Advance Engineering Mathematics(AEM)

Branch :Information Technology, Sem:IIIr ${ }^{\text {rd }}$

Dr. Kashish Parwani
Associate Professor, Dept. of Mathematics
JECRC, Sitapura Jaipur

Vision of the Institute

To become a renowned centre of outcome based learning, and work towards academic, professional, cultural and social enrichment of the lives of individuals and communities

Dr. Kashish Parwani
Associate Professor (Mathematics), JECRC, Jaipur

Mission of the Institute

- Focus on evaluation of learning outcomes and motivate students to inculcate research aptitude by project based learning.
- Identify, based on informed perception of Indian, regional and global needs, the areas of focus and provide platform to gain knowledge and solutions.
- Offer opportunities for interaction between academia and industry.
- Develop human potential to its fullest extent so that intellectually capable and imaginatively gifted leaders may emerge.

Course Outcomes

- CO1: To learn the concepts and principles of Random variables and Probability distribution.
- CO2: To learn the formulation of different mathematical problems into optimization problems.
- CO3: Apply the principles of optimization using differential calculus.
- CO4: To understand the concepts of Linear Programming.

Probability Mass Function

Let X be a discrete random variable such that $\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right)=\mathrm{p}_{\mathrm{i}}$ is said to be probability mass function (pmf) if it satisfies the following conditions:
(i) $\mathrm{P}_{\mathrm{i}} \geq 0$,
(ii) $\Sigma \mathrm{p}_{\mathrm{i}}=1$,

The collection of pairs $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{p}_{\mathrm{i}}\right)$ is the probability distribution of the random variable X

Example 1. Check whether the following function serve as probability mass function.

$$
\begin{gathered}
P(X=x)=\frac{x-2}{2} \forall x=1,2,3,4 \\
P(X=x)=\frac{x^{2}}{25} \forall x=1,2,3,4
\end{gathered}
$$

Solution

X	$:$	1	2	3	4
$P(X=x)$	$:$	$-1 / 2$	0	$1 / 2$	1

As $P(X=1)=-1 / 2<0$

Hence $P(x)$ is not a probability mass function
(ii) $\mathrm{X}: 1$
2
3
4

$$
P(X=x): \quad 1 / 25 \quad 4 / 25 \quad 9 / 25
$$

16/25

Though $P(X=x)>0, x=1,2,3,4$
yet $\Sigma P(X=x)=30 / 25$

$$
=6 / 5>1
$$

Hence it also does not serve as a Probability mass function.

Example 2: Four bad oranges are mixed accidentally with 16 good oranges. Find the probability distribution of the number of bad oranges in a draw of two oranges.

Solution: Let the random variable X denote the number of bad oranges in a draw of two oranges. Hence $X=0,1,2$.

Now $P(X=0)=$ Probability of getting 2 good oranges $\frac{16_{c_{z}}}{20_{c_{z}}}=\frac{12}{19}$
$P(X=1)=$ Probability of getting 1 good orange and 1 bad orange

$$
\frac{4_{c_{1}} \times 16_{c_{1}}}{20_{c_{2}}}=\frac{32}{95}
$$

$\mathrm{P}(\mathrm{X}=2)=$ Probability of getting 2 bad orange $=\frac{4_{c_{z}}}{20_{c_{z}}}=\frac{3}{95}$

Hence the required probability distribution is :

X	$:$	0	1	2
$P(X=2)$			$12 / 19$	$32 / 95$

Example 4 : A random variable X has the following probability distribution.

