Advance Engineering Mathematics(AEM)

Branch :Information Technology, Sem:IIIrd

Dr. Kashish Parwani Associate Professor, Dept. of Mathematics JECRC, Sitapura Jaipur

Vision of the Institute

To become a renowned centre of outcome based learning, and work towards academic, professional, cultural and social enrichment of the lives of individuals and communities

Mission of the Institute

- Focus on evaluation of learning outcomes and motivate students to inculcate research aptitude by project based learning.
- Identify, based on informed perception of Indian, regional and global needs, the areas of focus and provide platform to gain knowledge and solutions.
- Offer opportunities for interaction between academia and industry.
- Develop human potential to its fullest extent so that intellectually capable and imaginatively gifted leaders may emerge.

Course Outcomes

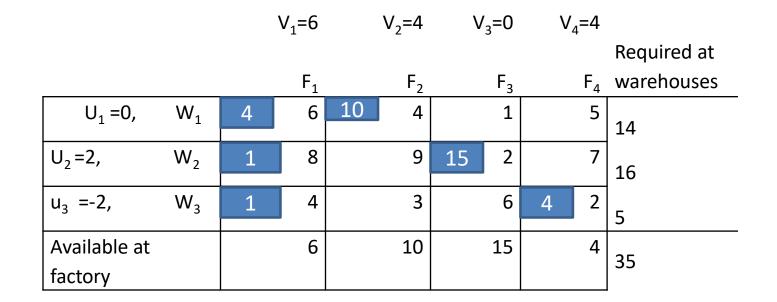
- **CO2:** To learn the formulation of different mathematical problems into optimization problems.
- **CO3:** Apply the principles of optimization using differential calculus.
- **CO4:** To understand the concepts of Linear Programming
- **CO1:** To learn the concepts and principles of Random variables and Probability distribution.

Optimality Test by <u>Mo</u>dified <u>Distribution (MODI) / u-v</u> <u>method – Transportation</u> Problem

7

Optimality Test

 After getting the initial BFS of a transportation problem, we TEST this solution for <u>optimality</u>, i.e., to check whether the solution is <u>OPTIMAL or NOT</u>.


Remember: We need m+n-1 allocations in independent positions to start the Optimality test. Q3. A company has four factories F1, F_2 , $F_3 F_4$, from which is supplies to three warehouses W_1 , W_2 , W_3 . Determine the optimal transportation plan from the following data giving the factories to warehouses shifting costs. Quantities available at each factory and quantities at each warehouse.

F1F2F3F4Required atwarehouses

W ₁	6	4	1	5	14
W ₂	8	9	2	7	16
W ₃	4	3	6	2	5
Available at factory	6	10	15	4	35

Sol: STEP I: By Vogel's Approximation Method, initial B.F.S.is

7

STEPII: Determine a set of u_i , i=1 to m; v_j , j=1 to n, such that for each occupied cell(r,s) $C_{rs}=u_r+v_s$. For this we assign an arbitrary value to one of the u_i 'sor v_j 's and rest of them can be calculated easily from it. Generally we choose that u_i or v_j equal to 0.

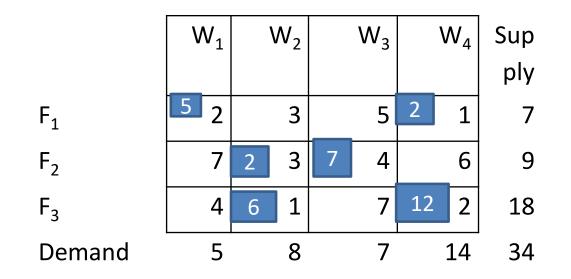
Taking occupied cell:
$$C_{rs}=u_r+v_s$$
.
 $C_{11}=u_1+v_1=6$,
 $C_{12}=u_1+v_2=4$,
 $C_{21}=u_2+v_1=8$,
 $C_{23}=u_2+v_3=2$,
 $C_{31}=u_3+v_1=4$,
 $C_{34}=u_3+v_4=2$,

Now find the values of

Step III: We Calculate cell evaluation d_{ij} for each unoccupied cell (i,j) by the formula $d_{ij} = C_{ij} - (u_i + v_j)$,

$$\begin{array}{cccc} D_{13}=1-(0+0)=1, & D_{14}=5-(0+4)=1, \\ & D_{22}=9-(2+4)=3, & D_{24}=7-(2+4)=1, \\ & D_{32}=3-(-2+4)=1 & , D_{33}=6-(-2+0)=8, \end{array}$$

Step IV: Since all $d_{ij} \ge 0$ for unoccupied cell the given solution is an optimal solution .


Thus the optimal solution is

```
Cost =24+ 40+8+30+4+8=Rs. 114
```

Q4. Solve the transportation problem for which the cost, origin availabilities and destination requirement are given below:

	W ₁	W ₂	W ₃	W_4	Supply
F ₁	2	3	5	1	7
F ₂	7	3	4	6	9
F ₃	4	1	7	2	18
Demand	5	8	7	14	34

Sol: By VAM initial B.F.S. is given by

Optimality test is applicable to a F.S. consisting of m+n-1= allocations in independent position.

THANK YOU

References:

- 1. <u>https://www.slideshare.net/VishalHotchandani2/transportation-problems-</u> <u>183454172</u>
- 2. Optimization Techniques for Engineering by Nilama Gupta