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  INTRODUCTION TO TRANSMISSION LINES 

 Energy can be transmitted either by radiation of free

electromagnetic waves as in the radio (or) it can be constant to

move (or) carried in various conductor element known as

transmission line.

 Thus transmission line is the conductive method of guiding electrical
energy from one place to another place.

 The signal in transmission line flow in the form of voltage and
current , these signal characteristics will be seen further.

 Transmission of information through transmission lines is guided
bounded and point to point type of communication.

 Main goal of transmission is efficiency of power and less distortion in
the signal.

 Examples of transmission lines are telephone lines , power
transmission from generator to load , cage line ,et …..
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    ANALYSIS OF TRANSMISSION LINE 

 Transmission line is the two wires to which one end of

the wires source is connected to the other end load is connected.

 Before going to analysis of transmission line, DO KCL AND KVL

APPLICABLE FOR HIGH FREQUENCIES (OR) FOR LONG

TRANSMISSION LINES?

 Consider a transmission line as shown in the figure 1.1

A.C  SOURCE  FIGURE 1.1 LOAD(ZR ) 

           

 Let the length of a transmission line be L, a sinusoidal signal of high

frequency is applied at the source end and load impedance be ZR.

 For low frequencies, the circuit analysis can be done by simply

knowing the impedance values of components used.
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ANALYSIS OF TRANSMISSION LINE CONT…

 Co side  si usoidal sig al is applied at AA  i  the
   figure, At a particular instant let Vp  be the voltage so in practical no  

   signal travels with infinite speed so signal takes some time to travel 

f o  AA  to BB , So as the applied sig al ea hes the othe  e d BB  
oltage at AA  ill e o lo ge  the sa e as sig al is a i g.

 So  due to this potential difference(P.D)  is being developed in the

transmission line.

 The delay signal to reach the other end of transmission line this time

is called as transit time(tr . Let the elo it  of the sig al e V  ,ti e 
pe iod e T  a d f e ue  e f .

   tr=L/V (if tr is more then P.D will be more) 

 If tr is more its significance cannot be neglected.

 If tr is far less when compared to time period(T) then the significance

of transit time can be neglected as in normal cases.
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ANALYSIS OF TRANSMISSION LINE CONT…
 So writing the equations,

 T   >>>>   tr

 1/f >>>> L/V  

 V/f >>>> L 

 wavelength >>>>L  in this case transit time is 

   neglected. 

 But for practical cases, power will be transmitted  to longer distances

in this case transit time cannot be neglected and KVL,KCL cannot be

applied for analysis.

 For analysis of transmission line, we use KVL ,KCL by considering the

very small sections of transmission line so that in these sections

transit time can be neglected.

 The equivalent diagram of small section of transmission line figure

1.1 is shown in figure 1.1(a) in the next slide.
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  CIRUIT ANALYSIS OF TRANSMISSION LINE 

 As there is potential difference across transmission

line there will be resistance R Ω/k ) this

  resistance is known loop resistance which depends on the length of 

  transmission line. 

 Equivalent small section of a transmission line is as follows

   I  P    Q   I+dI 

 V                V+dV 

FIGURE 1.1(A) 

P    Q  
 When current is flowing in 2 parallel wire magnetic field will get

induced around the wire so there will be inductance known as loop

inductance(H/km) whose value depend upon the strength of

current so it is in series with loop resistance.
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CIRCUIT ANALYSIS OF TRANSMISSION LINE CONT…..
 As current flows, transmission line get charged so

parallel lines are separated by a distance and the

medium in between them act as dielectric so it will act as

capacitance effect in shunt to transmission line. This capacitance is

known as loop capacitance(F/km).

 As the capacitance is not ideal there will be leakage current so there

will be conductance parallel to capacitance known as total shunt

conductance(mho/km).

 So loop resistance , loop inductance, loop capacitance and total

shunt conductance depends upon length of the transmission line.

 So equivalent impedance i  se ies Z= R + j L  Ω/k .
   equivalent admittance in parallel  Y = (G +jwC)mho/km. 

