Advance Engineering Mathematics(AEM)

Branch :Information Technology, Sem:IIIr ${ }^{\text {rd }}$

Dr. Kashish Parwani
Associate Professor, Dept. of Mathematics
JECRC, Sitapura Jaipur

Vision of the Institute

To become a renowned centre of outcome based learning, and work towards academic, professional, cultural and social enrichment of the lives of individuals and communities

Dr. Kashish Parwani
Associate Professor (Mathematics), JECRC, Jaipur

Mission of the Institute

- Focus on evaluation of learning outcomes and motivate students to inculcate research aptitude by project based learning.
- Identify, based on informed perception of Indian, regional and global needs, the areas of focus and provide platform to gain knowledge and solutions.
- Offer opportunities for interaction between academia and industry.
- Develop human potential to its fullest extent so that intellectually capable and imaginatively gifted leaders may emerge.

Course Outcomes

- CO2: To learn the formulation of different mathematical problems into optimization problems.
- CO3: Apply the principles of optimization using differential calculus.
- CO4: To understand the concepts of Linear Programming
- CO1: To learn the concepts and principles of Random variables and Probability distribution.

Simplex Method

Problems 5.

Max $\quad Z=3 X_{1}+5 X_{2}+4 X_{3}$
Sub to

$$
\begin{gathered}
2 x_{1}+3 x_{2} \leq 8 \\
2 x_{2}+5 x_{3} \leq 10 \\
3 x_{1}+2 x_{2}+4 x_{3} \leq 15 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{gathered}
$$

Simplex Method cont....

Sol : Introducing slack variables

$$
\operatorname{Max} Z=3 x_{1}+5 x_{2}+4 x_{3}+0 x_{4}+0 x_{5}+0 x_{6}
$$

s.to

$$
\begin{gathered}
2 x_{1}+3 x_{2} \quad+x_{4}=8 \\
2 x_{2}+5 x_{3} \quad+x_{5}=10 \\
3 x_{1}+2 x_{2}+4 x_{3} \quad+x_{6=} 15 \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0
\end{gathered}
$$

Table - 1

		C_{j}	3	5	4	0	0	0	
$\mathrm{C}_{\text {B }}$	Basic Varia bles	X_{B}	X_{1}	X_{2}	X_{3}	S_{1}	S_{2}	S_{3}	Mini Ratio= x_{B} / X_{i}
0	S1	8	2	3	0	1	0	0	Neg-
0	S2	10	0	2	5	0	1	0	$\begin{aligned} & 12 / 4= \\ & 3 \rightarrow \end{aligned}$
0	S3	15	3	2	4	0	0	1	10/3
	$\Delta \mathrm{i}=\mathrm{C}_{\mathrm{B}} \mathrm{X}_{\mathrm{B}}-\mathrm{C}_{\mathrm{j}}$		$\Delta_{1}=1$	$\Delta_{2}=-3$	$\Delta_{3}=2$	$\Delta_{4}=0$	$\Delta_{5}=0$	$\Delta_{6}=0$	
				\uparrow			\downarrow		
				Inco ming			Outgo ing		

Dr. Kashish Parwani

Associate Professor (Mathematics, JECRC, Jaipur

Table - 2

		C_{j}	1	-1	3	0	0	0	
$\mathrm{C}_{\text {B }}$	Basic Varia ble	X_{B}	X_{1}	X_{2}	X_{3}	S_{1}	S_{2}	S_{3}	Mini Ratio
0	S1	10	5/2	0	3	1	1/4	0	$10 * 2 /$ $5 \rightarrow$
3	X2	3	-1/2	1	0	0	1/4	0	-
0	S3	1	-5/2	0	8	0	-3/4	1	-
			$\Delta_{1}=-1 / 2$	$\begin{aligned} & \Delta_{2}= \\ & 0 \end{aligned}$	$\Delta 3=2$	$\Delta_{4}=0$	$\begin{aligned} & \Delta_{5}= \\ & 3 / 4 \end{aligned}$		
			\uparrow			\downarrow			
			Incomi ng vector			Outgoin g vector			

Dr. Kashish Parwani

Associate Professor (Mathematics, JECRC, Jaipur

Table - 3

		C_{j}	1	-1	3	0	0	0	
$\mathrm{C}_{\text {B }}$	BasicV ariabl e	X_{B}	X 1	X	X_{3}	S_{1}	S_{2}	S_{3}	Mi ni Rat io
1	X_{1}	4	1	0	6/5	2/5	1/10	0	$\begin{aligned} & 10 \\ & * 2 \\ & / 5 \\ & \rightarrow \end{aligned}$
3	X_{2}	5	0	1	3/5	1/5	6/10	0	-
0	S_{3}	11	0	0	11	1	-1/2	1	-
			$\Delta_{1}=0$	$\Delta_{2}=0$	$\Delta_{3}=13 / 5$	$\Delta_{4}=3 / 5$	$\Delta_{5}=16 / 20$		
			\uparrow			\downarrow			
			Incom ing vector			Outgoin g vector			

Dr. Kashish Parwani
Associate Professor (Mathematics, JECRC, Jaipur

Max. Z =11
 Thus, Min Z = -11
 $$
x_{1}=4, x_{2}=5
$$

Problems 4.

