
 UNIT III TRANSACTIONS

 Transaction Concepts – ACID Properties – Schedules – Serializability – Concurrency Control –

 Need for Concurrency – Locking Protocols – Two Phase Locking – Deadlock – Transaction

 Recovery - Save Points – Isolation Levels – SQL Facilities for Concurrency and Recovery

TRANSACTION CONCEPTS
A transaction is a collection of operations that forms single logical unit of work.
Simple Transaction Example
1. Read your account balance

2. Deduct the amount from your balance

3. Write the remaining balance to your account

4. Read your friend‘s account balanace

5. Add the amount to his account balance

6. Write the new updated balance to his account

This whole set of operations can be called a transaction

Transaction processing system
– The system with large database and hundreds of concurrent users that are

executing database transaction.
– Eg :reservation system , banking system etc

Concurrent access
 mutiple user accessing a system at the same time

 Single user-one user at a time can use a system Multi
user-many user use the system at a time.

 It can be achieved by multiprogramming:
Parallel- multi-users access different resources at the same time.

Interleaved- Multiple users access a single resource based on time.
DBMS(4IT4-05) Page 1

Transaction access data using two operations
• Read(x)

It transfer the data item x from the database to a local buffer belonging to the transaction
that executed the read operation.

• Write(x)
It transfer the data item x from the local buffer of the transaction to the database i.e. it write back to the

database.
ACID Properties

To ensure the integrity of data during a transaction, the database system maintains the
following properties. These properties are widely known as ACID properties:

 Atomicity − This property states that a transaction must be treated as an atomic unit, that is, either
all of its operations are executed or none. There must be no state in a database where a transaction
is left partially completed. States should be defined either before the execution of the transaction

 or after the execution/abortion/failure of the transaction.
 Consistency − The database must remain in a consistent state after any transaction. No transaction

should have any adverse effect on the data residing in the database. If the database was in a
consistent state before the execution of a transaction, it must remain consistent after the execution

 of the transaction as well.
 Durability − The database should be durable enough to hold all its latest updates even if the

system fails or restarts. If a transaction updates a chunk of data in a database and commits, then
the database will hold the modified data. If a transaction commits but the system fails before the
data could be written on to the disk, then that data will be updated once the system springs back

 into action.
 Isolation − In a database system where more than one transaction are being executed

simultaneously and in parallel, the property of isolation states that all the transactions will be
carried out and executed as if it is the only transaction in the system. No transaction will affect the

 existence of any other transaction.
E.g. transaction to transfer $50 from account A to account B:

1. read(A)

2. A:=A–50

3. write(A)

4. read(B)

DBMS(4IT4-05)

Page 2

5. B:=B+50

6. write(B)

Example of Fund Transfer
• Atomicity requirement

– if the transaction fails after step 3 and before step 6, money will be ―lost‖ leading to
an inconsistent database state

– the system should ensure that updates of a partially executed transaction are not reflected in
the database

• Durability requirement
– once the user has been notified that the transaction has completed, the updates to the

database by the transaction must persist even if there are software or hardware failures.
• Isolation requirement — if between steps 3 and 6, another transaction T2 is allowed to access the

 partially updated database, it will see an inconsistent database T1 T2

1. read(A)

2. A:=A–50

3. write(A)

 read(A), read(B), print(A+B)

4. read(B)

5. B:=B+50

6. write(B)

• Isolation can be ensured trivially by running transactions serially

– that is, one after the other.
SCHEDULES

• Schedule – a sequences of instructions that specify the chronological order in which instructions
of concurrent transactions are executed

– a schedule for a set of transactions must consist of all instructions of those transactions

– must preserve the order in which the instructions appear in each individual transaction.
• Serial Schedule

It is a schedule in which transactions are aligned in such a way that one transaction is executed
first. When the first transaction completes its cycle, then the next transaction is executed. Transactions
are ordered one after the other. This type of schedule is called a serial schedule, as transactions are
executed in a serial manner.
Schedule 1

• Let T1 transfer 50 from A to B, and T2 transfer 10% of the balance from A to B.

• A serial schedule in which T1 is followed by T2 :

Schedule 2

DBMS(4IT4-05)

Page 3

• A serial schedule where T2 is followed by T1

Schedule 3

• Let T1 and T2 be the transactions defined previously. The following schedule is not a serial
schedule, but it is equivalent to Schedule 1.

Schedule 4
The following concurrent schedule does not preserve the value of (A + B).