 Co side  a s all se tio  of li e PQ  of le gth dz  i  the di e tio  of
the po e  flo . At poi t P  let the oltage e V  a d the u e t
flo i g e I  a d at Q  oltage e V+dV  a d u e t e I+dI .
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CIRCUIT ANALYSIS OF TRANSMISSION LINE CONT…..
 Cu e t i  the s all se tio  PQ  is I  ut u e t

o i g out of the se tio  is I +dI .
 Appl i g KVL i  the se tio  PQ  hi h ha e se ies i peda e

(R+jwL)dz ohm, we get 

V – (V+dV) – ((R+jwL)dz)I = 0

-dV = (R+jwL)Idz

  --------- eq 1 

 Appl i g KVL i  the se tio  PQ  which have admittance  (G+jwC)dz

mho, we get 

I – (I+dI) – ((G+jwC)dz)V = 0

-dI = (G+jwC)Vdz

  --------- eq 2 

 These are the two equations which lead us to get basic equations of

transmission line.
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(-dV/dz) = (R+jwL)I 

(-dI/dz) = (G+jwC)V 



CIRCUIT ANALYSIS OF TRANSMISSION LINE CONT…..
 Differentiating the eq 1 we get

 ( d2V/dz2 )= -(R + jwL)(dI/dz) --------- eq 3 

 Substituting eq 2 in eq 3 we get

  ( d2V/dz2 )= -(R + jwL) (-(G+jwC))V 

  ( d2V/dz2 ) = (R + jwL) (G+jwC)V ---------eq 4 

 Similarly if we differentiate eq 2 and substitute eq 1 in that equation

we get

   ( d2I/dz2 ) = (R + jwL) (G+jwC)I -----------eq 5 

 If we generalise the equations 4 and 5 by considering

γ2=(R + jwL) (G+jwC) ---------- eq 6

Ga a γ  is k o  as p opagatio  o sta t a d h  it is k o  as
propagation constant will be discussed later. So the eq 4 & 5 become 

                                                     ---------- eq 7 
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( d2I/dz2 ) = γ2 I    ( d2V/dz2 ) = γ2 V



   SOLUTION FOR BASIC EQUATION 7 

 Solution for Eq 7 is as follows

V(z  = V e –γz + V e +γz

 If one need to express the above equation in time domain or

instantaneous value then we have to multiply with ejωt. 

V(z,t) = V e –γz ejωt + V e +γz ejωt

 γ  is expressed as α+jβ ,su stituti g γ  i  a o e e uatio  e get
V(z,t  = V e –αz ej(ωt- βz) + V e +αz ej(ωt+ βz)

 Considering the incident part

V e –αz) ej(ωt-βz)

 So α  is called as attenuation factor because as z increases

amplitude of signals goes on decreasing and β  is called as phase

constant. 

 Similarly for reflected part of voltage signal.
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 WAVEFORMS OF INCIDENT AND REFLECTED VOLTAGE SIGNALS 

 why V e –αz) ej(ωt- βz) is called as incident part and

V e +αz ej(ωt+ βz) is called as reflected part ?

 consider α=0 then equation of incident and reflected part becomes

as and consider the real part then 

V ej(ωt- βz)                         V ej(ωt+ βz)

Re{ V ej(ωt- βz) }                     Re{ V ej(ωt+βz) }

V os ωt- βz)          V os ωt- βz)
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CIRCUIT ANALYSIS OF TRANSMISSION LINE CONT…..

 Solution of equations 7 can be expressed in the

exponential (or) hyperbolic functions as follows

V z  = V e –γz + V e +γz --------- eq 8

I(z)  = I e –γz + I e +γz    --------- eq  9

   (incident)   (reflected) 

 From the above equation it is clear that voltage and current is

different at every point.

 V ,I  are the voltage ,current signals travelling in +z direction known

as incident signal . V ,I  are the voltage ,current signals travelling in

–ve z direction known as reflected signal.

 Now we will get introduced to new term characteristic impedance

CHARACTERSITIC IMPEDANCE : It is defined as the ratio of voltage and 

current of a single wave travelling in a positive direction and it is called 

as characteristic. It is denoted by Zo.  
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  DERIVATION OF CHARACTERISTIC IMPEDANCE 

 Differentiating  the equation 8 we get

(dV/dz) = - γ V e –γz + γ V e +γz

  substituting (dv/dz) = -(R + jwL)I from eq 1 in above equation. 