Max $\quad Z=3 X_{1}+2 X_{2}+5 X_{3}$
Sub to

$$
\begin{gathered}
x_{1}+x_{2}+x_{3} \leq 9 \\
2 x_{1}+3 x_{2}+5 x_{3} \leq 30 \\
2 x_{1}-x_{2}-x_{3} \leq 8 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{gathered}
$$

Table - 1

		C_{j}	3	2	5	0	0	0	
C_{B}	Basic Varia bles	X	X_{1}	X	X_{3}	S_{1}	S_{2}	S_{3}	Mini Ratio= X_{B} / X_{i}
0	S1	9	1	1	1	1	0	0	9/1=9
0	S2	30	2	3	5	0	1	0	$\begin{aligned} & 30 / 5= \\ & 6 \rightarrow \\ & \hline \end{aligned}$
0	S3	8	2	-1	-1	0	0	1	-
	$\Delta_{i}=C_{B} \mathrm{X}_{B}-\mathrm{C}_{\mathrm{j}}$		$\begin{aligned} & \Delta_{1}=- \\ & 3 \end{aligned}$	$\Delta_{2}=-2$	$\Delta_{3}=-5$	$\Delta_{4}=0$	$\Delta_{5}=0$	$\Delta_{6}=0$	
					\uparrow		\downarrow		
					Inco ming		Outgo ing		

Dr. Kashish Parwani
Associate Professor (Mathematics, JECRC, Jaipur

Table - 2

		C_{j}	1	-1	3	0	0	0	
C_{B}	BasicV ariabl e	X_{B}	X_{1}	X_{2}	X_{3}	S_{1}	S_{2}	S_{3}	Mini Ratio
0	S_{1}	3	3/5	2/5	0	1	-1/5	0	$\begin{aligned} & 3 * 5 / 3= \\ & 5 \rightarrow \end{aligned}$
3	X_{3}	6	2/5	3/5	1	0	1/5	0	$\begin{aligned} & 6 * 5 / 2= \\ & 15 \end{aligned}$
0	S_{3}	14	12/5	-2/5	0	0	1/5	1	$\begin{aligned} & 14 * 5 / 1 \\ & 2=35 / 6 \end{aligned}$
			$\Delta_{1}=-1$	$\Delta_{2}=1$	$\Delta_{3}=0$	$\Delta_{4}=0$	$\Delta_{5}=1$	$\begin{aligned} & \Delta_{6}= \\ & 0 \end{aligned}$	
			\uparrow			\downarrow			
			Incom ing vector			Outgoi ng vector			

Dr. Kashish Parwani

Associate Professor (Mathematics, JECRC, Jaipur

Table - 3

		C_{j}	1	-1	3	0	0	0	
$\mathrm{C}_{\text {B }}$	BasicV ariabl e	X_{B}	X_{1}	X_{2}	X_{3}	S_{1}	S_{2}	S_{3}	
3	X ${ }_{1}$	5	1	2/3	0	5/3	-1/3	0	
5	X_{2}	4	0	1/3	1	-2/3	1/3	0	
0	S_{3}	2	0	-2	0	-4	1	1	
			$\Delta_{1}=0$	$\begin{aligned} & \Delta_{2}=5 \\ & / 3 \end{aligned}$	$\Delta_{3}=0$	$\Delta_{4}=5 / 3$	$\Delta_{5}=2 / 3$	$\begin{aligned} & \Delta_{6} \\ & =0 \end{aligned}$	

Dr. Kashish Parwani
Associate Professor (Mathematics, JECRC, Jaipur

Thus the optimal solution is $\mathbf{Z =} \mathbf{3 5}$

$$
x_{1}=5, x_{2}=0, x_{3}=4
$$

Solve:

Solve the Simplex method

Max $\mathrm{z}=3 \mathrm{x}_{1}+5 \mathrm{x}_{2}+4 \mathrm{x}_{3}$

Sub to

$$
\begin{aligned}
& 2 x_{1}+3 x_{2} \leq 8 \\
& 2 x_{1}+5 x_{3} \leq 10 \\
& 3 x_{1}+2 x_{2}+4 x_{3} \leq 15 \\
& x_{1}, x_{2}, x_{3} \leq 0
\end{aligned}
$$

Reference:

- https://www.slideshare.net/sachin.mk/simple x-method
- Engineering Mathematics III CS/IT Engineering Vardhan Publication

Thank You

Dr. Kashish Parwani
Associate Professor (Mathematics, JECRC, Jaipur

