. First, we apply Proposition 6.2 to the grammar &, obtaining a grammar &) =
(Vi, %, 51. Pi). The proof that I4 = Ia;, is similar to the proof that E(G) = E;,. First,
we prove that [4; € I4 by induction on i. This is staightforward. Next, we prove that
T4 € T4, by induction on derivations of the form A . B. In this part of the proof, we
use the fact that G has no erules except perhaps 51 — €, and that &) does not occur on
the right-hand side of any rule. This implies that a derivation A 21 s necessarily of the
form A = B = C for some B € N. Then, in the induction step, we have B € [4;,, and
thus C' € I.{,iu-+l = I.{,iu-
We now define the following sets of rules. Let

szpl—{“i—}Blr’-l—}BE.Pl}..

and let
PP={A—a|B—=achP,a¢ Ny, Be ls}.

We claim that G = (Vi,%, P, U P3, S;) satisfies the conditions of the proposition. For
example, Sy does not appear on the right-hand side of any production, since the productions

i Py have right-hand sides from Py, and S does not appear on the right-hand side in F;.
It is also easily shown that L(G") = L(G;) = L(G). |

Let us apply the method of Proposition 6.3 to the grammar
Gs=({E,T,F,+.*(.).a},{+*.(.).a}, P, E),
where P 15 the set of rules

EF— F+T,
EF—T,

T —TxF,
T — F,
F—(E),

F—a.
We get Ip = {T, F'}, Iy = {F}, and Ir =0. The new grammar G has the set of rules

E— FE+T,
E —TxF,
E — (E),
EF—a,

T —TxF,
T — (E),
T — a,
F— (BE),
F— a.

At this stage, the grammar obtained in Proposition 6.3 no longer has e-rules (except
perhaps S" — ¢ iff € € L(G)) or chain rules. However, it may contain rules A — o with
|| = 3, or with |@| = 2 and where o contains terminals(s). To obtain the Chomsky Normal
Form. we need to elminate such rules. This is not difficult, but notationally a bit messy.

Proposition 6.4. Given a context-free grammar G = (V.X, P.S), one can construct a
context-free grammar G' = (V' X, P',5") such that L(G') = L(G) and G' is in Chomsky

Normal Form, that is, a grammar whose productions are of the form

A— BC,
A—a, or
R

where A,B,C € N',ae X, S8 = eisin P iff e € L(G), and S’ does not occur on the
right-hand side of any production in P'.

Proof. First, we apply Proposition 6.3, obtaining Gy. Let ¥, be the set of terminals occurring
on the right-hand side of rules A — a € P;, with |a| > 2. For every a € £, let X, be a new
nonterminal not in Vi. Let

Po={X,—al|lacX.}
Let Py, be the set of productions

A = ajaqas - - 0papog .
where ay,...,a; € X, and a; € N{. For every production

A— oqaras - - - apapags

m P, let

A— O—’lXa.l kg == r_’rankCrk_,_l

be a new production, and let P be the set of all such productions. Let Py = (P, — P) U
Py U Py. Now, productions A — o in Py with |a| > 2 do not contain terminals. However, we
may still have productions A — « € Py with |a| = 3. We can perform some recoding using
some new nonterminals. For every production of the form

A= Bi--- By,
where k > 3, create the new nonterminals
[By-+- B 1],[Bi--- By sl,--- . [Bi1 BaBs], [B1 B,
and the new productions

A — [By--- BBy,
[By--- By = [B1-- Br 9| By 1,
Cp e
(B, BsBs] — [B1 Bs) B,
[ByBs] — BBs.

All the productions are now in Chomsky Normal Form, and it is clear that the same language
1s generated. O

Applying the first phase of the method of Proposition 6.4 to the grammar GY, we get the

rules

E— EX.T.
E—TX.F,
E — X(EX,,
E—a,
T —+ TX.F,
T — X(EX),
T — a,
F— X(EX,,
F—a,

Xty — +,

N, — %,
X(—

Xy —).

