JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE
Year \& Sem. - B. Tech II year, Sem.-IV
Subject-Discrete Mathematics Structure, Unit - 1
Topic - Relations
Presented by - Dr. Kashish Parwani
Designation - Associate Professor
Department - Mathematics

VISION OF INSTITUTE

To become a renowned centre of outcome based learning, and work towards academic, professional, cultural and social enrichment of the lives of individuals and communities.

MISSION OF INSTITUTE

\& Focus on evaluation of learning outcomes and motivate students to inculcate research aptitude by project based learning.
*Identify, based on informed perception of Indian, regional and global needs, the areas of focus and provide platform to gain knowledge and solutions.
*Offer opportunities for interaction between academia and industry.
*Develop human potential to its fullest extent so that intellectually capable and imaginatively gifted leaders may emerge in a range of professions.

Engineering Mathematics: Course Outcomes

Students will be able to:
Upon successful completion of this course students will be able to:
CO1. Understand the concepts of Sets, Relations, Functions and their Operations.

CO2. Learn the concept of Propositional Logic and Finite State Machines.
CO3. Discuss and develop the Posets, Hasse Diagram, Lattices and Combinatorics.

CO4. Use and apply the concept of Algebraic Structures, Groups, Rings and Graph Theory.

Vision and Mission of the Institute

Vision of the Institute

To become a renowned centre of outcome based learning, and work towards academic, professional, cultural and social enrichment of the lives of individuals and communities.

Mission of the Institute

- Focus on evaluation of learning outcomes and motivate students to inculcate research aptitude by project based learning.
- Identify, based on informed perception of Indian, regional and global needs, the areas of focus and provide platform to gain knowledge and solutions.
- Offer opportunities for interaction between academia and industry.
- Develop human potential to its fullest extent so that intellectually capable and imaginatively gifted leaders may emerge.

RTU Scheme

4IT2-01: Discrete Mathematics Structure
Class: IV ${ }^{\text {th }}$ Sem. B.Tech.
Branch: Information Technology
Schedule per Week- Lectures: 3
Examination Time $=$ Three (3) Hours
Maximum Marks $=150$
Evaluation: [Mid-terms (24), Assignments (06), External (120)]

COURSE OUTCOMES:

Subject - Discrete Structure Mathematics
Code-4IT2-01
Branch - Information Technology
Semester- IV $^{\text {th }}$
Upon successful completion of this course students will be able to:
By the end of this course, the students will be able to:
CO1. Understand the concepts of Sets, Relations, Functions and their Operations.
CO2. Learn the concept of Propositional Logic and Finite State Machines.
CO3. Discuss and develop the Posets, Hasse Diagram, Lattices and Combinatorics.
CO4. Use and apply the concept of Algebraic Structures, Groups, Rings and Graph Theory.

CO/P O	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	P010	P011	P012
CO1	H	L	-	-	-	-	-	-	L	-	-	M
CO2	H	L	-	-	-	-	-	-	L	-	-	M
CO3	H	L	-	-	-	-	-	-	L	-	-	M
CO4	H	L	-	-	-	-	-	-	L	-	-	M

Dr. Kashish Parwani,
JECRC, Department of Mathematics

Relations

Introduction

Relationships between elements of sets are represented using the structure called a relation.

- Relationship between a program and its variables
- Pairs of cities linked by airline flights in a network

Relations

The most direct way to express a relationship between elements of two sets is to use ordered pairs.
For this reason, sets of ordered pairs are called binary relations

Definition:

Let A and B be sets. A binary relation from A to B is a subset R of $A \times B=\{(a, b): a \in A, b \in B\}$.

Relations on a Set

Definition: A relation on the set A is a relation from A to A.

In other words, a relation on the set A is a subset of $A \times A$.

Example: Let $A=\{1,2,3,4\}$. Which ordered pairs are in the relation $R=\{(a, b) \mid a<b\}$?

Solution: $\mathrm{R}=\{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}$

(

Example -1.

