JAIPUR ENGINEERING COLLEGE \& RESEARCH CENTRE
 TUTORIAL SHEET

Year: B. Tech. I Year II Semester
Subject: Engineering Mathematics - II

Session: 2020-21
CO1: To understand the concept of rank of matrix, inverse, Eigen values $\&$ vectors along with solution of linear simultaneous equation determine inverse of a matrix using Cayley Hamilton Theorem

TUTORIAL SHEET NO. 1

Q.1Determine the rank of the following matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5\end{array}\right]$
Q.2Find the rank of the following matrix $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ b+c & c+a & a+b \\ b c & c a & a b\end{array}\right]$

TUTORIAL SHEET NO. 2

Q. 3 For what values of k the equation $x+y+z=6, x+2 y+3 z=k$, $4 x+y+10 z=k^{2}$ have a solution and solve them completely in each case.
Q.4Investigate the values of λ and μ so that the equations
$x+y+z=6, x+2 y+3 z=10, x+2 y+\lambda z=\mu$ have No solution (ii) unique solution (iii) many solution

TUTORIAL SHEET NO. 3

Q.5Find the Eigen value and Eigen vector of the matrix $\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$.
Q.6Find the Eigen value and Eigen vector of the matrix $\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$.

TUTORIAL SHEET NO. 4
Q.7Find the Eigen value and Eigen vector of the matrix $\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$.
Q.8Find the Eigen value and Eigen vector of the matrix $\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$.

TUTORIAL SHEET NO. 5

Q.9Verify Cayley-Hamilton theorem for the matrix A and find its inverse
(i) $\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$
(ii) $\left[\begin{array}{ccc}7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1\end{array}\right]$
(ii)
Q. 10 Using the Cayley-Hamilton theorem, find the inverse of
$\left[\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right]$ (ii) $\left[\begin{array}{ccc}1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1\end{array}\right]$ (iii) $\left[\begin{array}{ccc}1 & 1 & 3 \\ 1 & 3 & -3 \\ 2 & -4 & -4\end{array}\right]$ (iv)) $\left[\begin{array}{ccc}1 & 2 & -2 \\ 1 & 1 & 1 \\ 1 & 3 & 1\end{array}\right]$

TUTORIAL SHEET NO. 6

Q.11Find the characteristic equation of the matrix $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$. hence compute A^{-1}.also find the matrix represented by $A^{5}-5 A^{4}+3 A^{3}+6 A^{2}-6 A+2 I$.
Q.12State and explain the application of Cayley-Hamilton theorem.

JAIPUR ENGINEERING COLLEGE \& RESEARCH CENTRE
 TUTORIAL SHEET

Year: B. Tech. I Year II Semester
Subject: Engineering Mathematics - II
Session: 2019-20
CO2: To solve Ordinary D.E of first order, first degree and first order higher degree using various methods.

TUTORIAL SHEET NO. 1

1. Solve $y=2 p x+y^{2} p^{3}$
2. Solve $p=\tan \left(x-\frac{p}{1+p^{2}}\right)$ where $p=\frac{d y}{d x}$

TUTORIAL SHEET NO. 2

3. Solve $p^{3}+2 x p^{2}-y^{2} p^{2}-2 x y^{2} p=0$
4. Solve $x^{2}\left(\frac{d y}{d x}\right)^{2}-2 x y\left(\frac{d y}{d x}\right)+2 y^{2}-x^{2}=0$

TUTORIAL SHEET NO. 3

5. Solve $p^{2}+\left(x-e^{x}\right) p-x e^{x}=0$
6. Solve $y=-p x+x^{4} p^{2}$

TUTORIAL SHEET NO. 4
7. Solve $9(y+x p \log p)=(2+3 \log p) p^{3}$
8. Solve $x^{2}\left(\frac{d y}{d x}\right)^{4}+2 x \frac{d y}{d x}-y=0$

TUTORIAL SHEET NO. 5

9. Solve $y=2 p x+p^{n}$

10 . Solve $y=2 p x+y^{2} p^{3}$

TUTORIAL SHEET NO. 6

11. Solve $p=\tan \left(x-\frac{p}{1+p^{2}}\right)$
12. Solve $\left(y^{2}+z^{2}-x^{2}\right) p-2 x y q=2 z x$

JAIPUR ENGINEERING COLLEGE \& RESEARCH CENTRE
 TUTORIAL SHEET

Year: B. Tech. I Year II Semester
Subject: Engineering Mathematics - II
Session: 2019-20
CO-3: To find the complete solution of D.E of higher order with constant coefficient \& variable coefficients $\&$ their methods of solution.