SERIALIZABILITY
When multiple transactions are being executed by the operating system in a multiprogramming

environment, there are possibilities that instructions of one transactions are interleaved with some other
transaction.

• Serializability is the classical concurrency scheme.

DBMS(4IT4-

05) Page 4

• It ensures that a schedule for executing concurrent transactions is equivalent to one that executes
the transactions serially in some order.

erializable schedule
If a schedule is equivalent to some serial schedule then that schedule is called Serializable

schedule
Let us consider a schedule S. What the schedule S says ?

Read A after updation.

Read B before updation.

Let us consider 3 schedules S1, S2, and S3. We have to check whether they are serializable with S or not ?

Types of Serializability
-Conflict Serializability

DBMS(4IT4-

05) Page 5

-View Serializability

Conflict Serializable
Any given concurrent schedule is said to be Conflict Serializable if and only if it is Conflict

equivalent to one of the possible serial schedule.

Two schedules would be conflicting if they have the following properties

– Both belong to separate transactions.

– Both accesses the same data item.

– At least one of them is "write" operation.
Conflicting Instructions

Instructions li and lj of transactions Ti and Tj respectively, conflict if they are operations by different
transaction on the same data item, and at least one of these instruction is write operation.

1. li = read(Q), lj = read(Q). li and lj don‘t conflict.

2. li = read(Q), lj = write(Q). They conflict.

3. li = write(Q), lj = read(Q). They conflict

4. li = write(Q), lj = write(Q). They conflict
Two schedules having multiple transactions with conflicting operations are said to be conflict equivalent
if and only if

– Both the schedules contain the same set of Transactions.

– The order of conflicting pairs of operation is maintained in both the schedules.
– If a schedule S can be transformed into a schedule S´ by a series of swaps of non-

conflicting instructions, we say that S and S´ are conflict equivalent.
– We say that a schedule S is conflict serializable if it is conflict equivalent to a serial schedule

Schedule 3 can be transformed into Schedule 6, a serial schedule where T2 follows T1, by series
of swaps of non-conflicting instructions. Therefore Schedule 3 is conflict serializable.
Schedule 3

Schedule 6

DBMS(4IT4-05)

Page 6

View Serializable
Any given concurrent schedule is said to be View Serializable if and only if it is View equivalent to

one of the possible serial schedule.
Let S and S´ be two schedules with the same set of transactions. S and S´ are view equivalent if
the following three conditions are met, for each data item Q,

1. If in schedule S, transaction Ti reads the initial value of Q, then in schedule S’ also

transaction Ti must read the initial value of Q.
2. If in schedule S, transaction Ti executes read(Q), and that value was produced by transaction Tj (if any), then in

schedule S’ also transaction Ti must read the value of Q that was produced by the same write(Q) operation of

transaction Tj .
3. The transaction (if any) that performs the final write(Q) operation in schedule S must also

perform the final write(Q) operation in schedule S’.

CONCURRENCY CONTROL
Process of managing simultaneous execution of transactions in a shared database, to ensure the
serializability of transactions, is known as concurrency control.

• Process of managing simultaneous operations on the database without having them interfere with
one another.

• Prevents interference when two or more users are accessing database simultaneously and at least

DBMS(4IT4-05)

Page 7

one is updating data.
• Although two transactions may be correct in themselves, interleaving of operations may

produce an incorrect result.

• Simultaneous execution of transactions over a shared database can create several data integrity

and consistency problems.
• lost updated problem
• Temporary updated problem

• Incorrect summery problem
Lost updated problem

• This problem occurs when two transactions that access the same database items have their
operations interleaved in a way that makes the value of some database item incorrect.

• Successfully completed update is overridden by another user.
Example:

• T1 withdraws £10 from an account with balx, initially £100.
• T2 deposits £100 into same account.
• Serially, final balance would be £190.

• Loss of T2's update!!

• This can be avoided by preventing T1 from reading balx until after update.

Temporary updated problem
• This problem occurs when one transaction updates a database item and then the transaction fails

for some reason. The updated item is accessed by another transaction before it is changed back to
its original value.

• Occurs when one transaction can see intermediate results of another transaction before
it has committed.

Example:

• T1 updates balx to £200 but it aborts, so balx should be back at original value of £100.
• T2 has read new value of balx (£200) and uses value as basis of £10 reduction, giving a new

balance of £190, instead of £90.
• Problem avoided by preventing T2 from reading balx until after T1 commits or aborts.