After applying the second phase of the method, we get the following grammar in Chomsky
Normal Form:

E — [EX.]T,
[EXi] — EX,,
E — [TX.]F,
ITX,] — TX.,
E — [X(E]X),
X E] — X(E,
E — a,
T —s [TX.F,
T — [X(E]X),
T — a,
F — [X(E]X),
F — a,
Xy — +,
Xo — %,
Xi—(,
X) —).

For large grammars, 1t 1s often convenient to use the abbreviation which consists in group-
ing productions having a common left-hand side, and listing the right-hand sides separated

6.4 Regular Languages are Context-Free

The regular languages can be characterized in terms of very special kinds of context-free
grammars, right-linear (and left-linear) context-free grammars.

Definition 6.6. A context-free grammar G = (V. X, P. 5) is left-linear iff its productions
are of the form

A — Ba,
A—a,
A—e

where A, B € N, and a € ¥. A context-free grammar G = (V, X, P, S) is right-linear iff its
productions are of the form

A—aB,
A—a,
A= e

where A, B e N, and a € X.

The following proposition shows the equivalence between NFA's and right-linear gram-
mars.

Proposition 6.5. A language L is reqular if and only if it is generated by some right-linear
grammar.

Proof. Let L = L(D) for some DFA D = (Q,X.4. go, F). We construct a right-linear gram-
mar & as follows. Let V =QUY, S = gy, and let P be defined as follows:
P={p—aq|q=4(p.a).pgeQ.acT}U{p—c|peF}
It is easily shown by induction on the length of w that
p=wq iff g=65(p.w),
and thus, L(D) = L(G).
Conversely, let G = (V, X, P, S) be a right-linear grammar. First, let G = (V' %, P’ S) be

the right-linear grammar obtained from G by adding the new nonterminal E to N, replacing
every rule in P of the form A — a where a € X by the rule A — aF, and adding the
rule E — e. It is immediately verified that L(G') = L(G). Next, we construct the NFA
M=(Q.E.6,q,F)as follows: Q=N =NU{E}, p=S,F={AeN'| A— ¢}, and

§(A,a)={Be N'| A—aB € P'},
for all A € N and all a € X. It 1s easily shown by induction on the length of w that
A= wB iff Be i (A w).
and thus, L(M) = L(G") = L(G). O
A similar proposition holds for left-linear grammars. It is also easily shown that the

regular languages are exactly the languages generated by context-free grammars whose rules
are of the form

A — Bu,
A u,

where A, B € N, and u € ¥*.

6.5 Useless Productions in Context-Free Grammars

Given a context-free grammar G' = (V. X, P.S), it may contain rules that are useless for
a number of reasons. For example, consider the grammar Gy = ({E, A, a, b}, {a, b}, P, E),
where P 1s the set of rules

E — allb,

FE — ab,

E— A,

A — bAa.

The problem is that the nonterminal A does not derive any terminal strings, and thus, it
1s useless, as well as the last two productions. Let us now consider the grammar G, =

({E, A ,a,b,c.d}, {a b cd}, P, E), where P is the set of rules
E — aFEb,
E —+ ab,
A — cAd,
A — ed.

This time, the nonterminal A generates strings of the form ¢"d", but there is no derivation
E = o from E where A occurs in a. The nonterminal A is not connected to F, and the last
two rules are useless. Fortunately, it is possible to find such useless rules, and to eliminate
them.

Let T(G) be the set of nonterminals that actually derive some terminal string, 1.e.
T(G)={Ae(V-X)|Iwe ¥, A= w}
The set T(G) can be defined by stages. We define the sets T,, (n > 1) as follows:

Ty={Ae(V-%)|3(A—sw)e P, withw e £},

and

Tos1 =T, U{Ae(V-X)| A — F) e P, with g € (T, UZ)*}.
It 1s easy to prove that there is some least n such that T, = T,, and that for this n,
T(G)=T,.

If S ¢ T(G), then L(G) = 0, and G is equivalent to the trivial grammar

¢' = ({5},%.0,5).

