

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE

```
Year & Sem – B.Tech I year I Sem
Subject –Engg.Chemistry
Unit – I
Presented by – Ms.Rekha Vijay
Designation - Asst.Professor
Department - Chemistry
```

VISSION OF INSTITUTE

To become a renowned centre of outcome based learning, and work towards academic, professional, cultural and social enrichment of the lives of individuals and communities.

MISSION OF INSTITUTE

*Focus on evaluation of learning outcomes and motivate students to inculcate research aptitude by project based learning.

✤Identify, based on informed perception of Indian, regional and global needs, the areas of focus and provide platform to gain knowledge and solutions.

*****Offer opportunities for interaction between academia and industry.

*Develop human potential to its fullest extent so that intellectually capable and imaginatively gifted leaders may emerge.

CONTENTS (TO BE COVERED)

Lime Soda method for softening of hard water.

Cold lime soda methodHot lime soda method

LIME SODA

INTRODUCTION:

- Standard water-softening process.
- Carried out either hot or cold.
- Uses lime (Ca(OH)₂ and soda ash (Na₂CO₃) to reduce the hardness of the water by precipitating the dissolved calcium and magnesium salts as insoluble calcium carbonate and magnesium hydroxide respectively.

Hot and Cold lime soda process

Cold lime soda process	Hot lime soda process
1. It is carried out at room temperature (25-30°C)	1. It is carried out at high temperature (95-100°C)
2. It is a slow process	2. It is a rapid process
3. Use of coagulant is a necessary	3. No coagulant required
4. Filtration is not easy	4. Filtration is easy as viscosity of water is low
5. Residual hardness is 60 ppm	5. Residual hardness is 15—30 ppm
6. Dissolved gases are not removed	6. Dissolved gases are removed
7. It has low softening capacity	7. It has high softening capacity

COLD LIME SODA PROCESS

- In this method calculated amount of lime and soda are mixed with water at room temperature.
- At room temperature the precipitates formed are finely divided so they do not settle easily and cannot be filtered easily.
- Consequently, it is essential to add small amount of coagulants like alum, aluminium sulphate, sodium aluminate etc.
- Coagulants form gelatinous precipitate of aluminum hydroxide and entraps fine precipitate

Process

- Raw water and calculated amount of chemicals (lime,soda,coagulants) are fed from the top in to the inner vertical circular chamber, fitted with a vertical rotating system carrying a number of paddles.
- As the raw water and chemicals flow down, there is a vigorous stirring and continuous mixing so that softening of water will take place.
- > The softened water comes into the chamber ,where it rises up.
- The heavy sludge of precipitates settle down in the outer chamber by the time the softened water reaches up.
- The softened water then passes through a filtering media that is made up by wood fiber to ensure complete removal of sludge.
- Filtered soft water finally flows out continuously through the outlet at the top.

HOT LIME SODA PROCESS

In hot lime soda process hard water is treated with lime and soda at 94-100c. **Hot lime soda plant consists of three parts:**

- A reaction tank in which raw water, chemicals and steam are throughly mixed.
- > A conical sedimentation vessel in which sludge settle down.
- A sand filter which ensure complete removal of sludge from softened water.

Process

- The reaction tank has three separate inlets, one each for raw water, lime soda, and steam.
- Steam is used to increase the temperature.
- Due to high temperature ,reactions of water softening proceed faster and sludge is collected in conical sedimentation tank.
- The softened water is passed through sand filter which ensure complete removal of sludge from water.
- > The resulting softened water has a residual hardness of 15-30 ppm.