DBMS(4IT4-05)

Page 8

Incorrect summary problem
• If one transaction is calculating an aggregate summary function on a number of records while other

transactions are updating some of these records, the aggregate function may calculate some values
before they are updated and others after they are updated.

• Occurs when transaction reads several values but second transaction updates some of them
during execution of first.

Example:

• T6 is totaling balances of account x (£100), account y (£50), and account z (£25).

• Meantime, T5 has transferred £10 from balx to balz, so T6 now has wrong result (£10 too high).

• Problem avoided by preventing T6 from reading balx and balz until after T5 completed updates.
Concurrency control techniques

Some of the main techniques used to control the concurrent execution of transaction are based on
the concept of locking the data items

LOCKING PROTOCOLS
A lock is a variable associated with a data item that describe the statues of the item with respect to possible
operations that can be applied to it.

Locking is an operation which secures

(a) permission to Read

DBMS(4IT4-05)

Page 9

(b) permission to Write a data item for a transaction.
Example: Lock (X). Data item X is locked in behalf of the requesting transaction.

Unlocking is an operation which removes these permissions from the data item.

Example: Unlock (X): Data item X is made available to all other transactions.

Lock and Unlock are Atomic operations.
Conflict matrix

Lock Manager:
• Managing locks on data items.

Lock table:
• Lock manager uses it to store the identify of transaction locking a data item, the data item, lock

mode and pointer to the next data item locked. One simple way to implement a lock table is
through linked list

Types of lock
o Binary lock
o Read/write(shared / Exclusive) lock

Binary lock
– It can have two states (or) values 0 and 1.

0 – unlocked

1 - locked

– Lock value is 0 then the data item can accessed when requested.

– When the lock value is 1,the item cannot be accessed when requested.

• Lock_item(x)

B : if lock(x) = 0 (* item is unlocked *)

then lock(x) 1
else begin

wait (until lock(x) = 0)

goto B;
end;

• Unlock_item(x)

B : if lock(x)=1 (* item is locked *)

then lock(x) 0

else

printf (‗ already is unlocked ‗)

goto B;

end;

Read / write(shared/exclusive) lock

DBMS(4IT4-05)

Page 10

Read_lock
- its also called shared-mode lock

- If a transaction Ti has obtain a shared-mode lock on item X, then Ti can read, but cannot write ,X.

- Outer transactions are also allowed to read the data item but cannot write.

Read_lock(x)
B : if lock(x) = ―unlocked‖ then

begin

lock(x) ― read_locked‖

no_of_read(x) 1

else if

lock(x) = ―read_locked‖
then

no_of_read(x) no_of_read(x) +1

else begin

wait (until lock(x) = ―unlocked‖

goto B;

end;
Write_lock(x)
B : if lock(x) = ―unlocked‖ then

begin

lock(x) ―write_locked‖

else if

lock(x) = ―write_locked‖

wait (until lock(x) = ―unlocked‖)

else begin

lock(x)=―read_locked‖ then

wait (until lock(x) = ―unlocked‖)

end;
Unlock(x)

If lock(x) = ―write_locked‖ then
Begin

Lock(x) ―unlocked‖
Else if

lock(x) = ―read_locked‖ then

Begin

No_of_read(x) no_of_read(x) - 1
If (no_of_read(x) = 0) then

Begin

Lock(x) ―unlocked‖

End
TWO PHASE LOCKING PROTOCOL

This protocol requires that each transaction issue lock and unlock request in two phases
• Growing phase

• Shrinking phase
Growing phase

DBMS(4IT4-05)

Page 11

• During this phase new locks can be occurred but none can be released
Shrinking phase

• During which existing locks can be released and no new locks can be occurred
Types

• Strict two phase locking protocol
• Rigorous two phase locking protocol

Strict two phase locking protocol
This protocol requires not only that locking be two phase, but also all exclusive locks taken by a

transaction be held until that transaction commits.
Rigorous two phase locking protocol

This protocol requires that all locks be held until all transaction commits.