If S € T(G), then let U(G) be the set of nonterminals that are actually useful, i.e.,
U(G) = {A€T(G) | 3.8 € (T(G)UX)", S =" aAB}.
The set U(G) can also be computed by stages. We define the sets Uy, (n > 1) as follows:
Uy ={AeT(G)|3(S — aAp) € P, with a, 3 € (T(G) U X)*},
and
U1 = U U{B € T(G) | I(A —> aBp) € P, with A€ Uy, a,B € (T(G)UX)*}.

It is easy to prove that there is some least n such that U,.; = U, and that for this n,
U(G) = U, U{S}. Then, we can use U(G) to transform G mnto an equivalent CFG in

6.6 The Greibach Normal Form

Every CFG & can also be converted to an equivalent grammar in Gretbach Normal Form
(for short, GNF'). A context-free grammar G = (V, X, P, S) is in Greibach Normal Form iff
its productions are of the form

A — aBC,

A—abB,

A—a, or

S — e,
where A,B.C € N,ae X, 5 - eisin P iff e € L(G), and S does not occur on the
right-hand side of any production.

Note that a grammar in Greibach Normal Form does not have e-rules other than possibly
S — e. More importantly, except for the special rule S — ¢, every rule produces some
terminal symbol.

An important consequence of the Greibach Normal Form is that every nonterminal is
not left recursive. A nonterminal A is left recursive iff A == A for some o € V*. Left
recursive nonterminals cause top-down determinitic parsers to loop. The Greibach Normal
Form provides a way of avoiding this problem.

There are no easy proofs that every CFG can be converted to a Greibach Normal Form.
A particularly elegant method due to Rosenkrantz using least fixed-points and matrices will
be given in section 6.9.

Proposition 6.6. Given a contert-free grammar G = (V.X.P,S), one can construct a
contert-free grammar G' = (V' X, P', S") such that L(G") = L(G) and G' is in Greibach
Normal Form, that is, a grammar whose productions are of the form

A — aBC,

A—alBl,

A—a, or

S — e,

6.11 Derivations Trees

Definition 6.14. Given a context-free grammar G = (V. X, P, S), for any A € N, an A-
derivation tree for G is a (V U {e})-tree t (a tree with set of labels (V' U {¢e})) such that:

(1) te) = 4;

(2) For every nonleaf node u € dom(t), if ul,..., uk are the successors of u, then either
there is a production B — X --- X in P such that t(u) = B and t(ui) = X; for all
i,1<i<k,or B—e€ P, t{u) =B and t(ul) = e. A complete derivation (or parse
tree) 1s an S-tree whose yield belongs to ¥*.

A derivation tree for the grammar
Gy = ({E,T,F,+,%,(,),a},{+,*.(,).a}, P, E),
where P 1s the set of rules

EFE— E+T,
F—T,
T—TxF,
T — F,
F — (E),
F—a,

1s shown in Figure 6.1. The yield of the derivation tree is a + a * a.

E
E/ z
+
Tl 74 v
*
r} F
a
& o

Figure 6.1: A complete derivation tree

Derivations trees are associated to derivations inductively as follows.

Definition 6.15. Given a context-free grammar G = (V. X, P, S), for any A € N, if 7 :
A == a is a derivation in G, we construct an A-derivation tree t, with yield o as follows.

(1) If n =0, then ¢, is the one-node tree such that dom(t;) = {€} and t;(e) = A.

(2) It A L= ABp = Ayp = o, then if 1 1s the A-derivation tree with yield ABp associated
with the derivation 4 2= ABp, and if ty 1s the tree associated with the production
B — ~ (that is, if
3 =X X
{e,1,....k}, tale) = B, and t5(i) = X forall i, 1 <i <k, orif y = ¢,
e,1}, ta(€) = B, and t5(1) = €), then

tr = ty[u < tq],

then dom(ts)
then dom(ts) =

where u 1s the address of the leaf labeled B 1n #;.

The tree ¢, is the A-derivation tree associated with the derivation A = «.

