Advance Engineering Mathematics(AEM)

Branch :Information Technology, Sem:IIIrd

Dr. Kashish Parwani Associate Professor, Dept. of Mathematics JECRC, Sitapura Jaipur

Vision of the Institute

To become a renowned centre of outcome based learning, and work towards academic, professional, cultural and social enrichment of the lives of individuals and communities

Mission of the Institute

- Focus on evaluation of learning outcomes and motivate students to inculcate research aptitude by project based learning.
- Identify, based on informed perception of Indian, regional and global needs, the areas of focus and provide platform to gain knowledge and solutions.
- Offer opportunities for interaction between academia and industry.
- Develop human potential to its fullest extent so that intellectually capable and imaginatively gifted leaders may emerge.

Course Outcomes

- **CO2:** To learn the formulation of different mathematical problems into optimization problems.
- **CO3:** Apply the principles of optimization using differential calculus.
- **CO4:** To understand the concepts of Linear Programming
- **CO1:** To learn the concepts and principles of Random variables and Probability distribution.

Linear Programming

- Simplex Method
- Two Phase Method,
- Duality in Linear Programming,
- Assignment Problems,
- Transportation Problems

Simplex Method

- When decision variables are *more than 2,* it is always advisable to use Simplex Method of avoid lengthy graphical procedure.
- The simplex method is not used to examine all the feasible solutions.
- I deals only with a small and unique set of feasible solutions the set of vertex pints (i.e. extreme points) of the convex feasible space that contains the optimal solution
- The most popular method used for the solution of Linear programming problesm (LPP) is the simplexmethod. Simplex method is developed by George Dantigin 1946

When decision variables are *more than 2,* we always use Simplex Method

□ Slack Variable: Variable added to a ≤ constraint to convex it to an equation (=).
 ☆ A slack variable represents unused resources.

A slack variable contributes nothing to the objective function value.

□<u>Surplus Variable</u>: Variable subtracted a \geq constraint to convert it to an equation (=).

✤ A surplus variable represents an excess above constraint requirement level.

surplus variables contribute nothing to the calculated value of the objective function.

□ Basic Solution (BS) : This solution is obtained by setting any n variables (among m+n variables) equal to zero and solving for remaining *m* variables, provided the determinant of the coefficients of these variables is non-zero. Such *m* variable are called **basic variables a**nd remaining *n zero* valued variables are called **non basic variables**

Basic Feasbile Solutio (BFS) : It is a basic solution which also satisfies the non negativity restrictions.

BFS are of two types :

- **Degenerate BFS** : If once or more basic variables are zero

-*Non-Degenerate BFS* : All basic variables are non-zero.

Optimal BFS: BFS which optimizes the objective function

Examples:

Max. Z = $13x_1+11x_2$ Subject to constraints: $4x_1 + 5x_2 \le 1500$ $5x_1 + 3x_2 \le 1575$ $x_1 + 2x_2 \le 420$ $x_1 + x_2 \ge 0$

❑ Step 1: Convert all the inequality constraints into equalities by the use of slack variables Let S₁, S₂, S₃ be three slack variables.

Introducing these slack variables into the inequality constrains and rewriting the objective function such that all variables are on the left-hand side of the equation. Model can rewritten as :

> Z - $13x_1 - 11x_2 = 0$ Subject to Constraints: $4X_1 + 5X_2 + S_1 = 1500$ $5X_1 + 3X_2 + S_2 = 1575$ $X_1 + 2X_2 + S_3 = 420$ $X_1, X_2, S_1, S_2, S_3 = 0$ Dr. Kashish Parwani

Associate Professor (Mathematics, JECRC, Jaipur

Step II : Find the Initial BFS.

One Feasible solution that satisfies all the constraints is : $x_1 = 0$, $x_2 = 0$, $S_1 = 1500$,

$$S_2 = 1575$$
, $S_3 = 420$ and $Z=0$.

Now, S_1 , S_2 , S_3 are basic variables.

Step III : Set up an initial table as:

Row NO.	Basic Variable	Coefficients of:						Sol.	Rati
		Z	\mathbf{x}_{1}	X ₂	\mathbf{S}_{1}	\mathbf{S}_2	S ₁		0
A1	Z	1	-13	-11	0	0	0	0	
B1	S ₁	0	4	5	1	0	0	1500	375
C1	S ₂	0	5	3	0	1	0	1575	315
D1	S3	0	1	2	0	0	1	420	420

ep IV: a) Choose the most negative number from row A1(i.e Z row). Therefore, x₁ is a *entering variable*.

b) Calculate Ratio = Sol col. $/x_1$ col. $(x_1 > 0)$

1

c) Choose minimum Ratio. That variable(i.e S2) is a departing

variable.

Step V: x₁ becomes *basic variable* and S₂ becomes *non basic variable*. New table is:

Row NO.	Basic Varia ble	Coefficients of:						
		Z	x,	X 2	S ₁	\mathbf{S}_2	S ₃	
A1	Z	1	0	0	0	15/7	16/7	4335
B1	S ₁	0	0	0	1	-3/7	-13/7	45
C1	x,	0	1	0	0	2/7	-3/7	270
D1	x,	0	0	1	0	-1/7	5/7	75

Optimal Solution is : $x_1 = 270$, $x_2 = 75$, Z = 4335

Solve:

Solve the Simplex method Max $z = x_1 - x_2 + 3x_3$ Sub to $x_1 + x_2 + x_3 \le 10$ $2x_1 - x_3 \le 2$ $2x_1 - 2x_2 + 3x_3 \le 0$ $x_1, x_2, x_3 \ge 0$

Reference:

- https://www.slideshare.net/sachin.mk/simple x-method
- Engineering Mathematics III CS/IT Engineering
 Vardhan Publication

Thank You