Consider the two transaction T1 and T2
T1 : read(a1);

read(a2);

…….

read(an);

write(a1);

T2: read(a1);

read(a2);

display(a1+a1);

Lock conversion
• Lock Upgrade

• Lock Downgrade
Lock upgrade:

• Conversion of existing read lock to write lock
• Take place in only the growing phase

if Ti has a read-lock (X) and Tj has no read-lock (X) (i j)
then convert read-lock (X) to write-lock (X)

else
force Ti to wait until Tj unlocks X

Lock downgrade:
• conversion of existing write lock to read lock
• Take place in only the shrinking phase

Ti has a write-lock (X) (*no transaction can have any lock on X*)
convert write-lock (X) to read-lock (X)

DBMS(4IT4-05)

Page 12

Transaction State

• Active – the initial state; the transaction stays in this state while it is executing

• Partially committed – after the final statement has been executed.

• Failed -- after the discovery that normal execution can no longer proceed.
• Aborted – after the transaction has been rolled back and the database restored to its state prior to

the start of the transaction. Two options after it has been aborted:
o restart the transaction

o kill the transaction
• Committed – after successful completion

Log
• Log is a history of actions executed by a database management system to guarantee ACID

properties over crashes or hardware failures.
• Physically, a log is a file of updates done to the database, stored in stable storage.

Log rule
– A log records for a given database update must be physically written to the log, before the

update physically written to the database.
– All other log record for a given transaction must be physically written to the log, before the commit

log record for the transaction is physically written to the log.
– Commit processing for a given transaction must not complete until the commit log record for the

transaction is physically written to the log.
System log

– [Begin transaction ,T]

– [write_item , T, X , oldvalue,newvalue]

– [read_item,T,X]

– [commit,T]

– [abort,T]

• Assumes fail-stop model – failed sites simply stop working, and do not cause any other harm,
such as sending incorrect messages to other sites.

• Execution of the protocol is initiated by the coordinator after the last step of the transaction
has been reached.

• The protocol involves all the local sites at which the transaction executed
• Let T be a transaction initiated at site Si, and let the transaction coordinator at Si be Ci

Phase 1: Obtaining a Decision (prepare)

• Coordinator asks all participants to prepare to commit transaction Ti.

DBMS(4IT4-05)

Page 13

– Ci adds the records <prepare T> to the log and forces log to stable storage

– sends prepare T messages to all sites at which T executed
• Upon receiving message, transaction manager at site determines if it can commit the transaction

– if not, add a record <no T> to the log and send abort T message to Ci
– if the transaction can be committed, then:
– add the record <ready T> to the log
– force all records for T to stable storage

– send ready T message to Ci
Phase 2: Recording the Decision (commit)

• T can be committed of Ci received a ready T message from all the participating sites: otherwise T
must be aborted.

• Coordinator adds a decision record, <commit T> or <abort T>, to the log and forces record onto
stable storage. Once the record stable storage it is irrevocable (even if failures occur)

• Coordinator sends a message to each participant informing it of the decision (commit or abort)

• Participants take appropriate action locally.
Handling of Failures - Site Failure

When site Si recovers, it examines its log to determine the fate
of transactions active at the time of the failure.

• Log contain <commit T> record: site executes redo (T)
• Log contains <abort T> record: site executes undo (T)

• Log contains <ready T> record: site must consult Ci to determine the fate of T.

– If T committed, redo (T)
– If T aborted, undo (T)

• The log contains no control records concerning T replies that Sk failed before responding to the prepare

T message from Ci
– since the failure of Sk precludes the sending of such a

response C1 must abort T

– Sk must execute undo (T)

Handling of Failures- Coordinator Failure
• If coordinator fails while the commit protocol for T is executing then participating sites must decide

on T‘s fate:
1. If an active site contains a <commit T> record in its log, then T must be committed.

2. If an active site contains an <abort T> record in its log, then T must be aborted.
3. If some active participating site does not contain a <ready T> record in its log, then

the failed coordinator Ci cannot have decided to commit T. Can therefore abort T.
4. If none of the above cases holds, then all active sites must have a <ready T> record in their

logs, but no additional control records (such as <abort T> of <commit T>). In this case

active sites must wait for Ci to recover, to find decision.
• Blocking problem : active sites may have to wait for failed coordinator to recover.

Handling of Failures - Network Partition
• If the coordinator and all its participants remain in one partition, the failure has no effect

on the commit protocol.
• If the coordinator and its participants belong to several partitions:

– Sites that are not in the partition containing the coordinator think the coordinator has
failed, and execute the protocol to deal with failure of the coordinator.