$\mathrm{X}:$	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{X}):$	0	k	2 k	2 k	3 k	k^{2}	$2 \mathrm{k}^{2}$	$7 \mathrm{k}^{2}+\mathrm{k}$

(i) Find k
(ii) Evaluate $P(X<6), P(x \geq 6), P(0<X<5)$.
(iii) Determine Distribution Function of X
(iv) If $\mathrm{P}(\mathrm{X} \leq \mathrm{c})>1 / 2$ Find the minimum value of c .
(v) Find $P\left(\frac{1.5<x<4.5}{X>2}\right)$

Solution: (i) Given probability distribution

$$
\begin{aligned}
& \text { Hence } \quad \sum_{x=0}^{7} p(x)=1 \\
& 10 k^{2}+9 k-1=0, \\
& \mathrm{k}=-1,1 / 10 \text {, } \\
& K=-1 \text { is not possible as it makes } p(x)<0 \text { which is impossible, as } \\
& \text { above given is a probability distribution. } \\
& \text { Hence }{ }_{F}=\frac{1}{10} \\
& \text { (ii) } P(X<6)=1-P(X \geq 6) \\
& {\left[\therefore \sum \mathrm{p}(\mathrm{x})=1\right]} \\
& =1-[P(X=6)+P(X=7)] \\
& =1-\left(9 k^{2}+k\right) \\
& =1-\frac{1}{10}-\frac{9}{100}=\frac{81}{100}
\end{aligned}
$$

$$
\begin{aligned}
& P(x \geq 6)=1-P(x<6)=1-\frac{81}{100}=\frac{19}{100} \\
& \begin{array}{c}
P(0<X<5)=P(X=1)+P(X=2)+P(X=3)+P(X=4) \\
=8 k=\frac{8}{10} \\
=4 / 5,
\end{array}
\end{aligned}
$$

(iii)	X	$F(X)=p(X \leq x)$
0	$0=0$	
	1	$k=1 / 10$
2	$3 k=3 / 10$	
	3	$5 k=5 / 10$
	4	$8 k=8 / 10$
	5	$8 k+k^{2}=81 / 100$
	6	$8 k+3 k^{2}=83 / 100$
	7	$10 k^{2}+9 k=1$

(iv) From the distribution function it is clear that

$$
\begin{aligned}
& \mathrm{F}(3)=\mathrm{P}(\mathrm{X} \leq 3)=\frac{5}{10}=0.5 \\
& \mathrm{~F}(4)=\mathrm{P}(\mathrm{X} \leq 4)=\frac{8}{10}=0.8>\frac{1}{2} \\
& \mathrm{~F}(5)=\mathrm{P}(\mathrm{X} \leq 5)=\frac{81}{100}=0.81>\frac{1}{2}, \text { and so on. }
\end{aligned}
$$

Hence the minimum value of c for which $\mathrm{P}(\mathrm{x} \leq \mathrm{c})>\frac{1}{2}$ is 4 . Therefore $c=4$.

$$
\text { (v) } \begin{aligned}
& \mathrm{P}\left(\frac{15<\mathrm{X}<4.5}{\mathrm{X}>2}\right)=\frac{\mathrm{P}((1.5<\mathrm{X}<45) \cap(\mathrm{X}>2]}{\mathrm{P}(\mathrm{X}>2)} \\
& =\frac{\mathrm{P}(2<\mathrm{X}<4.5)}{1-\mathrm{P}(\mathrm{X} \leq 2)}=\frac{\mathrm{P}(3)+\mathrm{P}(4)}{1-[\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2)]} \\
& =\frac{\frac{2}{10}+\frac{3}{10}}{1-\frac{3}{10}}=\frac{5}{\frac{10}{7}}=\frac{5}{7} .
\end{aligned}
$$

Dr. Kashish Parwani
Associate Professor (Mathematics, JECRC, Jaipur

Solve it:

Example 4. From a lot of 10 items containing 3 defectives, a sample of 4 items is drawn at random. If the sample is drawn without replacement and the random variable X denotes the number of defective items in the sample, find :
(i) The probability distribution of X .
(ii) $\mathrm{P}(\mathrm{X} \leq 1)$
(iii) $\mathrm{P}(\mathrm{X}<1)$
(iV) $P(0<X<2)$

Thante (I) fow!

References:

1. https://www.slideshare.net/lovemucheca/random-variable-and-distribution
2. https://www.youtube.com/watch? $\mathrm{v}=\mathrm{UftYOe2ilM4}$
3. https://www.digimat.in/nptel/courses/video/117104117/L01.html
