Advance Engineering Mathematics(AEM)

Branch :Information Technology, Sem:IIIr ${ }^{\text {rd }}$

Dr. Kashish Parwani
Associate Professor, Dept. of Mathematics
JECRC, Sitapura Jaipur

Vision of the Institute

To become a renowned centre of outcome based learning, and work towards academic, professional, cultural and social enrichment of the lives of individuals and communities

Dr. Kashish Parwani
Associate Professor (Mathematics), JECRC, Jaipur

Mission of the Institute

- Focus on evaluation of learning outcomes and motivate students to inculcate research aptitude by project based learning.
- Identify, based on informed perception of Indian, regional and global needs, the areas of focus and provide platform to gain knowledge and solutions.
- Offer opportunities for interaction between academia and industry.
- Develop human potential to its fullest extent so that intellectually capable and imaginatively gifted leaders may emerge.

Course Outcomes

- CO2: To learn the formulation of different mathematical problems into optimization problems.
- CO3: Apply the principles of optimization using differential calculus.
- CO4: To understand the concepts of Linear Programming
- CO1: To learn the concepts and principles of Random variables and Probability distribution.

Duality Theory

రThe notion of duality within linear programming asserts that every linear program has associated with it a related linear program called its dual. The original problem in relation to its dual is termed the primal.
γ it is the relationship between the primal and its dual, both on a mathematical and economic level, that is truly the essence of duality theory.

Q1. Write the dual of the problem
Max $z_{p}=2 x_{1}+4 x_{2}$
S.to $2 x_{1}+3 x_{2} \leq 48$

$$
\begin{aligned}
& x_{1}+3 x_{2} \leq 42 \\
& x_{1}+x_{2} \leq 21 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Solution: It is a maximization problem with all constraints having \leq sign.
Max $\quad z_{p}=2 x_{1}+4 x_{2}$
s.to $\quad 2 x_{1}+3 x_{2} \leq 48 \quad w_{1}$
$x_{1}+3 x_{2} \leq 42 \quad w_{2}$
$x_{1}+x_{2} \leq 21 \quad w_{3}$
$x_{1}, x_{2} \geq 0$

The dual is
Min $z_{D}=48 w_{1}+42 w_{2}+21 w_{3}$
s.to $\quad 2 w_{1}+w_{2}+w_{3} \geq 2$
$3 w_{1}+3 w_{2}+w_{3} \geq 4$
$\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3} \geq 0$

Q2. Write the dual of the problem
Max $z=x_{1}+2 x_{2}-x_{3}$
s.to $2 x_{1}+3 x_{2}+4 x_{3} \leq 5$
$2 x_{1}-2 x_{2} \leq 6$
$3 x_{1}-3 x_{3} \geq 4$
$\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0$

Solution: The above problem is

$\operatorname{Max} \mathrm{z}_{\mathrm{p}}=\mathrm{x}_{1}+2 \mathrm{x}_{2}-\mathrm{x}_{3}$
s.to
$2 x_{1}+3 x_{2}+4 x_{3} \leq 5$
$2 \mathrm{x}_{1}-2 \mathrm{x}_{2} \leq 6$
$-3 x_{1}+3 x_{3} \leq-4$
$\mathrm{x}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3} \geq 0$

$$
\mathrm{w}_{1}
$$

$$
\mathrm{w}_{2}
$$

$$
\mathrm{W}_{3}
$$

Dual:
Min $\mathrm{z}_{\mathrm{D}}=5 \mathrm{w}_{1}+6 \mathrm{w}_{2}-4 \mathrm{w}_{3}$
s.to $\quad 2 \mathrm{w}_{1}+2 \mathrm{w}_{2} \quad-3 \mathrm{w}_{3} \geq 1$
$3 \mathrm{w}_{1}-2 \mathrm{w}_{2} \quad \geq 2$
$4 w_{1} \quad+3 w_{3} \geq-1$
$\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3} \geq 0$

Q3. Write the dual of the problem $\operatorname{Max} \mathrm{z}_{\mathrm{p}}=\mathrm{x}_{1}+3 \mathrm{x}_{2}$
 s.to $3 x_{1}+2 x_{2} \leq 6$
 $3 x_{1}+x_{2}=4$ $\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$

Solution: Given problem can be written as s
$\operatorname{Max} \mathrm{z}_{\mathrm{p}}=\mathrm{x}_{1}+3 \mathrm{x}_{2}$
s.to $\quad 3 x_{1}+2 x_{2} \leq 6$

$$
\mathrm{w}_{1}
$$

$3 \mathrm{x}_{1}+\mathrm{x}_{2} \leq 4$
w_{2}
$-3 x_{1}-x_{2} \leq-4$
w_{3}
$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$
Dual:
Min $\mathrm{z}_{\mathrm{D}}=6 \mathrm{w}_{1}+4 \mathrm{w}_{2}-4 \mathrm{w}_{3}$
s.to
$3 w_{1}+3 w_{2} \quad-3 w_{3} \geq 1$
$2 \mathrm{w}_{1}+\mathrm{w}_{2}-\mathrm{w}_{3} \quad \geq 3$
$w_{1}, w_{2}, w_{3} \geq 0$

```
Dual:
Min \(\mathrm{z}_{\mathrm{D}}=6 \mathrm{w}_{1}+4 \mathrm{w}_{2}-4 \mathrm{w}_{3}\)
s.to \(\quad 3 w_{1}+3 w_{2} \quad-3 w_{3} \geq 1\)
\(2 \mathrm{w}_{1}+3 \mathrm{w}_{2}-\mathrm{w}_{3} \geq 3\)
\(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3} \geq 0\)
Replace \(\left(w_{2}-w_{3}\right)\) by \(w_{2}\)
Min. \(\mathrm{z}_{\mathrm{D}}=6 \mathrm{w}_{1}+4 \mathrm{w}^{\prime}{ }_{2}\)
s.to \(\quad 3 w_{1}+3 w_{2} \geq 1\)
    \(2 \mathrm{w}_{1}+\mathrm{w}_{2} \geq 3\)
    \(\mathrm{w}_{1} \geq 0\) and \(\mathrm{w}_{2}\) unrestricted is sign
```

$$
\begin{array}{lcll}
\text { Q4. Min } & z_{p}=x_{1}-3 x_{2}-2 x_{3} & & \\
\text { s.to } & -3 x_{1}+x_{2}-2 x_{3} \geq-7 & & w_{1} \\
& -2 x_{1}-4 x_{2} \geq 12 & w_{2} & \\
& -4 x_{1}+3 w_{2}+8 x_{3}=10 & w_{3} & \\
& x_{1}, x_{2} \geq 0, x_{3} \text { unrestricted } & &
\end{array}
$$

$\operatorname{MaX} z_{D}=-7 w_{1}+12 w_{2}+10 w_{3}$
s.to $-3 w_{1}-2 w_{2}-4 w_{3} \leq 1$
$w_{1}-4 w_{2}+3 w_{3} \leq-3$
$-2 w_{1} \quad+8 w_{3}=-2$,
$w_{1}, w_{2}, w_{3} \geq 0$ unrestricted

Thank You

Dr. Kashish Parwani
Associate Professor (Mathematics) JECRC, Jaipur