Let A be the set $\{1,2,3,4\}$. Which ordered pairs are in the relation $R=\{(a, b) \mid a$ divides $b\}$?
Sol :
Since (a, b) is in R if and only if a and b are positive integers not exceeding 4 such that a divides b

Relation properties

Six properties of relations we will

 study:- Reflexive
- Irreflexive
- Symmetric
- Asymmetric
- Antisymmetric
- Transitive

Dr. Kashish Parwani, JECRC, Department of Mathematics

Reflexivity

In some relations an element is always related to itself
Let R be the relation on the set of all people consisting of pairs (x, y) where x and y have the same mother and the same father. Then $\times R \times$ for every person x Definition: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Example

Example: Consider the following relations on $\{1,2,3,4\}$
$R_{i}=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}$
$R_{2}=\{(1,1),(1,2),(2,1)\}$
$R_{s}=\{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(3,4),(4,1)$,
(4,4) \}
$R_{t}=\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}$
$R_{5}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3)$,
$(3,4),(4,4)\}$
$R_{s}=\{(3,4)\}$
Which of these relations are reflexive?

Directed Graph Of A Reflexive Relation

The directed graph of every reflexive relation includes an arrow from every point to the point itself (i.e., a loop).

EXAMPLE:

Let $A=\{1,2,3,4\}$ and define relations $R 1, R 2$,
R3, and R4 on A by

$$
\begin{aligned}
& -R 1=\{(1,1),(3,3),(2,2),(4,4)\} \\
& -R 2=\{(1,1),(1,4),(2,2),(3,3),(4,3)\} \\
& -R 3=\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\} \\
& -R 4=\{(1,3),(2,2),(2,4),(3,1),(4,4)\}
\end{aligned}
$$

Then their directed graphs are

Directed Graphs Are

$R 1=\{(1,1),(3,3),(2,2),(4,4)\}$

$$
\begin{aligned}
& R 2=\{(1,1),(1,4),(2,2), \\
& (3,3),(4,3)\}
\end{aligned}
$$

Directed Graphs Are

$$
\begin{aligned}
& \mathrm{R} 3=\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\} \\
& \mathrm{R} 4=\{(1,3),(2,2),(2,4),(3,1),(4,4)\}
\end{aligned}
$$

Matrix Representation Of A Reflexive Relation

Let $A=\{a 1, a 2, \ldots, a n\}$. A Relation R on A is reflexive if and only if (ai, ai) $\in R \forall i=1,2, \ldots, n$.

Accordingly, R is reflexive if all the elements on the main diagonal of the matrix M representing R are equal to 1 .
The relation $R=\{(1,1),(1,3),(2,2),(3,2)$,
$(3,3)\}$ on $A=\{1,2,3\}$ represented following matrix M, is reflexive.
1
2
1
1
2 $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 3 & 1 & 1\end{array}\right]$

irreflexive

A relation is irreflexive if every element is not related to itself

- Or, $(a, a) \notin R$
- Irreflexivity is the opposite of reflexivity

Examples of irreflexive relations:

- <, >

Examples of relations that are not irreflexive:
$-=, \leq, \geq$

Symmetric

Definitions:

A relation R on a set A is called symmetric if (b, $a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

A relation R on a set A is called antisymmetric if $a=b$ whenever $(a, b) \in R$ and $(b, a) \in R$.

Antisymmetric

A relation is antisymmetric if, for every $(a, b) \in R$, then $(b, a) \in R$ is true only when $a=b$

- Antisymmetry is not the opposite of symmetry

Examples of antisymmetric relations:

- =, s, z

Examples of relations that are not antisymmetric:

- <, >, is TwinOf()

Asymmetric

A relation is asymmetric if, for every $(a, b) \in R$, then $(b, a) \notin R$

- Asymmetry is the opposite of symmetry

Examples of asymmetric relations:

- <,>

Examples of relations that are not asymmetric:

- =, is TwinOf(), \leq, \geq

Example

Which are symmetric and antisymmetric

$$
\begin{aligned}
& R_{1}=\{(a, b) \mid a \leq b\} \\
& R_{=}=\{(a, b) \mid a>b\} \\
& R_{3}=\{(a, b) \mid a=b \text { or } a=-b\} \\
& R_{5}=\{(a, b) \mid a=b\} \\
& R_{5}=\{(a, b) \mid a=b+1\} \\
& R_{5}=\{(a, b) \mid a+b \leq 3\}
\end{aligned}
$$