Given the grammar
Gy =({E,+,%(.),a}. {+.%.(,),a}, P, E),
where P is the set of rules
EFE—FE+F,
F—Fx+FE,.
E— (E).
E —a,

the parse trees associated with two derivations of the string a + a % a are shown in Figure

6.2:

j=le

i

Figure 6.2: Two derivation trees for a +a * a

The following proposition is easily shown.
Proposition 6.11. Let G = (V. X, P,S) be a context-free grammar. For any derivation
A == «, there is a unique A-derivation tree associated with this derivation, with yield o.
Conversely, for any A-derivation tree t with yield o, there is a unique leftmost derivation

A % o in G having t as its associated derivation tree.
m

We will now prove a strong version of the pumping lemma for context-free languages due

to Bill Ogden (1968).

6.12 Ogden’s Lemma

Ogden’s lemma states some combinatorial properties of parse trees that are deep enough.
The yield w of such a parse tree can be split into 5 substrings u, v, z, y, z such that

w = uvryz,

where u, v, z, y, z satisty certain conditions. It turns out that we get a more powerful version
of the lemma if we allow ourselves to mark certain occurrences of symbols in w before
mvoking the lemma. We can imagine that marked occurrences in a nonempty string w are
occurrences of symbols in w in boldface, or red, or any given color (but one color only). For
example, given w = aaababbbaa, we can mark the symbols of even index as follows:

aaababbbaa.
More rigorously, we can define a marking of a nonnull string w: {1,...,n} — X as any
function m: {1,...,n} — {0.1}. Then, a letter w; in w is a marked occurrence iff m(7) =1,

and an unmarked occurrence if m(i) = 0. The number of marked occurrences in w is equal
to

m(i).

T
i=1

Ogden’s lemma only vields useful information for grammars G generating an infinite
language. We could make this hypothesis, but it seems more elegant to use the precondition
that the lemma only applies to strings w € L(D) such that w contains at least K marked
occurrences, for a constant K large enough. If K is large enough, L(G) will indeed be
mfinite.

Proposition 6.12. For every contert-free grammar G, there is some integer K = 1 such
that, for every string w € £, for every marking of w, if w € L(G) and w contains at least
K marked occurrences, then there exists some decomposition of w as w = uvryz, and some
A€ N, such that the following properties hold:

(1) There are derivations S I uAdz, A . vAy, and A i x, so that
wry"z € L(G)
for all n > 0 (the pumping property);
(2) = contains some marked occurrence;

(3) Either (both u and v contain some marked occurrence), or (both y and z contain some
marked occurrence);

(4) vry contains less than K marked occurrences.

Proof. Let t be any parse tree for w. We call a leaf of ¢ a marked leaf if 1ts label 15 a marked
occurrence in the marked string w. The general idea 1s to make sure that K is large enough
so that parse trees with yield w contain enough repeated nonterminals along some path from
the root to some marked leaf. Let r = |N|, and let

p=max{2, max{|a| | (4 = a) € P}}.

We claim that K = p*** does the job.

The key concept i the proof 1s the notion of a B-node. Given a parse tree t, a B-node
1s a node with at least two 1immediate successors g, us, such that for ¢ = 1,2, either u; 1s
a marked leaf, or u; has some marked leaf as a descendant. We construct a path from the
root to some marked leaf, so that for every B-node, we pick the leftmost successor with the
maximum number of marked leaves as descendants. Formally, define a path (sg, ..., s,) from
the root to some marked leaf, so that:

(1) Every node s; has some marked leaf as a descendant, and sg is the root of ¢;

(1) If 5; is in the path, s; is not a leaf, and s; has a single immediate descendant which is
either a marked leaf or has marked leaves as its descendants, let s;.; be that unique
mmmediate descendant of s;.

(i11) If s; is a B-node in the path, then let s;,; be the leftmost immediate successors of s;
with the maximum mumber of marked leaves as descendants (assuming that if s;, 1s
a marked leaf, then it is its own descendant).

(iv) If s; is a leaf, then it is a marked leaf and n = j.

most p” marked leaves as descendants.