-(R + jwL)I = - γ V e –γz + γ V e +γz

substituting  I = I e –γz + I e +γz  from eq 9 in above equation we get

-(R + jwL)(I e –γz + I e +γz) = - γ V e –γz + γ V e +γz----- eq 10

 Equalising the positive direction terms we get

-(R + jwL I e –γz) = - γ V e –γz a elli g e –γz  te  e get
V  =  (R + jwL)        (where γ=((R + jwL) (G+jwC))1/2)

I      γ
    (R + jwL) 1/2 

     (G+jwC) 1/2 

 Value of Zo does t depe d upo  the le gth of t a s issio  li e ut
on R,L,G and C. 
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Zo  = ---------  eq 11 (Where Zo=- /I



  CHARACTERSTIC IMPEDANCE AND REFLECTION 

CO-EFFICIENT 
 Graphical representation of Zo is shown below

 Thus if, transmission line is terminated with a load(ZR) as figure 1.1.
The value of ZR is the ratio of voltage and current at that load.

V    V  +V       Zo I  –I  ------------- eq 12

I     (I + I           I + I
 REFLECTION CO-EFFIECIENT : According to the maximum power

transfer theorem if load impedance and sou e i peda e does t 
match each other then there will be reflection takes place so the 
parameter which signifies the amount of reflection is reflection co-
effi ie t a d it is de oted  γR . It is the atio of efle ted oltage 
and incident voltage. 
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 REFLECTION CO-EFFIECIENT 

 Derivation of reflection coefficient is as follows

                            

                                     

 If γR =1 then ZR=0

 If γR =0 then ZR=Zo

 If γR =-1 then ZR= ∞
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V    
I  

=  Zo
V     
I  

= -Zo

V       
I

V     
I = - 

ZR= Zo 
I  – I
I  + I

ZR I  + I   = ZO I  – I
(ZR + Zo I  = (ZO – ZR I

I        Zo – ZR )

         (ZR + Zo)I  =
V       ZR – Zo)

    (ZR + Zo) 
=  

V
---------- eq 13 



  DERIVATION OF VOLTAGE AND CURRENT EXPRESSIONS 

 Circuit diagram for transmission line is as follows

                      

 Solutions for the eq 7 which we have derived earlier can also be

represented in the hyperbolic  functions as follows

                                                     ---------- eq 7 

V = A1 cosh(γz) + B1 sinh(γz) -------------- eq 14

I  = A2 cosh(γz) + B2 sinh(γz) ---------------eq 15

 Thus the constants A1, A2, B1 and B2 can be determined by the

applying boundary conditions. 
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( d2I/dz2 ) = γ2 I    ( d2V/dz2 ) = γ2 V
 

Figure 1.1(b) 



  DERIVATION OF VOLTAGE AND CURRENT EXPRESSIONS 

  BOUNDARY CONDITIONS: 

 At z=0, V=VR, I=IR ,Z IMPEDEANCE=ZR

At z=-L, V=VS, I=IS ,Z IMPEDEANCE=ZIN

 Substituting boundary condition 1 i.e., z=0 in eq 13 & 14 we get

    A1 =VR ,  A2= IR     ---------- eq 15 

 So the main equations will become as

V = VR cosh(γz) + B1sinh(γz)  ------------ eq 16

I = IR cosh(γz) + B2sinh(γz)  ------------ eq 17

 On differentiating  the equation 16

(dV/dz ) = VR γ sinh(γz) + B1γcosh(γz) , from the eq 1 we will get

-(R+jwL)I = VR γ sinh(γz) + B1γcosh(γz), from the eq 17 we will get

-(R+jwL)(IR cosh(γz) + B2sinh(γz)) = VR γ sinh(γz) + B1γcosh(γz)

   equalizing the cosh and sinh terms on both sides we will get  
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A1 =VR ,  A2= IR 



  DERIVATION OF VOLTAGE AND CURRENT EXPRESSIONS 

  B1=

 B2 =

 Substituting the constants in eq 14 and eq 15 we ge

 At z=z1 current and voltages equations are,

 Input impedance : The ratio of voltage and current at z=-L in the

transmission line is called as input impedance.