Chemical reactions of lime soda process

S.No.	Constitu ent	Reactions	
1.	Ca(HCO ₃) ₂ (Temp. Ca)	Ca $(HCQ_3)_2 + Ca(OH)_2 \rightarrow 2CaCO_3 \downarrow +H_2O$	L
2.	Mg(HCO ₃) ₂ (Temp. Mg)	Mg (HCO ₃) ₂ + 2Ca(OH) ₂ \rightarrow .2CaCO ₃ \downarrow +Mg(OH) ₂ + 2H ₂ O	2L
3.	Mg^{2+} (Perm. Mg from $MgCl_2$ or $MgSO_4$)	$Mg^{2+} + Ca(OH)_2 \rightarrow Mg(OH)_2 \downarrow Ca^{2+}$ $Ca^{2+} + Na_2CO_3 \rightarrow CaCO_3 \downarrow + 2Na^+$	L S
	Or more specifically	$MgCl_{2} + Ca(OH)_{2} \rightarrow Mg(OH)_{2} \downarrow + CaCl_{2}$ $CaCl_{2} + Na_{2}CO_{2} \rightarrow CaCO_{3} \downarrow + 2NaCl_{2}$	(L+S)
t is ter	and	$MgSO_{2} + Ca(OH)_{2} \rightarrow Mg(OH)_{2} \downarrow + CaSO_{4}$ $CaSO_{4} + Na_{2}CO_{3} \rightarrow CaCO_{3} \downarrow + Na_{2}SO_{4}$	(L+S)
4.	HCO_{3} (e.g., NaHCO ₃)	$2NaHCO_3 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O + Na_2CO_3$	(L-S)
5.	Ca^{2+} (Perm. Ca From CaCl ₂ or CaSO ₄)	$Ca^{2+} + Na_2CO_3 \rightarrow CaCO_3 \downarrow + 2Na^+$	S
	Or more specifically:	$CaCl_{2} + Na_{2}CO_{3} \rightarrow CaCO_{3} \downarrow + 2NaCl$ $CaSO_{4} + Na_{2}CO_{3} \rightarrow CaCO_{3} \downarrow + Na_{2}SO_{4}$	S
6.	CO ₂	$CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$	L
7.	H^+ (free acid like HCI, H ₂ SO ₄ , etc.)	$2H^{+} + Ca(OH)_{2} \rightarrow Ca^{2+} + 2H_{2}O$ $Ca^{2+} + Na_{2}CO_{3} \rightarrow CaCO_{3} \downarrow 2Na^{+}$	(L+S)
	Or more specifically:	$2HCI + Ca(OH)_{2} \rightarrow CaCl_{2} + 2H_{2}O$ $H_{2}SO_{4} + Ca(OH)_{2} \rightarrow CaSO_{4} + 2H_{2}O$ $CaCl_{2} + Na_{2}CO_{3} \rightarrow CaCO_{3} \downarrow + 2NaCl$	L L S
	south it is assessing to a	$CaSO_4 + Na_2CO_3 \rightarrow CaCO_3 \downarrow + Na_2SO_4$	rdness

Note: Aluminum and Iron salt may be present in water as contributor permanent naroness or they may be added as coagulants.

8.	FeSO ₄	$FeSO_4 + Ca(OH)_2 \rightarrow Fe(OH)_2 + CaSO_4$ 2 Fe(OH)_2 + H_2O + O_2 \rightarrow 2Fe(OH)_3 \downarrow C CO + No CO + C2CO_2 + +2Na ⁺	(L+S)
3.	Al ₂ (SO ₄) ₃	$\begin{array}{c} \text{CaSO}_4 + \text{Na}_2\text{CO}_3 \rightarrow \text{CaCO}_3 + 3\text{CaSO}_4\\ \text{Al}_2(\text{SO}_4)_3 + 3\text{Ca}(\text{OH})_2 \rightarrow 2\text{Al}(\text{OH})_3 \downarrow + 3\text{CaSO}_4\\ \text{ACaSO}_4 + 3\text{Na}_2\text{CO}_2 \rightarrow 3\text{CaCO}_3 + 3\text{Na}_2\text{SO}_4 \end{array}$	(L+S)
	NaAlO ₂	$\frac{3CaSO_4 + 3Na_2CO_3}{NaA1O_2 + 2H_2O \rightarrow Al (OH)_3}$ + NaOH because equivalent	-1L

Formula for calculation of lime and soda requirement

ADVANTAGE

Very economical.

> Less amount of coagulants are required.

> To certain extent ,iron and manganese are also removed.

DISADVANTAGE

> Very skilled supervision is required.

Disposal of large amount of sludge is a big problem.

> This can remove hardness only upto 15 ppm.

JECRC Foundation

Rekha Vijay