Advance Engineering Mathematics(AEM)

Branch: Information Technology,
Sem: IIIrd

Dr. Kashish Parwani
Associate Professor, Dept. of Mathematics
JECRC, Sitapura Jaipur

Vision of the Institute

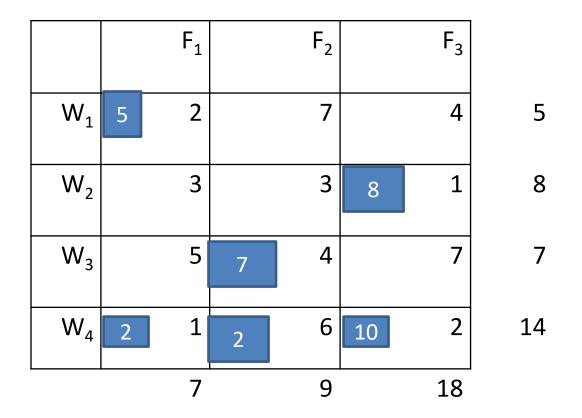
To become a renowned centre of outcome based learning, and work towards academic, professional, cultural and social enrichment of the lives of individuals and communities

Mission of the Institute

- Focus on evaluation of learning outcomes and motivate students to inculcate research aptitude by project based learning.
- Identify, based on informed perception of Indian, regional and global needs, the areas of focus and provide platform to gain knowledge and solutions.
- Offer opportunities for interaction between academia and industry.
- Develop human potential to its fullest extent so that intellectually capable and imaginatively gifted leaders may emerge.

Course Outcomes

- CO2: To learn the formulation of different mathematical problems into optimization problems.
- **CO3:** Apply the principles of optimization using differential calculus.
- CO4: To understand the concepts of Linear Programming
- **CO1:** To learn the concepts and principles of Random variables and Probability distribution.


Z

Q5. Solve the transportation problem with the initial B.F.S as given below;

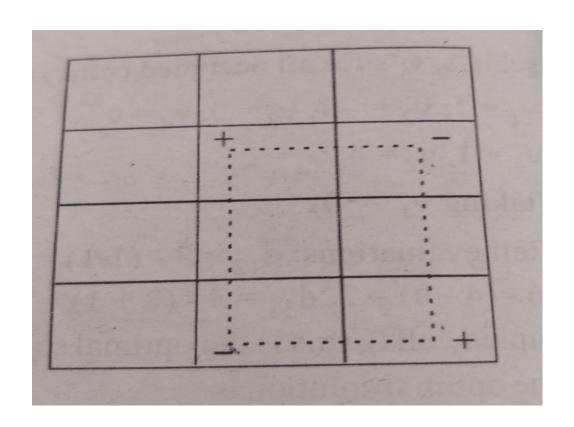
	F_1	F ₂	F ₃	
W_1	2	7	4	5
W ₂	3	3	1	8
W ₃	5	4	7	7
W ₄	1	6	2	14
	7	9	18	

7

Solve : Step I

STEPII: Determine a set of u_i , i=1 to m; v_j , j=1 to n, such that for each occupied cell(r,s) $C_{rs}=u_r+v_s$. For this we assign an arbitrary value to one of the u_i 'sor v_j 's and rest of them can be calculated easily from it. Generally we choose that u_i or v_j equal to 0.

Taking occupied cell:
$$C_{rs}=u_r+v_s$$
. $C_{11}=u_1+v_1=2$, $C_{23}=u_2+v_3=1$, $C_{32}=u_3+v_2=4$, $C_{41}=u_4+v_1=1$, $C_{42}=u_4+v_2=6$, $C_{43}=u_4+v_3=2$,


Let $u_{a}=0$,

Now find the values of
$$u_1=1, v_1=1, v_2=6, v_3=2, u_4=0, u_2=-1, u_3=-2,$$

Step III: We Calculate cell evaluation d_{ij} for each unoccupied cell (i,j) by the formula $d_{ij} = C_{ij} - (u_i + v_j)$,

$$D_{12}=0$$
, $D_{13}=1$, $D_{21}=3$, $D_{22}=-2$, $D_{31}=6$, $D_{33}=7$,

5	2		7		4	5
	3		3	8	_ 1	8
			-2			
	5	7	4		7	7
2	1	2	6	10	2	14
	7		9		18	•

Optimality test:

Let
$$u_4=0$$
,
Now find the values of $u_1=1, v_1=1, v_2=4, v_3=2, u_4=0, u_2=-1, u_3=0$,

We Calculate cell evaluation d_{ij} for each unoccupied cell (i, j) by the formula $d_{ij} = C_{ij}$ -($u_i + v_j$),

$$D_{12}=2$$
, $D_{13}=1$, $D_{21}=3$, $D_{42}=2$, $D_{31}=4$, $D_{33}=5$

Since optimality test holds good ,the given solution is optimal and unique.

Ans: 76

UNBALACED TRANSPORTATION PROBLEM:

Q6. Obtain the Optimal transportation plan from the following table giving the plant to market shipping costs and quantities required at each market and availability at each plant.

Market	M ₁	M ₂	M ₃	M ₄	Availabi
plant					lity
					(Supply
)
А	4	6	8	13	50
В	13	11	10	8	70
С	14	4	10	13	30
D	9	11	13	8	50
Require	25	35	105	20	200
ment					185
Demand					

Solve: We can see, it is unbalanced. First of all use dummy column

Market	M_1	M ₂	M ₃	M ₄	M ₅	Availabilit
plant						у
						(Supply)
А	4	6	8	13	0	50
В	13	11	10	8	0	70
С	14	4	10	13	0	30
D	9	11	13	8	0	50
Require	25	35	105	20	15	200
ment						200
Deman						
d						

Further solve it.....

THANK YOU

References:

- 1. <a href="https://www.google.com/search?q=nptel+tansportation+method&rlz=1C1CHBF_en_IN723IN723&oq=nptel+tansportation+method&aqs=chrome..69i57j33.59187j0j7&sourceid=chrome&ie=UTF-8#kpvalbx=_IMNEX_DGFJyd4-EP_-ip-Ag28_
- 2. Optimization Techniques for Engineering by Nilama Gupta