 In order to get calculate the input impedance substitute z= - L from

the circuit diagram of transmission line  figure 1.1(b).
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-(R+j ωL)IR

γ =  - 
IR(R+j ωL)1/2

(G+jωC)1/2 
-(G+jωC)VR

γ
=  - 

VR(G+jωC)1/2

(R+jωL)1/2

= -ZoIR 

= (-VR/Zo) 

V = VR cosh(γz) -ZoIR sinh(γz)  ------------ eq 17

I = IR cosh(γz)-(VR/Zo)sinh(γz)------------ eq 18

 

V = VR cosh(γz1) -ZoIR sinh(γz1)

I = IR cosh(γ1)-(VR/Zo)sinh(γz1)



  INPUT IMPEDANCE(Zin) 

  So substituting z= - L we get

 Ratio of voltage and current at z=-L

 After rearranging the terms and IR common from numerator and

denominator we get the final equation of Zin as 

VR/IRcosh(γL) +Zo sinh(γL)

Zo cosh(γL)+(VR/IR)sinh(γL)

 If load impedance i.e., ZR = 0 then Zin = Zsc

Zsc = Zo(tanh(γL))--------- eq 20
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VS = VR cosh(γL) +ZoIR sinh(γL)

IS = IR cosh(γL)+(VR/Zo)sinh(γL)

VR cosh(γL) +ZoIR sinh(γL)

IR cosh(γL)+(VR/Zo)sinh(γL)
Zin= 

Zin= Zo 

Zo( ZR cosh(γL) +Zo sinh(γL))

Zo cosh(γL)+ ZR sinh(γL)
Zin= ------------ eq 19 



INPUT IMPEDANCE Zin  CONT……
 If load impedance is open i.e., ZR=∞ then Zin =Zoc

Zoc = Zo(coth(γL)) --------- eq 21

 Multiplying the eq 20 & 21 we get

 So with the quantities Zoc and Zsc known we can calculate Zo easily.

 

 Power loss is due to resistive and conductance part of transmission

line so if these get neglected then transmission line is low loss and

this occurs in ultra high frequency ranges only.so

R<< ωL , G << ωC

 At very high frequencies the practical transmission lines are low loss

line so substituting the above conditions in Zo expression we get,

   Zo= 
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 Zoc*Zsc = Zo2 

LOW LOSS AND ULTRA HIGH FREQUENCY TRANSMISSION LINE

(R+jωL) 1/2

(G+jωC) 1/2

   Zo=(L/C)1/2 --------- for low loss transmission line. 



 LOW LOSS AND ULTRA HIGH FREQUENCY 

TRANSMISSION LINE CONT…..
 Substituting conditions in γ we get,

γ= ((R+jωL)(G+jωC))1/2

γ= (j2ω2LC) 1/2

γ= Jω(LC)1/2

as γ= α+jβ      where α – attenuation factor,β-phase velocity

 Comparing the equations we get

α=0, β= ω(LC)1/2

 For all p a ti al ases α  a ot e ze o so undertaking the

app o i atio s e get γ  as
γ= ((R+jωL)(G+jωC))1/2

=   (jωL(1+(R/jωL))jωC(1+(G/j ωC))

=jω                                                        (Since (R/jωL)<<1 and (G/j ωC)<<1)

= jω  
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√ 

√LC √((1+(R/jωL))(1+(G/j ωC))

((1+(R/2jωL))(1+(G/2j ωC))√LC



  LOW LOSS AND ULTRA HIGH FREQUENCY 

TRANSMISSION LINE CONT…..
 On expanding the above equation we get

 As ω2 is so large for low loss transmission line 1/ω2=0

  So for practical cases 

β =       

α=                             =   

 Equations of voltage and current for low loss  transmission line is as

follows

 Applying some mathematics we get,

                                    =   
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             R         G         RG 

2jωL 2jωC 4jω2LC
+ -+   1 γ = 

γ =   1 -j -j 
           R     G    

2ωL 2ωC

) ( jω√LC

) ( jω√LC

 ω√LC

1 
2 

R 
L 

C 
+G 

C 

L 
( ) ) ( 

1/2 1/2 1 
2 ( ) ) ( R Zo+ 

Zo 
G 

Vs = VR cosh(jβL)+ZoIR sinh(jβL)

Is = IR cosh(jβL)+(VR/Zo)sinh(jβL)
Since α=0,γ=jβL

Sinh(jx)= 
e jx - e -jx 

2 

(cosx+jsinx)-(cosx-jsinx) 

2 
= jsinx 



 INPUT IMPEDANCE OF LOW LOSS TRANSMISSION LINE 

 Similarly coshjx = cosx

 Substituting these terms in voltage and current equat-

-ions we get

 Input impedance is ZS is given by ratio of VS and IS

         

 This  is the input impedance at z=-L in terms of load impedance and

characteristic impedance i.e ., ZR , Zo respectively. 

