

CCC++++++ EEEXXXCCCEEEPPPTTTIIIOOONNN HHHAAANNNDDDLLLIIINNNGGG

An exception is a problem that arises during the execution of a program. A C++ exception is a
response to an exceptional circumstance that arises while a program is running, such as an
attempt to divide by zero.

Exceptions provide a way to transfer control from one part of a program to another. C++
exception handling is built upon three keywords: try, catch, and throw.

throw: A program throws an exception when a problem shows up. This is done using a
throw keyword.

catch: A program catches an exception with an exception handler at the place in a program
where you want to handle the problem. The catch keyword indicates the catching of an
exception.

try: A try block identifies a block of code for which particular exceptions will be activated.
It's followed by one or more catch blocks.

Assuming a block will raise an exception, a method catches an exception using a combination of
the try and catch keywords. A try/catch block is placed around the code that might generate an
exception. Code within a try/catch block is referred to as protected code, and the syntax for using
try/catch looks like the following:

try

{

// protected code

}catch(ExceptionName e1)

{

// catch block

}catch(ExceptionName e2)

{

// catch block

}catch(ExceptionName eN)

{

// catch block

}

You can list down multiple catch statements to catch different type of exceptions in case your try
block raises more than one exception in different situations.

Throwing Exceptions:

Exceptions can be thrown anywhere within a code block using throw statements. The operand of
the throw statements determines a type for the exception and can be any expression and the type
of the result of the expression determines the type of exception thrown.

Following is an example of throwing an exception when dividing by zero condition occurs:

double division(int a, int b)

{

if(b == 0)

{

throw "Division by zero condition!";

}

return (a/b);

}

Catching Exceptions:

The catch block following the try block catches any exception. You can specify what type of
exception you want to catch and this is determined by the exception declaration that appears in
parentheses following the keyword catch.

try

{

// protected code

}catch(ExceptionName e)

{

// code to handle ExceptionName exception

}

Above code will catch an exception of ExceptionName type. If you want to specify that a catch
block should handle any type of exception that is thrown in a try block, you must put an ellipsis, ...,
between the parentheses enclosing the exception declaration as follows:

try

{

// protected code

}catch(...)

{

// code to handle any exception

}

The following is an example, which throws a division by zero exception and we catch it in catch
block.

#include <iostream>

using namespace std;

double division(int a, int b)

{

if(b == 0)

{

throw "Division by zero condition!";

}

return (a/b);

}

int main ()

{

int x = 50;

int y = 0;

double z = 0;

try {

z = division(x, y);

cout << z << endl;

}catch (const char* msg) {

cerr << msg << endl;

}

return 0;

}

Because we are raising an exception of type const char*, so while catching this exception, we
have to use const char* in catch block. If we compile and run above code, this would produce the
following result:

Division by zero condition!

C++ Standard Exceptions:

C++ provides a list of standard exceptions defined in <exception> which we can use in our
programs. These are arranged in a parent-child class hierarchy shown below:

Here is the small description of each exception mentioned in the above hierarchy:

Exception Description

std::exception An exception and parent class of all the standard C++ exceptions.

std::bad_alloc This can be thrown by new.

std::bad_cast This can be thrown by dynamic_cast.

std::bad_exception This is useful device to handle unexpected exceptions in a C++
program

std::bad_typeid This can be thrown by typeid.

std::logic_error An exception that theoretically can be detected by reading the code.

std::domain_error This is an exception thrown when a mathematically invalid domain is
used

std::invalid_argument This is thrown due to invalid arguments.

std::length_error This is thrown when a too big std::string is created

std::out_of_range This can be thrown by the at method from for example a std::vector and
std::bitset<>::operator[].

std::runtime_error An exception that theoretically can not be detected by reading the
code.

std::overflow_error This is thrown if a mathematical overflow occurs.

std::range_error This is occured when you try to store a value which is out of range.

std::underflow_error This is thrown if a mathematical underflow occurs.

Define New Exceptions:

You can define your own exceptions by inheriting and overriding exception class functionality.
Following is the example, which shows how you can use std::exception class to implement your
own exception in standard way:

#include <iostream>

#include <exception>

using namespace std;

struct MyException : public exception

{

const char * what () const throw ()

{

return "C++ Exception";

}

};

int main()

{

try

{

throw MyException();

}

catch(MyException& e)

{

std::cout << "MyException caught" << std::endl;

std::cout << e.what() << std::endl;

}

catch(std::exception& e)

{

//Other errors

}

}

This would produce the following result:

MyException caught

C++ Exception

Here, what is a public method provided by exception class and it has been overridden by all the
child exception classes. This returns the cause of an exception.