DBMS(4IT4-05)

Page 14

• No harm results, but sites may still have to wait for decision from coordinator.
• The coordinator and the sites are in the same partition as the coordinator think that the sites in the

other partition have failed, and follow the usual commit protocol.
• Again, no harm results

DEADLOCK
System is deadlocked if there is a set of transactions such that every transaction in the set is waiting

for another transaction in the set.
Consider the following two transactions:

T1: write (A) T2: write(A)
write(B) write(B)

Schedule with deadlock

T1 T2
lock-X on A

write (A)

 lock-X on B

 write (B)

 wait for lock-X on A

wait for lock-X on B

Deadlock Handling
Deadlock prevention protocol

Ensure that the system will never enter into a deadlock state.

Some prevention strategies :

Approach1
– Require that each transaction locks all its data items before it begins execution either all

are locked in one step or none are locked.
– Disadvantages

• Hard to predict ,before transaction begins, what data item need to be locked.

• Data item utilization may be very low.

Approach2

– Assign a unique timestamp to each transaction.
– These timestamps only to decide whether a transaction should wait or rollback.
schemes:

- wait-die scheme
- wound-wait scheme

wait-die scheme
- non preemptive technique

When transaction Ti request a data item currently held by Tj, Ti is allowed to wait only if it has
a timestamp smaller than that of Tj. otherwise ,Ti rolled back(dies)

– older transaction may wait for younger one to release data item. Younger transactions

DBMS(4IT4-05)

Page 15

never wait for older ones; they are rolled back instead.
– A transaction may die several times before acquiring needed data item

Example.

• Transaction T1,T2,T3 have time stamps 5,10,15,respectively.

• if T 1 requests a data item held by T2,then T1 will wait.

• If T3 request a data item held by T2,then T3 will be rolled back.

.wound-wait scheme
- Preemptive technique

- When transaction Ti requests a data item currently held by Tj,Ti is allowed to wait only if it has a timestamp

larger than that of Tj. Otherwise Tj is rolled back
– Older transaction wounds (forces rollback) of younger transaction instead of waiting for

it. Younger transactions may wait for older ones.
Example

• Transaction T1,T2,T3 have time stamps 5,10,15,respectively.
• if T1 requests a data item held by T2,then the data item will be preempted from T2,and T2

will be rolled back.

• If T3 requests a data item held by T2,then T3 will wait.

Deadlock Detection
• Deadlocks can be described as a wait-for graph, which consists of a pair G = (V,E),

– V is a set of vertices

– E is a set of edges

• If Ti Tj is in E, then there is a directed edge from Ti to Tj, implying that Ti is waiting for Tj to
release a data item.

• The system is in a deadlock state if and only if the wait-for graph has a cycle. Must invoke
a deadlock-detection algorithm periodically to look for cycles.

Wait-for graph without a cycle

Wait-for graph with a cycle

Recovery from deadlock
• The common solution is to roll back one or more transactions to break the deadlock.
• Three action need to be taken

– Selection of victim

DBMS(4IT4-05)

Page 16

– Rollback

– Starvation
Selection of victim

• Set of deadlocked transations,must determine which transaction to roll back to break
the deadlock.

• Consider the factor minimum cost
Rollback

• once we decided that a particular transaction must be rolled back, must determine how far this
transaction should be rolled back

• Total rollback
• Partial rollback

Starvation
Ensure that a transaction can be picked as victim only a finite number of times.

Intent locking
• Intent locks are put on all the ancestors of a node before that node is locked explicitly.
• If a node is locked in an intention mode, explicit locking is being done at a lower level of the tree.

Types of Intent Locking
• Intent shared lock(IS)

• Intent exclusive lock(IX)

• Shared lock (S)

• Shared Intent exclusive lock (SIX)

• Exclusive lock (X)
Intent shared lock(IS)

• If a node is locked in indent shared mode, explicit locking is being done at a lower level
of the tree, but with only shared-mode lock

• Suppose the transaction T1 reads record ra2 in file Fa. Then,T1 needs to lock the database,

area A1,and Fa in IS mode, and finally lock ra2 in S mode.

Intent exclusive lock(IX)
If a node is locked in intent locking is being done at a lower level of the tree, but with exclusive

mode or shared-mode locks.

– Suppose the transaction T2 modifies record ra9 in file Fa. Then,T2 needs to lock the database,

area A1,and Fa in IX mode, and finally to lock ra9 in X mode.