 Now replacing the terms z=0 and sending it to x=L from terminating

end L=x we get ie., L=-x we get voltage and current expressions at a

dista e  f o  the load e d.
 22 

Vs = VR cos(βL)+jZoIR sin(βL)

Is = IR cos(βL)+j(VR/Zo)sin(βL)

VR/IRcos(β L) +jZo sin(β L)

Zo cos(γL)+j(VR/IR)sin(βL)
ZS= 

ZR cos(β L) +jZo sin(β L)

Zo cos(β L)+j ZR sin(βL)
ZS= 

Zo 

Zo 



   STUDY OF VOLTAGE AND CURRENT EXPRESSIONS 

 The equations of voltage and current is as follows

   

 Taking VR and IR common from voltage and current equations

respectively we get

 Magnitude of voltage and current at some arbitrary point in the

transmission line is as follows

                                                                      NEGATIVE SIGN?? 

 For a loss less transmission line Zo=(L/C)1/2 which is purely resistive

the terminating load should be also resistive let Zo=Ro and ZR=R
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Vs = VR cos(βx) - jZoIR sin(βx)

Is = IR cos(βx) - j(VR/Zo)sin(βx)

Vx = VR[cos(βx) – j(Zo/ZR) sin(βx)]

Ix = IR [cos(βx) - j(ZR/Zo)sin(βx)]

|Vx| = VR    [cos2(βx) – (Zo/ZR)2
 sin2(βx)]

|Ix|= IR   [cos2 (βx) - (ZR/Zo) 2sin2(βx)]√ 
√ 

|Vx| = VR    [cos2(βx) – (Ro/R)2
 sin2(βx)]

|Ix|= IR   [cos2 (βx) - (R/Ro) 2sin2(βx)]

√ 
√ 



 STUDY OF VOLTAGE AND CURRENT EXPRESSIONS 

 When R << Ro

|VX| will be maximum when cos(βx) is minimum or

sin(βx) is maximum. Similarly |IX| will be maximum when cos(βx) is

maximum or sin(βx) is minimum.

 Waveforms of voltage and current at an arbitrary point is as follows

 For voltage max =>βx = (2n-1)π/2    For current max =>βx = nπ
2πx                      2πx  
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Voltage max 

current max 

0 λ/4 λλ/2 3λ/4 

(2n+1) λ /4

nλ /2

λ = (2n-1)π/2

x= (2n+1) λ /4

= nπ

x= nλ /2
λ



α  AND β  EXPRESSIONS
 From the expression γ

γ= ((R+jωL)(G+jωC))1/2   since γ= α+jβ
(α +jβ)2=(R+jωL)(G+jωC)

α2 – β2 + (2αβ)j = (RG – ω2LC) + j (RωC+GωL)

 Equalizing real and imaginary terms on both sides we get

α2 – β2 = RG – ω2LC -------- eq 22

2αβ = RωC+GωL

α2 + β2 = ((R2+ω2L2)(G2+ω2C2))1/2 ---------- eq 23

 Adding eq 22 & eq 23 we get

α=+√    [RG – ω2LC]+ √((R2+ω2L2)(G2+ω2C2))   ------------ eq 24

 Similarly subtracting eq 22 and eq 23 we get

β =+√    [RG – ω2LC]+ √((R2+ω2L2)(G2+ω2C2))   ------------- eq 25
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  DISTORTION FREE TRANSMISSION  LINE 

 As said efo e α  as atte uatio  fa to  if α do t a
  with frequency then the transmission line is almost 

  said to be distortion free transmission line. 

 At a load side the signal is amplified by using some amplifier circuit.

 It is because, transmission line is used for different frequencies so if

attenuation factor depends upon frequency, we have to make a

amplifier circuit which amplifies depending upon frequency which is

difficult and also sometimes transmission line is used for

transmitting group of frequencies so if α depends upon frequency,

each signal of different frequency is attenuated by different amounts 

which leads to distortion.   

