Advance Engineering Mathematics(AEM)

Branch :Information Technology, Sem:IIIrd

Dr. Kashish Parwani Associate Professor, Dept. of Mathematics JECRC, Sitapura Jaipur

Vision of the Institute

To become a renowned centre of outcome based learning, and work towards academic, professional, cultural and social enrichment of the lives of individuals and communities

Mission of the Institute

- Focus on evaluation of learning outcomes and motivate students to inculcate research aptitude by project based learning.
- Identify, based on informed perception of Indian, regional and global needs, the areas of focus and provide platform to gain knowledge and solutions.
- Offer opportunities for interaction between academia and industry.
- Develop human potential to its fullest extent so that intellectually capable and imaginatively gifted leaders may emerge.

Course Outcomes

- **CO2:** To learn the formulation of different mathematical problems into optimization problems.
- **CO3:** Apply the principles of optimization using differential calculus.
- **CO4:** To understand the concepts of Linear Programming
- **CO1:** To learn the concepts and principles of Random variables and Probability distribution.

Duality Theory

- The notion of duality within linear programming asserts that every linear program has associated with it a related linear program called its **dual**. The original problem in relation to its dual is termed the **primal**.
- Yit is the **relationship** between the primal and its dual, both on a mathematical and economic level, that is truly the essence of duality theory.

```
Q1. Write the dual of the problem

Max z_p=2x_1+4x_2

S.to 2x_1+3x_2 \le 48

x_1+3x_2 \le 42

x_1+x_2 \le 21

x_1,x_2 \ge 0
```

Solution : It is a maximization problem with all constraints having ≤sign.

Max $z_{p}=2x_{1}+4x_{2}$ s.to $2x_{1}+3x_{2}\leq 48$ w_{1} $x_{1}+3x_{2}\leq 42$ w_{2} $x_{1}+x_{2}\leq 21$ w_{3} $x_{1},x_{2}\geq 0$

The dual is

Min $z_D = 48w_1 + 42w_2 + 21w_3$ s.to $2w_1 + w_2 + w_3 \ge 2$ $3w_1 + 3w_2 + w_3 \ge 4$ $w_1, w_2, w_3 \ge 0$

Q2. Write the dual of the problem Max $z=x_1+2x_2-x_3$ s.to $2x_1+3x_2+4x_3 \le 5$ $2x_1-2x_2 \le 6$ $3x_1-3x_3 \ge 4$ $x_1,x_2,x_3 \ge 0$

Solution: The above problem is

Dual: Min $z_D = 5w_1 + 6w_2 - 4w_3$ s.to $2w_1 + 2w_2 - 3w_3 \ge 1$ $3w_1 - 2w_2 \ge 2$ $4w_1 + 3w_3 \ge -1$ $w_1, w_2, w_3 \ge 0$

Q3. Write the dual of the problem Max $z_p = x_1 + 3x_2$ s.to $3x_1 + 2x_2 \le 6$ $3x_1 + x_2 = 4$ $x_1, x_2 \ge 0$

Solution: Given problem can be written as s

Max $z_p = x_1 + 3x_2$ s.to $3x_1 + 2x_2 \le 6$ w_1 $3x_1 + x_2 \le 4$ w_2 $-3x_1 - x_2 \le -4$ w_3 $x_1, x_2 \ge 0$

Dual: Min $z_D = 6w_1 + 4w_2 - 4w_3$ s.to $3w_1 + 3w_2 - 3w_3 \ge 1$ $2w_1 + w_2 - w_3 \ge 3$ $w_1, w_2, w_3 \ge 0$

Dual: Min $z_{D} = 6w_1 + 4w_2 - 4w_3$ s.to $3w_1 + 3w_2 - 3w_3 \ge 1$ $2w_1 + 3w_2 - w_3 \ge 3$ $W_1, W_2, W_3 \ge 0$ Replace $(w_2 - w_3)$ by w'_2 Min. $z_{D} = 6w_1 + 4w'_2$ s.to $3w_1 + 3w_2 \ge 1$ $2w_1 + w_2 \ge 3$ $w_1 \ge 0$ and w'_2 unrestricted is sign

Q4. Min
$$z_p = x_1 - 3x_2 - 2x_3$$

s.to $-3x_1 + x_2 - 2x_3 \ge -7$ w_1
 $-2x_1 - 4x_2 \ge 12$ w_2
 $-4x_1 + 3w_2 + 8x_3 = 10$ w_3
 $x_1, x_2 \ge 0, x_3$ unrestricted

MaX
$$z_{D} = -7w_{1} + 12w_{2} + 10w_{3}$$

s.to $-3w_{1} - 2w_{2} - 4w_{3} \le 1$
 $w_{1} - 4w_{2} + 3w_{3} \le -3$
 $-2w_{1} + 8w_{3} = -2$,
 $w_{1}, w_{2}, w_{3} \ge 0$ unrestricted

Thank You