JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE

Year \& Sem. - B. Tech I year, Sem.-I
Subject-Engineering Chemistry
Unit - I (Numerical problems based on Hardness \& EDTA)
Presented by - Dr. Barkha Shrivastava
Designation - Associate Professor \& Head
Department - Chemistry

Numerical problems based on Hardness \& EDTA

Calculation of Hardness Points to be remember:

1. Before calculating hardness the amount of salts should be converted into their CaCO_{3} equivalents
2. Temporary hardness is due to only carbonates and bicarbonates of $\mathbf{C a}^{2+} / \mathbf{M g}^{2+}$ or other heavy metals
3. Permanent hardness is due to only chlorides, sulphates and nitrates of $\mathbf{C a}^{2+} / \mathbf{M g}^{2+}$ or other heavy metals
4. Sodium, potassium \& silica do not case hardness in water (sometime this type of salts are given in numerical problems)

Example 5. A sample water on analysis has been found to contain following impurities.
$\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}=14.6 \mathrm{mg} / \mathrm{lit} ., \quad \mathrm{MgCl}_{2}=19 \mathrm{mg} /$ lit.
$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}=29.6 \mathrm{mg} / \mathrm{lit}, \quad \mathrm{CaCO}_{3}=10 \mathrm{mg} / \mathrm{lit}$.
$\mathrm{MgSO}_{4}=36 \mathrm{mg} / \mathrm{lit}, \quad \quad \mathrm{NaCl}=29 \mathrm{mg} / \mathrm{lit}$.
Calculate temporary, permanent and total hardness of water sample in ppm and ${ }^{*}$ Clark.
Solution: Conversion into CaCO_{3} equivalents.

SN_{0}	Substance	Amount (In mg/lit.) or ppm	Multiplication factor	CaCO, equivalent (mg/lit.)
1.	${\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)}^{2}$	146	$\frac{100}{146}$	$14.6 \times \frac{100}{146}=10$
2.	MgCl_{2}	19	$\frac{100}{95}$	$19 \times \frac{100}{95}=20$
3	$\mathrm{Mg}_{2}\left(\mathrm{NO}_{3}\right)_{3}$	296	$\frac{100}{148}$	$296 \times \frac{100}{148}=20$
4.	CaCO_{3}	10	$\frac{100}{100}$	$10 \times \frac{100}{100}=10$
5.	MgSO_{4}	36	$\frac{100}{120}$	$36 \times \frac{100}{120}=30$

Temporary hardness due to $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$ and CaCO ,
$=(10+10) \mathrm{mg} / \mathrm{lt}$. of $\mathrm{CaCO}_{3} \mathrm{eq}$
$=20 \mathrm{mg} / \mathrm{lt}$. of $\mathrm{CaCO}_{3} \mathrm{cq}$.
On ppm scale

$$
\begin{aligned}
\text { Since } 1 \mathrm{mg} / \mathrm{lit} & =1 \mathrm{ppm}=00 \mathrm{~T}^{\mathrm{Cl}} \\
\text { Temporary hardness } & =(20 \times 1)=20 \mathrm{ppm}
\end{aligned}
$$

Temporary hardness in ${ }^{\circ} \mathrm{Clark}=20 \times 0.07=14^{\circ} \mathrm{Cl}$

$$
\begin{aligned}
& =\left(\mathrm{MgCl}_{2}+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{MgSO}_{4}\right) \\
& =(20+20+30) \mathrm{mg} / \mathrm{lit} . \text { of } \mathrm{CaCO}_{3} \mathrm{eq} . \\
& =70 \mathrm{mg} / \mathrm{lit} . \text { of } \mathrm{CaCO}_{3} \mathrm{eq} .
\end{aligned}
$$

Permanent hardness in ppm $=70 \mathrm{ppm}$ of CaCO_{3} eq.
Permanent hardness in ${ }^{\circ}$ Clark $=4.90^{\circ}$ Clark.
Fxammle 6 A samnle of water having following data:

Practice Problems

Q1. Calculate the total, permanent and temporary hardness of water sample which contain the following impurities: $\mathrm{CaCO}_{3}=100 \mathrm{mg} / \mathrm{L}, \mathrm{MgCO}_{3}=84 \mathrm{mg} / \mathrm{L}, \mathrm{CaCl}_{2}=$ $111 \mathrm{mg} / \mathrm{L}, \mathrm{MgSO}_{4}=60 \mathrm{mg} / \mathrm{L}, \mathrm{Nacl}=1.2 \mathrm{mg} / \mathrm{L}$.

Q2. Find out the total, permanent and temporary hardness of water sample which contain the following impurities: $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}=162 \mathrm{mg} / \mathrm{L}, \mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}=146 \mathrm{mg} / \mathrm{L}$, $\mathrm{MgCO}_{3}=84 \mathrm{mg} / \mathrm{L}, \mathrm{CaCl}_{2}=111 \mathrm{mg} / \mathrm{L}, \mathrm{CaSO}_{4}=136 \mathrm{mg} / \mathrm{L}, \mathrm{MgSO}_{4}=60 \mathrm{mg} / \mathrm{L}$, $\mathrm{NaCl}=1.2 \mathrm{mg} / \mathrm{L}$
Q. 3 Calculate the total hardness of a water sample having following composition in ppm. $\mathrm{CaCO}_{3}=20$ degree $\mathrm{Cl} ; \mathrm{MgSO} 4=4$ degree $\mathrm{Cl} ; \mathrm{CaSO} 4=2$ degree $\mathrm{Cl} ; \mathrm{Fe} 2 \mathrm{O} 3=0.04$ degree $\mathrm{Cl}, \mathrm{MgCl} 2=4$ degree $\mathrm{Cl} ; \mathrm{SiO} 2=0.09$ degree Cl .