 So an attempt is made by  varying  L such that attenuation factor α is

minimum such that (dα/dL) =0.

 So differentiating the eq 24 we get

                        ---------- distortion less condition   
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 L = CR/G 



DISTORTION FREE TRANSMISSION LINE CONT….

 Substituting the above condition in eq 24 & 25 we get

α=   RG       β = ωC  R   1/2

 Under these conditions attenuation distortion is completely

eliminated because there is no frequency component in expression.

 Underground cables have usually large value of R because of small

diameters of conductors are used. It has also value of large shunt

capacitance because of small spacing between the conductors .

Similarly leakage conductance is also negligible. Under this condition

addition of suitable value of inductance to the cable conductors can

be used to achieve distortion less condition such arrangement is

termed as loading .

 When the reflection takes place along the line then the incident and

reflected wave get combine to give standing wave. The ratio of

maximum to minimum voltage or current is called standing wave

ratio.
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STANDING WAVE RATIO  CONT…..
 Example of a standing wave is Mexican wave which is

usually done to encourage cricketers by audience in

stadium.

 voltage standing wave ratio(VSWR) = 

  current standing wave ratio(CSWR) = 

 If only RMS value is considered

 |VMAX| = |Vi| + |Vr| 

 |VMIN| = |Vi| - |Vr| 

  VSWR=                                       

 Similarly

  CSWR =                    

0 <γ < 1

< VSWR<∞
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VMAX 

VMIN | | 
IMAX 

IMIN | | 

|Vi| + |Vr| 

|Vi| - |Vr| 
= 

1 + 
|Vr| 

|VI| 

1 - |Vr| 

|VI| 

= 
1 +γ
1 - γ

|Ii| + |Ir| 

|Ii| - |Ir| 
= 

1 + |Ir|

|II| 
1 + |Ir| 

|II| 

= 
1 +γ
1 - γ

_ _ 

_ 



STANDING WAVE RATIO  CONT…..
 When there is a reflection then they sometimes add

up or they might subtract depends upon phase differ-

-ence between incident and reflected wave.

  IMIN=                  IMAX=   

 Maximum impedance occurs at voltage maximum and current

minimum.

  ZMAX= 

  ZMIN=       
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|Vi| -|Vr| 

Zo 

|Vi| +|Vr| 

Zo 

|Vi| +|Vr| 

       IMIN = 
|Vi| +|Vr|

|Vi| -|Vr| 

 

Zo 

|Vi| -|Vr| 

 IMAX = 
|Vi|-|Vr|

|Vi| +|Vr| 
Zo 

=(VSWR)Zo 

=Zo/(VSWR) 

INPUT IMPEDANCE IN TERMS OF REFLECTION CO-EFFICIENT 

ZIN= 
(ZR cosh(γL) +Zo sinh(γL))

   Zo cosh(γL)+ ZR sinh(γL)

ZIN= 
( ZR (eγL + e-γL) +Zo (e

γL - e-γL))

   (Zo (eγL + e-γL) + ZR (eγL - e-γL))

((eγL (ZR +Zo) +e-γL(ZR - Zo))

(eγL(ZR +Zo) - e
-γL(ZR - Zo))

= 

(eγL
 +e-γL γR)

(eγL
 - e

-γL γR)
Zo = ZIN Where γR –Reflection coefficient

Zo Zo 

Zo 



  MORE ABOUT REFLECTION COEFFICIENT 

 From the earlier equations it is known to us that along

the line, voltage at any point VX is always sum of incid-  

-ent and reflected voltages VI and VR and these voltages goes to

maximum at respective points depending on whether VI and VR is in

phase or in phase opposition. 

 Since we are dealing with lossless line (i.e., α =0)

γ = jβ
VX = AejβL + Be-jβL --------- Eq 26

Whe e L  is dista e easu ed f o  the e ei e  e d.
 If k  is efle tio  o-efficient expressed in magnitude and direction

both in polar form 

k = |k| φ = |k|ejφ

   B/A = |k|ejφ

  B = A |k|ejφ    substitute it in Eq 26 we get 

VX = AejβL + A |k|ejφ e-jβL
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VR    Be-jβL`

IR       Ae-jβL
=B/A K= =` 



DEPENDANCE OF VOLTAGE ON K
VX = AejβL[1 + |k|ejφ e-2jβL]

VX = AejβL[1 + |k|e -j[2jβL- φ]]

Taking only the modulus , we can get

|VX| = |A|[1 + |k|e -j[2jβL- φ]]

 Now voltage has maximum value when two components are in

phase . i.e., at L=Lmax

2βLmax- φ =2nП ------Eq a     = , , , ,…..