TUTORIAL SHEET NO. 1
Q1.Find the series solution of $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}+2 \mathrm{x} \frac{d y}{d x}+\mathrm{y}=0$
Q2. Find the series solution of $\mathrm{x}^{2} \frac{d^{2} y}{d x^{2}}+5 \mathrm{x} \frac{d y}{d x}+\mathrm{x}^{2} \mathrm{y}=0$.
TUTORIAL SHEET NO. 2
Q3. Find the series solution of $2 \mathrm{x}^{2} \frac{d^{2} y}{d x^{2}}+\left(2 \mathrm{x}^{2}-\mathrm{x}\right) \frac{d y}{d x}+\mathrm{y}=0 .$.
Q4. Find the series solution of $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-1\right) y=0$.
TUTORIAL SHEET NO. 3
Q5. Find the series solution of $\mathrm{x}^{2} \frac{d^{2} y}{d x^{2}}+2 \mathrm{x} \frac{d y}{d x}+\left(\mathrm{x}^{2}-1\right) \mathrm{y}=0$.
Q6. Find the series solution of (1-x) $\frac{d^{2} y}{d x^{2}}-3 \mathrm{x} \frac{d y}{d x} \mathrm{y}=0$

TUTORIAL SHEET NO. 4

Using Method of Variation of Parameter:.

Q7.Solve $x^{3} \frac{d^{3} y}{d x^{3}}+2 x^{2} \frac{d^{2} y}{d x^{2}}+2 y=10\left(x+\frac{1}{x}\right)$
Q8.Solve $(2+3 x)^{2} \frac{d^{2} y}{d x^{2}}+3(2+3 x) \frac{d y}{d x}-36 y=3 x^{2}+4 x+1$

TUTORIAL SHEET NO. 5

Using Method of Variation of Parameter:
Q9.Solve $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=\sin [2 \log (1+x)]$

Solve the following Differential Equations:
Q10.Solve $\left(x^{3} y^{2}+x\right) d y+\left(x^{2} y^{3}-y\right) d x=0$

TUTORIAL SHEET NO. 6

Solve the following Differential Equations:
Q11.Solve $\left(x y^{2}-e^{1 / x^{3}}\right) d x-x^{2} y d y=0$
Q12.Solve $\left(x y^{3}+y\right) d x+2\left(x^{2} y^{2}+x+y^{4}\right) d y=0$

JAIPUR ENGINEERING COLLEGE \& RESEARCH CENTRE TUTORIAL SHEET

Year: B. Tech. I Year II Semester
Subject: Engineering Mathematics - II

Session: Session: 2019-20

Co 4: To solve partial differential equations with its applications in Laplace equation, Heat \& Wave equation

TUTORIAL SHEET NO. 1

Q. 1 Solve the following equation by the method of separation of variable: $4 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=3 u$, given $u=3 e^{-y}-e^{-5 y}$ when $x=0$
Q. 2 Solve by the method of separation of variables: $3 \frac{\partial u}{\partial x}+2 \frac{\partial u}{\partial y}=0, u(x, 0)=4 e^{-x}$

TUTORIAL SHEET NO. 2

Q. 3 Write the mathematical form of one dimensional heat equation and discuss its solution.
Q. 4 Write the mathematical form of Laplace Equation and discuss its solution.

TUTORIAL SHEET NO. 3

Q. 5 Using the method of separation of variables Solve $\frac{\partial \mathrm{u}}{\partial \mathrm{x}}=2 \frac{\partial \mathrm{u}}{\partial \mathrm{t}}+\mathrm{u}$ where

$$
u(x, 0)=6 e^{-3 x}
$$

Q. 6 A tightly stretched string with fixed ends points $x=0$ and $x=l$ is initially in a position given by $y=y_{0} \sin ^{3}\left(\frac{\pi x}{l}\right)$. if is released from rest find the displacement $y(x, t)$.

TUTORIAL SHEET NO. 4

Q. 7 Discuss the method of separation of variables to solve partial differential equations.
Q. 8 Discuss the solution of two dimensional heat equation.

TUTORIAL SHEET NO. 5

Q. 9 Two ends A and B of a rod 10 cm long have temp 50C and 100 C until steady state prevails. the temp of the ends are changed to 90 C and 60 C respectively .find the temp distribution in the rod at any time t.
Q. 10 Find the temp $\mathrm{u}(\mathrm{x}, \mathrm{t})$ in a bar which is perfectly insulated whose ends are at Tem 0 C and initial temp is $f(x)=x(10-x)$ given that its length is 10 cmconstant and cross section $1 \mathrm{~cm}^{3}$. Density $10.6 \mathrm{gm} / \mathrm{cm}^{3}$. thermal conductivity $1.04 \mathrm{cal} / \mathrm{cm}$, specific heat $0.056 \mathrm{cal} / \mathrm{gm}$ deg.

TUTORIAL SHEET NO. 6

Q. 11 Using the method of separation of variable Solve $\frac{\partial^{2} z}{\partial x^{2}}-2 \frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=0$
Q. 12 Write the mathematical form of one dimensional heat equation and discuss its solution.