Shared Intent exclusive lock (SIX)
If the node is locked in Shared Intent exclusive mode, the subtree rooted by that node is locked

explicitly in shared mode, and that explicit locking is being done at lower level with exclusive mode.
Shared lock (S)

-T can tolerate concurrent readers but not concurrent updaters in R.
Exclusive lock (X)

-T cannot tolerate any concurrent access to R at all.
Lock compatibility

DBMS(4IT4-05)

Page 17

 Tran 2

 NL IS IX S SIX X

 T NL Yes Yes Yes Yes Yes Yes
 r IS Yes Yes Yes Yes Yes No

a

IX Yes

Yes

Yes No No

No

 n

S Yes

Yes

No Yes No

No

1 SIX Yes Yes No No No No

 X Yes No No No No No

If Tran 1 holds a lock of the given type and
Tran 2 requests another lock of the given

type will that request be granted?

TRANSACTION RECOVERY

Recovery Algorithms
• Recovery algorithms are techniques to ensure database consistency and transaction atomicity and

durability despite failures
• Recovery algorithms have two parts

1. Actions taken during normal transaction processing to ensure enough information exists to
recover from failures

2. Actions taken after a failure to recover the database contents to a state that ensures
atomicity, consistency and durability

Example

Begin transaction

Update Acc 1001{balance:=Balance-100};

If any error occurred then

Goto Undo;

End if;

Update Acc 1002{balance:=balance+100};

If any error occurred then

Goto undo;
End if;

Commit;

Goto finish;

Undo: rollback;

Finish: return;
Requirement for recovery

• Implicit rollback
• Message handling

• Recovery log

• Statement atomicity

• No nested transaction
Transaction recovery
Database updates are kept in buffer in main memory and not physically written to disk until commit.
System recovery
Local failures –affect only the transaction which the failure has actually occurred.

Global failures- affect all the transaction in progress at the time of failure.

DBMS(4IT4-05) Page
18

System failure – do not physically damage the DB Eg: power shut
down Media failure-cause damage to the DB. Eg: head crash ARIES

Recovery Algorithm

• ARIES-Algorithm for Recovery and Isolation Exploiting Semantics
• ARIES recovery involves three passes

Analysis pass: Determines the REDO and UNDO lists.

Redo pass: Repeats history, redoing all actions from REDO List

Undo pass: Rolls back all incomplete transactions

• The system failure occurred at time Tf , the most recent check point prior to the time Tf

was taken at a time Tf
• Start with two list of transaction the UNDO and REDO list
• search forward through the log starting from check point.

• if begin transaction log record is found for transaction(T) add T to UNDO list.

• if commit log record is found for transaction(T),add T to REDO list
• when the end of log record is reached the UNDO and REDO list is identified

UNDO REDO

T3 T2

T5 T4
SAVE POINTS

• It is possible for a transaction to create a savepoint.
• It is used to store intermediate results

So that it will rollback to a previously established savepoint whenever any recovery process starts.

Create: Savepoint <savepoint_name>;

Rollback: Rollback to <savepoint_name>;

Drop: Release <savepoint_name>;
SQL
COMMIT: Used to made the changes permanently in the Database.
SAVEPOINT: Used to create a savepoint or a reference point.

DBMS(4IT

4-05) Page
19

 ROLLBACK: Similar to the undo operation.

 Example:

 SQL> select * from customer;

 CUSTID PID QUANTITY

---------- ---------- ----------

100 1234 10

101 1235 15

102 1236 15

103 1237 10

 SQL> savepoint s1;

 Savepoint created.

 SQL> Delete from customer where custid=103;

 CUSTID PID QUANTITY

---------- ---------- ----------

100 1234 10

101 1235 15

102 1236 15

 SQL> rollback to s1;

 Rollback complete.

 SQL> select * from customer;

 CUSTID PID QUANTITY

---------- ---------- ----------

100 1234 10

101 1235 15

102 1236 15

103 1237 10

 SQL> commit;
ISOLATION LEVEL

• Degree of interference
• An isolation levels mechanism is used to isolate each transaction in a multi-user environment
• Dirty Reads: This situation occurs when transactions read data that has not been committed.
• Nonrepeatable Reads: This situation occurs when a transaction reads the same query

multiple times and results are not the same each time
• Phantoms: This situation occurs when a row of data matches the first time but does not match

subsequent times
Types

Higher isolation level (Repeatable read)
– Less interference

– Lower concurrency
– All schedules are serializable

Lower isolation level(cursor stability)
– More interference
– Higher concurrency

– Not a serializable
One special problem that can occur if transaction operates at less than the maximum isolation level
(i.e) less then repeatable read level is called phantom problem.

DBMS(4IT4-05) Page
20