 Similarly the voltage has minimum magnitude when components are

out of phase

2βLmin- φ =(2n+1)П --------E       = , , , ,…..
   

 From Eq a

2βLmax- 2nП = φ
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|Vmin|=|A|[1+|K|]     i.e., L=Lmax 

|Vmin|=|A|[1-|K|] 



CALCULATION OF φ
φ = 2(2П)Lmax- 2П     when n=1

                            when n=0 

 From equation b

2βLmin- φ =П  when n=0 
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λ
φ = 2(2П)Lmaxλ
φ = 2П(2Lmax/λ) radian

φ = 360o (2Lmax)
λ

degrees 

φ = 2 βLmin- П
φ = 2(2П)Lmin- П

λ
radian 

φ = 360o (2Lmin)     1 

λ -[  
2 

] degrees 



 IMPEDANCE MATCHING 

 When load impedance equals to the characteristic

impedance then there will be no reflection of signal.

This impedance matching can be achieved by various methods.

 Quarter wave transformer.

 Stub matching.

• Single stub matching.

• Double stub matching.

 Consider an antenna, the signal that is to be transmitted is given by

a t a s issio  li e. Let the sig al a ele gth e  λ/ ,the  le gth of 
transmission line is λ/4 as shown in figure
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QUARTER WAVE TRANSFORMER 

 RIN 

Signal wavelength λ/2

λ/4

. . 
 Zo 

 Zin 

Antenna with 

impedance RIN 

Transmission line of 

characteristic 

impedance Zo 



QUARTER WAVE TRANSFORMER CONT….
 Antenna has an impedance RIN which is a load for the

transmission line of characteristic impedance Zo. 

 A quarter wave transformer like low frequency transformers changes

the impedance of the load to another value so that matching is

possible.

 This method of matching impedance uses a section of transmission

line Zo of length λ/4 long. So for a loss less line input impedance at a

distance λ/4 from the load is 
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  RIN+j Zo tan(β( λ/4))   

Zo +j RIN tan(β( λ/4)) 
 Zin = 

               2П    λ 

λ 4 
β*( λ/4) = * 

П 
= 

2 
( ). . . 

RIN+j Zo tan(П/2)

Zo +j RIN tan(П/2)
 Zin = 

Zo 

Zo 

 Zin = 
Zo2 
RIN 

Zo2= Zin*RIN ----------- Eq 27 



QUARTER WAVE TRANSFORMER CONT….
 Thus it is clear from the Eq 27, the product of input

impedance Zin and RIN equal to the square of charact- 

-eristic impedance of the line. From equation, we can say that

quarter wavelength line transforms a load impedance RIN  i.e., 

smaller than Zo into a value Zin i.e., larger than Zo and vice versa. 

 In this way impedance is matched by choosing values of RIN , Zo and

Zin which satisfy the Eq 27 there by information or signal can be 

transmitted without any loss to antenna(application). 

 DISADVANTAGES: 

 Quarter wave transformer is sensitive to change in frequency for a

new wavelength the section will no longer the same λ/4 line.
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  INTRODUCTION TO STUB MATCHING 

 We have seen that a section of transmission line can

be used as matching section by inserting them betwe-

-en source and load. It is also possible to connect sections of open or

short circuited line called stub in shunt with the main line at some

point or points to effect impedance matching. This is called as stub

matching.

 Real part will be matched by position(should move stub from load).