Symmetric: R_{1}, R_{4}, R, R is symmetric, if $a=b$ (or $a=-b$), then $b=a$ ($b=-a$), R_{i} is symmetric as $a=b$ implies $b=a, R_{i}$ is symmetric as $a+b \leq 3$ implies $b+a \leq 3$
Antisymmetric: $R_{3}, R_{2}, R_{3}, R_{3}, R_{1}$ is antisymmetric as $a \leq b$ and $b s a$ imply $a=b$. R_{i} is antisymmetric as it is impossible to have $a>b$ and b>a, R_{1} is antisymmteric as two elements are related w.r.t. R_{1} if and only if they are equal. R is antisymmetric as it is impossible

symmetric

Let $A=\{1,2,3,4\}$ and define relations $R 1$, R2,
R3, and R4on A as follows.

- $R 1=\{(1,1),(1,3),(2,4),(3,1),(4,2)\}$
- $R 2=\{(1,1),(2,2),(3,3),(4,4)\}$
$-R 3=\{(2,2),(2,3),(3,4)\}$
- R4 = \{(1, 1), (2, 2), $(3,3),(4,3),(4,4)\}$
- Then R1 is symmetric because for every order pair (a, b) in R1, we have (b, a) in R1, for example we have $(1,3)$ in R1 then we have $(3,1)$ in R1, similarly all other ordered pairs can be checked.
- R2 is also symmetric.
- R3 is not symmetric, because $(2,3) \in R 3$ but $(3,2) \notin$ R3.
- DA is nnt summotrir herause (A 3) = DA hut (3 A) ar DA

Directed Graph Of A Symmetric Relation

For a symmetric directed graph whenever there is an arrow going from one point of the graph to a second, there is an arrow going from the second point back to the first.

EXAMPLE

- Let $A=\{1,2,3,4\}$ and define relations R1, R2, R3, and R4 on A by the directed graphs:
- $\mathrm{R} 1=\{(1,1),(1,3),(2,4),(3,1),(4,2)\}$
- $R 2=\{(1,1),(2,2),(3,3),(4,4)\}$
- $R 3=\{(2,2),(2,3),(3,4)\}$
- $R 4=\{(1,1),(2,2),(3,3),(4,3),(4,4)\}$

Directed Graph Of A Symmetric Relation

Matrix Representation Of \mathbf{A} Symmetric Relation

$$
M=\begin{gathered}
1 \\
1 \\
2 \\
3
\end{gathered}\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

Your Task

For each of these relations on the $\operatorname{set}\{1,2,3,4\}$, decide Whether it is Symmetric, Antisymmetric.
a) $\{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}$
b) $\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$
c) $\{(2,4),(4,2)\}$
d) $\{(1,2),(2,3),(3,4)\}$
e) $\{(1,1),(2,2),(3,3),(4,4)\}$
f) $\{(1,3),(1,4),(2,3),(2,4),(3,1),(3,4)$

Symmetric: b, c,e Antisymmetric: d, e

Transitive

Definition: A relation R on a set A is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$ for $a, b, c \in A$.

If $a<b$ and $b<c$, then $a<c$ - Thus, < is transitive

If $a=b$ and $b=c$, then $a=c$

- Thus, $=$ is transitive

Directed Graph Of A Transitive Relation

For a transitive directed graph, whenever there is an arrow going from one point to the second, and from the second to the third, there is an arrow going directly from the first to the third. EXAMPLE

- Let $A=\{1,2,3,4\}$ and define relations R1, R2 and R3 on A by the directed graphs:
- R1 $=\{(1,1),(1,2),(1,3),(2,3)\}$
- $R 2=\{(1,2),(1,4),(2,3),(3,4)\}$
$-R 3=\{(2,1),(2,4),(2,3),(3,4)\}$

Directed Graph Of A Transitive Relation

R_{1} is transitive

$\mathrm{R}_{\text {, is }}$ Iransitive

R_{2} is not transitive since there is an arrow from I to 2 and from 2 to 3 but no arrow from 1 to 3 directly

Representing Relations Using Digraphs

Definition: A directed graph, or digraph, consists of a set V of vertices (or nodes) together with a set E of ordered pairs of elements of V called edges (or arcs).
The vertex a is called the initial vertex of the edge (a, b), and the vertex b is called the terminal vertex of this edge.