1

C++ Exception Handling1

An exception is a problem that arises during the execution of a program. A

C++ exception is a response to an exceptional circumstance that arises while

a program is running, such as an attempt to divide by zero.

Exceptions provide a way to transfer control from one part of a program to

another. C++ exception handling is built upon three keywords: try, catch,

and throw.

 throw: A program throws an exception when a problem shows up. This

is done using a throw keyword.

 catch: A program catches an exception with an exception handler at the

place in a program where you want to handle the problem. The catch

keyword indicates the catching of an exception.

 try: A try block identifies a block of code for which particular exceptions

will be activated. It's followed by one or more catch blocks.

Assuming a block will raise an exception, a method catches an exception using

a combination of the try and catch keywords. A try/catch block is placed

around the code that might generate an exception. Code within a try/catch

block is referred to as protected code, and the syntax for using try/catch looks

like the following:

try

{

 // protected code

}catch(ExceptionName e1)

{

2

 // catch block

}catch(ExceptionName e2)

{

 // catch block

}catch(ExceptionName eN)

{

 // catch block

}

You can list down multiple catch statements to catch different type of

exceptions in case your try block raises more than one exception in different

situations.

Throwing Exceptions:

Exceptions can be thrown anywhere within a code block using throw

statements. The operand of the throw statements determines a type for the

exception and can be any expression and the type of the result of the

expression determines the type of exception thrown.

Following is an example of throwing an exception when dividing by zero

condition occurs:

double division(int a, int b)

{

 if(b == 0)

 {

 throw "Division by zero condition!";

 }

 return (a/b);

3

}

Catching Exceptions:
The catch block following the try block catches any exception. You can specify

what type of exception you want to catch and this is determined by the

exception declaration that appears in parentheses following the keyword

catch.

try

{

 // protected code

}catch(ExceptionName e)

{

 // code to handle ExceptionName exception

}

Above code will catch an exception of ExceptionName type. If you want to

specify that a catch block should handle any type of exception that is thrown

in a try block, you must put an ellipsis, ..., between the parentheses enclosing

the exception declaration as follows:

try

{

 // protected code

}catch(...)

{

 // code to handle any exception

}

4

The following is an example, which throws a division by zero exception and we

catch it in catch block.

#include <iostream>

using namespace std;

double division(int a, int b)

{

 if(b == 0)

 {

 throw "Division by zero condition!";

 }

 return (a/b);

}

int main ()

{

 int x = 50;

 int y = 0;

 double z = 0;

 try {

 z = division(x, y);

 cout << z << endl;

 }catch (const char* msg) {

 cerr << msg << endl;

 }

5

 return 0;

}

Because we are raising an exception of type const char*, so while catching

this exception, we have to use const char* in catch block. If we compile and

run above code, this would produce the following result:

Division by zero condition!

6

C++ Standard Exceptions:

C++ provides a list of standard exceptions defined in <exception> which we

can use in our programs. These are arranged in a parent-child class hierarchy

shown below:

Here is the small description of each exception mentioned in the above

hierarchy:

Exception Description

std::exception An exception and parent class of all the standard C++ exceptions.

7

std::bad_alloc This can be thrown by new.

std::bad_cast This can be thrown by dynamic_cast.

std::bad_exception
This is useful device to handle unexpected exceptions in a C++

program

std::bad_typeid This can be thrown by typeid.

std::logic_error
An exception that theoretically can be detected by reading the

code.

std::domain_error
This is an exception thrown when a mathematically invalid domain

is used

std::invalid_argument This is thrown due to invalid arguments.

std::length_error This is thrown when a too big std::string is created

std::out_of_range
This can be thrown by the at method from for example a std::vector

and std::bitset<>::operator[]().

std::runtime_error
An exception that theoretically can not be detected by reading the

code.

std::overflow_error This is thrown if a mathematical overflow occurs.

std::range_error This is occured when you try to store a value which is out of range.

std::underflow_error This is thrown if a mathematical underflow occurs.

