Advance Engineering Mathematics(AEM)

# Branch :Information Technology, Sem:III<sup>rd</sup>



# Dr. Kashish Parwani Associate Professor, Dept. of Mathematics JECRC, Sitapura Jaipur

# Vision of the Institute

To become a renowned centre of outcome based learning, and work towards academic, professional, cultural and social enrichment of the lives of individuals and communities

# **Mission of the Institute**

- Focus on evaluation of learning outcomes and motivate students to inculcate research aptitude by project based learning.
- Identify, based on informed perception of Indian, regional and global needs, the areas of focus and provide platform to gain knowledge and solutions.
- Offer opportunities for interaction between academia and industry.
- Develop human potential to its fullest extent so that intellectually capable and imaginatively gifted leaders may emerge.

# **Course Outcomes**

- **CO1:** To learn the concepts and principles of Random variables and Probability distribution.
- **CO2:** To learn the formulation of different mathematical problems into optimization problems.
- **CO3:** Apply the principles of optimization using differential calculus.
- **CO4:** To understand the concepts of Linear Programming.

### Q.11.Solve the following Transportation Problem :

|                | S <sub>1</sub> | S <sub>2</sub> | S <sub>3</sub> | S <sub>4</sub> | <b>S</b> <sub>5</sub> | S <sub>6</sub> | Supply |
|----------------|----------------|----------------|----------------|----------------|-----------------------|----------------|--------|
|                |                |                |                |                |                       |                |        |
| W <sub>1</sub> | 9              | 12             | 9              | 6              | 9                     | 10             | 5      |
| W <sub>2</sub> | 7              | 3              | 7              | 7              | 5                     | 5              | 6      |
| W <sub>3</sub> | 6              | 5              | 9              | 11             | 3                     | 11             | 2      |
| W <sub>4</sub> | 6              | 8              | 11             | 2              | 2                     | 10             | 9      |
| Demand         | 4              | 4              | 6              | 2              | 4                     | 2              | 22     |

## **Degeneracy Transportation Problem**

### Destination

|     | А           | В              | С     | D       | E           | Supply  |
|-----|-------------|----------------|-------|---------|-------------|---------|
| 1   | 10          | <sup>2</sup> 2 | 15 3  | 15      | 9           | 3515 0  |
| 2   | 5           | 10             | 15    | 10      | 30          | 40 30 0 |
|     |             |                |       | 2       | 4           |         |
| 3   | 2 <u>15</u> | ٤ 5            | 14    | 7       | 15          | 20 0    |
| 4   | 20          | 15             | 25 13 | 25      | 58          | 30 250  |
| Dem | 20          | 20             | 40    | 10      | 35          | 125     |
| and | 0           | 0              | 25    | 0       | 5           |         |
|     |             |                | 0     | Vachick | 0<br>Parwan |         |

**Associate Professor (Mathematics) JECRC, Jaipur** 

### U-V Method

**Step 1**. Check whether m+n-1=no. of allocated cells. If no, Goto step 2: if yes, go to step 3.

## Step 2.

 Convert the necessary no. of unallocated cells into allocated cells to satisfy the above condition.

- Starting from the least value of the unallocated cell.
- Check the loop formation one by one
- These should be not closed loop formation.
- Select that cell as a new allocated cell and assign 'E'.

**Step 3**.Calculate the value of ui and vj for all the allocated cells by using the formula

Step 4: Calculate Penalties dij for all the unallocated cells by using the formula

 $\mathbf{d}_{ij} = \mathbf{C}_{ij} - (\mathbf{u}_i + \mathbf{v}_j),$ 

**Step 5:** Check the optimality condition all  $d_{ij} \ge 0$ , if yes : stop the procedure, "The optimality is reached"

Otherwise, go to step 6.

**Step 6**: Select the most negative (-) value of  $d_{ij}$  and consider that cell as the new allocated cell.

**Step 7**. From the particular cell draw a closed loop. By using horizontal and vertical lines passing through some allocated cells.

[Note: The turning points of the loop should be only at allocated cells]

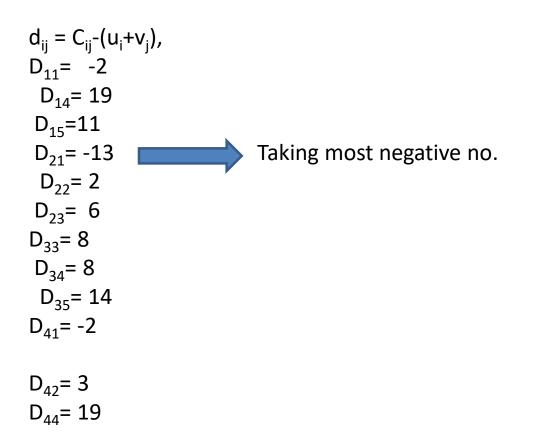
**Step 8:** Starting from the new allocated cell, alternatively assign (+) and (-) sign at corner of the closed loop.