Proof. We proceed by “backward mduction”, 1.e., by induction on n—¢. For i = n, there
are no B-nodes, so that b = 0, and there is indeed p” = 1 marked leaf s,,. Assume that the
claim holds for the path (s;iq,...,s,).

If s; is not a B-node, then the number b of B-nodes in the path (si+1,. .., sp) is the same
as the number of B-nodes in the path (s;,....s,), and siy1 1s the only immediate successor
of s; having a marked leaf as descendant. By the induction hypothesis, s;;; has at most p°
marked leaves as descendants, and this is also an upper bound on the number of marked

leaves which are descendants of s;.

If 5; 1s a B-node, then if there are b B-nodes in the path (s;.i.....sy,), there are b+ 1

B-nodes in the path (s;....,s,). By the induction hypothesis, s;,; has at most p” marked

leaves as descendants. Since s; 1s a B-node, s;; was chosen to be the leftmost 1immediate
successor of s; having the maximum number of marked leaves as descendants. Thus, since

the outdegree of s; is at most p, and each of its immediate successors has at most p® marked
leaves as descendants, the node s; has at most pp? = p?t! marked leaves as descendants, as
desired. I

Applying the claim to sp, since w has at least K = p*** marked occurrences, we have

p? > p* 3 and since p > 2, we have b > 2r + 3, and the path (sg, ..., Sp) contains at least
2r + 3 B-nodes (Note that this would not follow if we had p = 1).

Let us now select the lowest 2r + 3 B-nodes in the path, (sp,...,sn), and denote them
(bi.....boys3). Every B-node b; has at least two immediate successors u; < v; such that u;
or v; is on the path (sq,...,s,). If the path goes through u;, we say that b; is a right B-node
and if the path goes through v;, we say that b; 1s a left B-node. Since 2r+3 =r+2+4+r+1,
either there are r+ 2 left B-nodes or there are r + 2 right B-nodes in the path (by,... b1 3).

Let us assume that there are r + 2 left B-nodes, the other case being similar.

Let (di,....drsa) be the lowest r + 2 left B-nodes in the path. Since there are r + 1
B-nodes in the sequence (da, ..., dr+2), and there are only r distinct nonterminals, there are
two nodes d; and d;, with 2 < i < j < 7+ 2, such that ¢(d;) = t(d;) = A, for some A € N.
We can assume that d; is an ancestor of d;, and thus, d; = d;a, for some o # .

If we prune out the subtree t/d; rooted at d; from ¢, we get an S-derivation tree having

a vield of the form uAz, and we have a derivation of the form S = uAz, since there are
at least r + 2 left B-nodes on the path, and we are looking at the lowest r + 1 left B-nodes.
Considering the subtree t/d;, pruning out the subtree /d; rooted at a in t/d;, we get an
A-dertvation tree having a yield of the form vAy, and we have a derivation of the form
A= vAy. Finally, the subtree t/d; is an A-derivation tree with yield =, and we have a

derivation A == z. This proves (1) of the lemma.

Since s, 1s a marked leaf and a descendant of d;, = contains some marked occurrence,
proving (2).

Sinee dj is a left B-node, some left sibbling of the immediate successor of dy on the path
has some distinguished leaf in © as a descendant. Similarly, since d; 1s a left B-node, some
left sibbling of the immediate successor of d; on the path has some distinguished leaf in v as
a descendant. This proves (3).

(dj, ..., borsa) has at most 2r +1 B-nodes, and by the claim shown earlier, d; has at most

P> ! marked leaves as descendants. Since p¥*! < ;;2"+3 = K, this proves (4). O

Observe that condition (2) implies that = # ¢, and condition (3) implies that either
u#eand v #e ory#eand z # e Thus, the pumping condition (1) implies that the set
{uv™zy"z | n > 0} is an infinite subset of L(G), and L(G) is indeed infinite, as we mentioned
earlier. Note that K > 3, and in fact, K > 32. The “standard pumping lemma” due to
Bar-Hillel, Perles, and Shamir, is obtained by letting all occurrences be marked in w € L(G).