8

Define New Exceptions:

You can define your own exceptions by inheriting and overriding exception

class functionality. Following is the example, which shows how you can use

std::exception class to implement your own exception in standard way:

#include <iostream>

#include <exception>

using namespace std;

struct MyException : public exception

{

 const char * what () const throw ()

 {

 return "C++ Exception";

 }

};

int main()

{

 try

 {

 throw MyException();

 }

 catch(MyException& e)

 {

 std::cout << "MyException caught" << std::endl;

 std::cout << e.what() << std::endl;

9

 }

 catch(std::exception& e)

 {

 //Other errors

 }

}

This would produce the following result:

MyException caught

C++ Exception

Here, what() is a public method provided by exception class and it has been

overridden by all the child exception classes. This returns the cause of an

exception.

10

C++ Templates2

Templates are the foundation of generic programming, which involves writing

code in a way that is independent of any particular type.

A template is a blueprint or formula for creating a generic class or a function.

The library containers like iterators and algorithms are examples of generic

programming and have been developed using template concept.

There is a single definition of each container, such as vector, but we can

define many different kinds of vectors for example, vector <int> or vector

<string>.

You can use templates to define functions as well as classes, let us see how do

they work:

Function Template:

The general form of a template function definition is shown here:

template <class type> ret-type func-name(parameter list)

{

 // body of function

}

Here, type is a placeholder name for a data type used by the function. This

name can be used within the function definition.

The following is the example of a function template that returns the maximum

of two values:

#include <iostream>

#include <string>

11

using namespace std;

template <typename T>

inline T const& Max (T const& a, T const& b)

{

 return a < b ? b:a;

}

int main ()

{

 int i = 39;

 int j = 20;

 cout << "Max(i, j): " << Max(i, j) << endl;

 double f1 = 13.5;

 double f2 = 20.7;

 cout << "Max(f1, f2): " << Max(f1, f2) << endl;

 string s1 = "Hello";

 string s2 = "World";

 cout << "Max(s1, s2): " << Max(s1, s2) << endl;

 return 0;

}

If we compile and run above code, this would produce the following result:

12

Max(i, j): 39

Max(f1, f2): 20.7

Max(s1, s2): World

Class Template:
Just as we can define function templates, we can also define class templates.

The general form of a generic class declaration is shown here:

template <class type> class class-name {

.

.

.

}

Here, type is the placeholder type name, which will be specified when a class

is instantiated. You can define more than one generic data type by using a

comma-separated list.

Following is the example to define class Stack<> and implement generic

methods to push and pop the elements from the stack:

#include <iostream>

#include <vector>

#include <cstdlib>

#include <string>

#include <stdexcept>

using namespace std;

13

template <class T>

class Stack {

 private:

 vector<T> elems; // elements

 public:

 void push(T const&); // push element

 void pop(); // pop element

 T top() const; // return top element

 bool empty() const{ // return true if empty.

 return elems.empty();

 }

};

template <class T>

void Stack<T>::push (T const& elem)

{

 // append copy of passed element

 elems.push_back(elem);

}

template <class T>

void Stack<T>::pop ()

{

 if (elems.empty()) {

 throw out_of_range("Stack<>::pop(): empty stack");

 }

14

 // remove last element

 elems.pop_back();

}

template <class T>

T Stack<T>::top () const

{

 if (elems.empty()) {

 throw out_of_range("Stack<>::top(): empty stack");

 }

 // return copy of last element

 return elems.back();

}

int main()

{

 try {

 Stack<int> intStack; // stack of ints

 Stack<string> stringStack; // stack of strings

 // manipulate int stack

 intStack.push(7);

 cout << intStack.top() <<endl;

 // manipulate string stack

 stringStack.push("hello");

 cout << stringStack.top() << std::endl;

15

 stringStack.pop();

 stringStack.pop();

 }

 catch (exception const& ex) {

 cerr << "Exception: " << ex.what() <<endl;

 return -1;

 }

}

If we compile and run above code, this would produce the following result:

7

hello

Exception: Stack<>::pop(): empty stack

References:

[1,2: https://www.tutorialspoint.com]

Further online reading: https://msdn.microsoft.com/en-us/library/y097fkab.aspx

https://www.tutorialspoint.com/
https://msdn.microsoft.com/en-us/library/y097fkab.aspx

FILE HANDLING IN C++

FILE CONCEPTS

• Every program or sub-program consists of
two major components:

• algorithm and

• data structures.

• The algorithm takes care of the rules and
procedures required for solving the problem
and the data structures contain the data.

• The data is manipulated by the procedures for
achieving the goals of the program as shown
in Fig.

Fig. The structure of a program or sub-program

A data structure is volatile by nature in the
sense that its contents are lost as soon as the
execution of the program is over.