 Imaginary part will be matched by the length of the stub.
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load 

Distance of stub from load 

-jb
y=1 

Zo 
Generator end 



  SINGLE STUB MATCHING 
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load 
-jb

Y=1 Generator end 

Zo 

Distance of stub from load 

 Input impedance at any point of transmission line is given by

 Now converting impedance to admittance by

 Yo=1/Zo [Characteristic admittance] 

 YR=1/ZR [Load  admittance] 

 Yin=1/Zin [input admittance] 

Zo( ZR +Zo tanh(γL))

Zo +ZR tanh(γL)
Zin= 

Ys=Yo 
YR  +Yo tanh(γL))

Yo + YR tanh(γL)



SINGLE STUB MATCHING cont….
 For a lossless line

γ = α +jβ    since α=0

γ = jβ

 Using normalised admittance i.e.,

 On rationalising the above equation with 1-jtan(βL), we get normali-

sed source impedance as Ys=Gs+jBs .

 Gs =                        Bs= 
                                               38 

YR +Yo tanh(jβ L))

    Yo +YR tanh(jβ L)
YS=Yo 

YS 

Yo  Ys=  Yr= 
YR 

Yo 

Yo 
YS = 

        YR/Yo +jtan(jβ L))

1 + j(YR/ Yo) tan(jβ L)

Ys = 
Yr+  j tan(βL)

     1 + jYr tan(βL)

Yr(1+tan2βL
1+Yr

2
 tan2βL

tanβL(1-Yr
2)

1+Yr
2tan2(βL)



SINGLE STUB MATCHING cont….
 But for no reflection, Y s= G s + j B s = 1 + j 0

 As it is normalised, real part should be zero.

Yrtan2βLs(Yr-1)=Yr-1

tan2βLs=         =

βLs=tan-1 

Ls= 

Ls= 

 DISADVANTAGES :

 It is difficult to locate the position where imaginary part is exactly

zero by using single stub.

 Ls depends on wavelength of the signal.
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Yr(1+tan2βLs)

1+Yr
2

 tan2βLs

= 1 Ls-distance of stub from load

1+Yr
2

 tan2βLs = Yr(1+tan2βLs)

1 

Yr 

Yo 

YR 

√ Yo/YR

1 

β
tan-1 √ Yo/YR

1 

β tan-1 ZR/ZO√` ---------- Eq a 



SINGLE STUB MATCHING cont….
 If Ls is very small, it is difficult to locate the stub.

β=

Ls α λ
Ls α  

 For high frequency variation, it is difficult.

 Eq a gives the location of stub from the load end. Now the susscept-

ance at the point of attachment of stub is given by

    Br =      = 

 Substitute

tan(βLS)=                & Yr =     in above equation we get Br as follows 
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2П
λ

Ls = 
λ 

2П tan-1 √ ZR/ZO

1 
f 

Bs 

Y0 

Tan(βLS)(1 – Yr
2)

1 + Yr
2tan2(βLS)

. 1 

Y0 

Y0 
YR ( ) 

1/2 YR 
Y0 

Br = 
Bs 

Y0 YR 
(Y0 – YR)

Y0 
) ( = 

1/2 
Hence this is the 

susceptance  which should 

be added at the point of 

attachment of stub 



SINGLE STUB MATCHING cont….
 This addition of susceptance can be obtained by

either short-circuited stub or open circuited stub. The

desired length which provide susceptance Bs is readily obtained with 

the help of fundamental equation. 

VR = Vscos(βL) – Jz0 Issin(βL).

 For a lossless short circuited stub VR= 0 because it is shorted at one

end. Let the impedance be Zt so

   Zt = 

 Short circuited admittance Yt =1/Zt . So

   Yt =                      =    

 Equating real and imaginary part we get Gt = 0 , Bt = -jY0cot(βLt).

 Now at the point of attachment, line susceptance  and stub suscept-

ance must be equal to zero.
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Vs 

Is 
= j Z0 tan(βLt)

1 

j Z0 tan(βLt)  Z0 tan(βLt)

-j

Yt = Gt + j Bt = - j Y0 cot(βLt)



SINGLE STUB MATCHING cont….
 So Bt + Bs= 0

Y0 cot(βLt) +                        = 0 

 Substituting YR = (ZR/Z0) and β = (λ/2П) in above equation we get

    Lt = 

 DISADVANTAGES :

 The range of terminating impedances which can be transferred is

limited.

 It is used for fixed frequency only (limited bandwidth).
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( 
1/2 

(Y0 – YR) 
YR 

Y0 ) 
cot(βLt) = 

(Y0 – YR)

Y0 
( Y0

YR 
)

1/2 

λ
2П Tan-1 ( √ ZR Z0

(ZR – Z0)
) 