Q4. Calculate the total hardness of water in degree Fr and degree Cl from the following analysis of water sample:

$$
\mathrm{Mg}(\mathrm{HCO} 3)_{2}=20.8 \mathrm{mg} / \mathrm{l} ; \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}=28.8 \mathrm{mg} / \mathrm{l} ; \mathrm{MgCl} 2=21.0 \mathrm{mg} / \mathrm{l}
$$

$\mathrm{MgSO} 4=20.0 \mathrm{mg} / \mathrm{l} ; \mathrm{CaCO} 3=21.2 \mathrm{mg} / \mathrm{l} ; \mathrm{KCl}=73.2 \mathrm{mg} / \mathrm{L}$.

Numerical problems based on EDTA

Q1. Standard hard water contains 1.5 g of CaCO_{3} per litre. 50 ml of this solution required 32 ml of EDTA solution while 50 ml of sample water required 16 ml of EDTA solution. The sample water after boiling required 9 ml of EDTA solution. Calculate temporary, permanent and total hardness of sample water.

Som. Strength of SHW $=1.5 \mathrm{gm}$ in 1000 ml distilled water

$$
=\frac{1.5 \times 10^{3}}{1000}=1.5 \mathrm{mglml} .
$$

$$
50 \mathrm{ml} \text { of SHW } \equiv 32 \mathrm{ml} \text { of EDTA Solution. }
$$

i.e 32 ml of EDTA $\equiv(50 \times 1.5) \mathrm{mg}$ of CaCO_{3} equivatents 1 ml of EDTA $=\left(\frac{50 \times 1.5}{32}\right) \mathrm{mg}$ of CaCO_{3} equivatents $\equiv 2.34 \mathrm{mg}$ of CaCO_{3} equivalent. 50 ml of hardwater now $=16 \mathrm{ml}$ of EDTA. 50 m . requires

$$
\begin{aligned}
1000 \mathrm{mlof} \text { hardwater uill } & =\left(\frac{16 \times 50 \times 1.5}{32}\right) \times\binom{ 1000}{50}\binom{\text { (aco3 }}{\text { equb }} \\
\text { requik } & =7 . \\
& =748-8
\end{aligned}
$$

50 ml of this som $=9 \mathrm{ml}$ of EOTA som

$$
\begin{aligned}
1000 \mathrm{ml} \text { of som } & =\left(\frac{9 \times 50 \times 1.5}{32}\right)\left(\frac{1000}{50}\right) \\
& =421.875 \mathrm{ppm}
\end{aligned}
$$

Total hardness $=748-8 \mathrm{ppm}$
Permanent hardness $=421.875$ ppm
Temporary i. $=(778.8-421.875)$

$$
=326.925 \mathrm{ppm}
$$

Formula for Calculating Hardness by EDTA Method

1. Total Hardness $=V_{2} / V_{1} \times 1000 \mathrm{ppm}$
2. Permanent Hardness $=\mathbf{V}_{3} / \mathbf{V}_{1} \quad X \mathbf{X} 1000 \mathrm{ppm}$
3. Temporary Hardness $=$ Total Hardness - Permanent hardness

Practice questions

Q.1. 1 g of CaCO_{3} was dissolved in dilute HCl and the solution diluted to one litre . 50 ml of this solution required 40 ml of EDTA solution, while 50 ml of the sample water required 40 ml of EDTA. On the other hand, 50 ml of boiled sample water when titrated against EDTA consumed 20 ml of solution. Calculate each type of hardness in ppm.
Q.2. 250 mg of CaCO_{3} was dissolved in dilute HCl and the solution diluted to one litre . 50 ml of this solution required 25 ml of EDTA solution, while 50 ml of the sample water required 15 ml of EDTA. On the other hand, 50 ml of boiled sample water when titrated against EDTA consumed 10 ml of solution. Calculate concentration of $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ and MgCl_{2} in g / L.

Q3. Standard hard water contains 1 g of CaCO_{3} per litre. 100 ml of this solution required 50 ml of EDTA solution while 100 ml of sample water required 18 ml of EDTA solution. The sample water after boiling required 12 ml of EDTA solution. Calculate temporary, permanent and total hardness of sample water.

Q4. Standard hard water contains 15 g of CaCO_{3} per litre. 100 ml of this solution required 50 ml of EDTA solution while 100 ml of sample water required 40 ml of EDTA solution. The sample water after boiling required 20 ml of EDTA solution. Calculate temporary, permanent and total hardness of sample water.

Dr. Barkha Shrivastava (Associate Prof.

Q5. 1 g of CaCO_{3} was dissolved in dilute HCl and the solution diluted to one liter. 100 ml of this solution required 90 ml of EDTA solution, while 100 ml of the sample water required 40 ml of EDTA. On the other hand, 100 ml of boiled sample water when titrated against EDTA consumed 20 ml of solution. Calculate each type of hardness in ppm.

Q6. 1 g of CaCO_{3} was dissolved in dilute HCl and the solution diluted to one litre . 100 ml of this solution required 100 ml of EDTA solution, while 100 ml of the sample water required 50 ml of EDTA. On the other hand, 100 ml of boiled sample water when titrated against EDTA consumed 25 ml of solution. Calculate each type of hardness in ppm.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CESTRE

Dr. Barkha Shrivastava (Associate Prof.
Chemistry), JECRC, JAIPUR