We can use arrows to display graphs.

Representing Relations Using Digraphs
Example: Display the digraph with $V=\{a, b, c, d\}$, $E=\{(a, b),(a, d),(b, b),(b, d),(c, a),(c, b),(d, b)\}$.

An edge of the form (b, b) is called a loop.

Representing Relations

The Boolean operations join and meet (you remember?) can be used to determine the matrices representing the union and the intersection of two relations, respectively.

To obtain the join of two zero-one matrices, we apply the Boolean "or" function to all corresponding elements in the matrices.

To obtain the meet of two zero-one matrices, we apply the Boolean "and" function to all corresponding elements in the matrices.

Representing Relations

Example: Let the relations R and S be represented by the matrices

$$
M_{\kappa}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad M_{s}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

What are the matrices representing RIS and RIS? Solution: These matrices are given by

$$
M_{\text {nNS }}=M_{R} \vee M_{S}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right] \quad M_{R \cap S}=M_{n} \wedge M_{s}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Representing Relations Using Matrices

Example: Find the matrix representing R^{2}, where the matrix representing R is given by

$$
M_{R}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

Solution: The matrix for R^{2} is given by

$$
M_{R^{2}}=M_{R}^{[2]}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Equivalence Relations

Equivalence relations are used to relate objects that are similar in some way.

Definition: A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.

Two elements that are related by an equivalence relation R are called equivalent.

Equivalence Relations

Since R is symmetric, a is equivalent to b whenever b is equivalent to a.

Since R is reflexive, every element is equivalent to itself.

Since R is transitive, if a and b are equivalent and b and c are equivalent, then a and c are equivalent.

Obviously, these three properties are necessary for a reasonable definition of equivalence.

Equivalence Relations

Example: Suppose that R is the relation on the set of strings that consist of English letters such that aRb if and only if $I(a)=I(b)$, where $I(x)$ is the length of the string x. Is R an equivalence relation?

Solution:

- R is reflexive, because $I(a)=I(a)$ and therefore aRa for any string a.
- R is symmetric, because if $I(a)=I(b)$ then $I(b)=$ I(a), so if $a R b$ then bRa.
- R is transitive, because if $I(a)=I(b)$ and $I(b)=I(c)$, then $I(a)=I(c)$, so aRb and bRc implies aRc .
R is an equivalence relation.

Practice Question:

1. Prove that the composite of two bijections is a bijection.
2. Consider a set $A=\{a, b, c, d, e, f$,$\} and a relation R$ defined on A given by $R\{(a, a),(a, b),(b, a),(b, b),(c, c),(d, d),(d, e),(d, f),(e, d)(e, e),(e, f),(f, d),(f, e),(f, f)\} . W r i t e ~ t h e ~$ matrix representation M_{R} of the relation and hence prove that it is an equivalence relation.
3. Given $A=\{1,2,3,4\}$ and $R=(1,1),(1,3),(1,4),(3,2),(4,2),(4,4)$ represent relation by using diagram.
4. Enlist properties of equivalence relations.
5.6. Given $A=\{1,2,3,4\}$ and $R=(1,1),(1,3),(1,4),(3,2),(4,2),(4,4)$,consider relation by diagram.

Suggested links from NPTEL \& other Platforms:

1. https://nptel.ac.in/courses/111/106/111106086/
2. https://nptel.ac.in/courses/111/107/111107058/
3. https://nptel.ac.in/courses/106/106/106106183/\#

JECRC Foundation

JAIPUR ENGINEERING COLLEGE AND RESEAPCH CESTRE

Dr. Kashish Parwani,