• Similarly, an object also loses its states after
the program is over.

If we want to permanently store our data or
want to create persistent objects then it
becomes necessary to store the same in a
special data structure called file.

• The file can be stored on a second storage
media such as hard disk. In fact, vary large
data is always stored in a file.

File
“A file is a logical collection of records where each record

consists of a number of items known as fields”.

The records in a file can be arranged in the following three ways:

• Ascending/Descending order: The records in the file can be
arranged according to ascending or descending order of a key field..

• Alphabetical order: If the key field is of alphabetic type then the
records are arranged in alphabetical order.

• Chronological order: In this type of order, the records are stored in
the order of their occurrence i.e. arranged according to dates or
events. If the key-field is a date, i.e., date of birth, date of joining,
etc. then this type of arrangement is used.

FILES AND STREAMS
In C++, a stream is a data flow from a source to a sink. The

sources and sinks can be any of the input/output
devices or files.

For input and output, there are two different streams
called input stream and output stream.

Stream Description
cin standard input stream
cout standard output stream
cerr standard error stream

The standard source and sink are keyboard and monitor
screen respectively

ifstream: It is the input file stream class. Its member
function open() associates the stream with a specified
file in an input mode.
In addition to open(), ifstream class inherits the following functions
from istream class.

(i) get() (ii) getline() (iii) read() (iv) seekg() (iv) tellg()

ofstream : It is the output file stream class. Its member
function open() associates the stream with a specified
file in an output mode.

In addition to open(), ofstream inherits the following functions from
ostream class

(i) put() (ii) write() (iii) seekp(), (iv) tellp()

fstream : It supports files for simultaneous input and
output. It is derived from ifstream, ofstream and

iostream classes.

The functions associated with this stream are :

1. open : This associates the stream with a specified file.
2. close : It closes the stream.
3. close all : It closes all the opened streams
4. seekg : Sets current `get' position in a stream
5. seekp : Sets current `put' position in a stream
6. tellg : Returns the current `get' position in a stream
7. tellp : Returns the current `put' position in a stream.

OPENING AND CLOSING A FILE
(Text Files)

A file can be opened in C++ by two methods:

1. By using the constructor of the stream
class to be used

2. By using the open() function of the stream
class to be used

For reading entire lines of text :

C++ provides get() and getline() functions as
input member functions of the ifstream class.

It also provides a put() function as output
member function of the ofstream class.

OPENING THE FILES BY USING
FUNCTION OPEN()

ofstream newfile; ...(i)
newfile.open (“test.dat”); ...(ii)

In the statement
(i) declares the stream newfile to be of type ofstream i.e. output

stream. The statement .
(ii) assigns the file stream to the file called “test.dat”. Thus, in the

program the file “test.dat” would be known as newfile.

The major advantage of this method of opening a file is that
more than one files can be opened at a time in a program.

READING AND WRITING BLOCKS AND
OBJECTS(BINARY FILES)

The major advantage of binary files is that they require less
memory space for storage of data. Moreover, these files can be
used to read or write structured data such as structures, class
objects etc.

STORING OBJECTS IN FILES

If the information contained in the object is very
important then we must try to save it on auxiliary storage
such as hard disk so that it can be reused as and when
required.

Normally the contents of an object are lost as soon as the
object goes out of scope or the program execution is over.

In fact, similar to records, objects can also be written into
and instantiated from a file.

The objects which remember their data and information
are called as persistent objects.

DETECTING END OF FILE

While reading a file, a situation can arise when we do
not know the number of objects to be read from the
file i.e. we do not know where the file is going to end?
A simple method of detecting end of file (eof) is by
testing the stream in a while loop as shown below:

while (<stream>)
{
:
}

The condition <stream> will evaluate to 1 as long as
the end of file is not reached and it will return 0 as
soon as end of file is detected.

SUMMARY

• Any thing stored on a permanent storage is called a file.
• A set of related data items is known as a record. The

smallest unit of a record is called a field.
• A key field is used to uniquely identify a record.
• A file is a logical collection of records.
• In a serial file, the records are stored in the order of their

arrival without regards to the key field.
• On the other hand, in a sequential file, the records are

written in a particular order of the key field.
• The key field is also known as a primary key. 'ifstream’ and

‘ofstream’ are input and output streams respectively.
• The objects that remember their data and information are

called persistent objects.
• The function eof() returns 0 when it detects the end of

file. A opened file must be closed after its usage.