**Step 9:** Select the minimum of the allocated value among the (-) signed cells. **Step 10:** Frame the new iteration by Applying the following step:

- (a) Add and subtract that selected min. value in all the (+) and (-) signed cells.
- (b) Copy the remaining cells value as it is.
- (c) Go to step 1.

| x |   |   | x |   |
|---|---|---|---|---|
|   |   |   |   | x |
|   |   | x | x |   |
|   | × |   |   | x |

| 10 | 20  | 15   | 15   | 9  | 35  |
|----|-----|------|------|----|-----|
|    | Z   | +3   |      |    |     |
| 5+ | 10  | 15   | 10 2 | 30 | 40  |
|    |     |      |      | 4- |     |
| 2. | ٤ 5 | 14   | 7    | 15 | 20  |
| 15 |     |      |      |    |     |
| 20 | 15  | 25   | 25   | 5  | 30  |
|    |     | 13 - |      | +8 |     |
| 20 | 20  | 40   | 10   | 35 | 125 |
|    |     |      |      |    |     |


m+n-1= no. of allocated cell 4+5-1=8

## **Degeneracy Transportation Problem**

### Destination

|                    |   | V <sub>1</sub> =12 | v <sub>2</sub> =2 | v <sub>3</sub> =3 | v <sub>4</sub> =-4 | v <sub>5</sub> =-2 | Supp |
|--------------------|---|--------------------|-------------------|-------------------|--------------------|--------------------|------|
|                    |   | A                  | В                 | С                 | D                  | E                  | ly   |
| u <sub>1</sub> =0, | 1 | 10                 | 2                 | 3                 | 15                 | 9                  | 35   |
| u <sub>2</sub> =6, | 2 | 5                  | 10                | 15                | 2                  | 4                  | 40   |
| u <sub>3</sub> =3, | 3 | 15                 | 5                 | 14                | 7                  | 15                 | 20   |
| U <sub>4</sub> =10 | 4 | 20                 | 15                | 13                | 25                 | 8                  | 30   |
| Demand             |   | 20                 | 20                | 40                | 10                 | 35                 | 125  |

#### U1=0, u2=6, u3=3, u4=10,v1=12,v2=2,v3=3, v4=-4 v5=-2



# Find the values of $u_i$ and $v_j$ d<sub>ij</sub> $\ge 0$ ,

Ans=630

Q1. Solve the following Transportation problem:

|      | A | В  | С  | D  | E | F | Supply |
|------|---|----|----|----|---|---|--------|
| 1    | 9 | 12 | 9  | 6  | 9 | 9 | 5      |
| 2    | 7 | 3  | 7  | 7  | 5 | 7 | 6      |
| 3    | 6 | 5  | 9  | 12 | 3 | 6 | 2      |
| 4    | 6 | 8  | 11 | 2  | 2 | 6 | 9      |
| Dema | 4 | 4  | 6  | 2  | 4 | 2 |        |
| nd   |   |    |    |    |   |   |        |

Ans: Rs. 112

Q2. Solve the following Transportation problem:

|      | A | В | С | D | E | Supply |
|------|---|---|---|---|---|--------|
| 1    | 4 | 2 | 3 | 2 | 6 | 8      |
| 2    | 5 | 4 | 5 | 2 | 1 | 12     |
| 3    | 6 | 5 | 4 | 7 | 3 | 14     |
| Dema | 4 | 4 | 6 | 8 | 8 |        |
| nd   |   |   |   |   |   |        |

Ans: Rs. 80

Q3. Solve the following Transportation problem:

|        |    |    |    |    |   | Supply |
|--------|----|----|----|----|---|--------|
|        | A  | В  | C  | D  | E |        |
| 1.     | 4  | 3  | 1  | 2  | 6 | 40     |
| 2.     | 5  | 2  | 3  | 4  | 5 | 30     |
| 3.     | 3  | 5  | 6  | 3  | 2 | 20     |
| 4.     | 2  | 4  | 4  | 5  | 3 | 10     |
| Demand | 30 | 30 | 15 | 20 | 5 | 100    |

Ans: Rs. 210



## References:

- 1. <u>https://www.slideshare.net/VishalHotchandani2/transportation-problems-</u> <u>183454172</u>
- 2. Optimization Techniques for Engineering by Nilama Gupta.
- 3. <u>https://www.youtube.com/watch?v=RnZnIIksdwU</u>
- 4. https://youtu.be/zN4AE1YjE2I