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UNIT-2 
PROCESSOR ORGANIZATION 
 
To understand the organization of the processor, let us consider the requirements placed on the 
processor, the things that it must do: 
 

 Fetch instruction: The processor reads an instruction from memory (register, cache, main 
memory).  

 Interpret instruction: The instruction is decoded to determine what action is required. 
 Fetch data: The execution of an instruction may require reading data from memory or an I/O 

module.  
 Process data: The execution of an instruction may require performing some arithmetic or 

logical operation on data.  
 Write data: The results of an execution may require writing data to memory or an I/O module. 

  
Figure shown below is the simplified view of a processor, indicating its connection to the rest 

of the system via the system bus.  
 

 
The major components of the processor are an arithmetic and logic unit (ALU) and a control 

unit (CU). The ALU does the actual computation or processing of data. The control unit controls the 
movement of data and instructions into and out of the processor and controls the operation of the ALU. 
In addition, the figure shows a minimal internal memory, consisting of a set of storage locations, called 
registers.  

 
Figure shown below is a detailed view of the processor. The data transfer and logic control 

paths are indicated, including an element labeled internal processor bus. This element is needed to 
transfer data between the various registers and the ALU because the ALU in fact operates only on data 
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in the internal processor memory. The figure also shows typical basic elements of the ALU. Note the 
similarity between the internal structure of the computer as a whole and the internal structure of the 
processor. In both cases, there is a small collection of major elements (computer: processor, I/O, 
memory; processor: control unit, ALU, registers) connected by data paths. 

 
 
 
Representation of Information:  

Digital Computers use Binary number system to represent all types of information inside the 
computers. Alphanumeric characters are represented using binary bits (i.e., 0 and 1). Digital 
representations are easier to design, storage is easy, accuracy and precision are greater. 

There are various types of number representation techniques for digital number representation, 
for example: Binary number system, octal number system, decimal number system, and hexadecimal 
number system etc. But Binary number system is most relevant and popular for representing numbers 
in digital computer system. 
 
Storing Real Number: (Number formats) 

These are structures as following below: 
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Conversion between Twos Complement Binary and Decimal 

 

Sign Magnitude Representation 

 

This procedure will not work for twos complement negative integers. Using the same example, 
 

 
 
Instead, the rule for twos complement integers is to move the sign bit to the new leftmost 

position and fill in with copies of the sign bit. For positive numbers, fill in with zeros, and for 
negative numbers, fill in with ones. This is called sign extension. 
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INTEGER ARITHMETIC: 

# Hardware for Addition and Subtraction 

Figure shown below the data paths and hardware elements needed to realize addition and subtraction. 
The central element is a binary adder, which is accessible two numbers for addition and produces a 
sum and an overflow indication. The binary adder treats the two numbers as unsigned integers.          
For addition, the two numbers are presented to the adder from two registers, designated in this case as 
A and B registers. The result may be stored in one of these registers or in a third. The overflow 
indication is stored in a 1-bit overflow flag (0 = no overflow; 1 = overflow). For subtraction, the 
subtrahend (B register) is passed through a twos complementer so that its twos complement is 
presented to the adder. Note that Figure only shows the data paths. Control signals are needed to 
control whether or not the complementer is used, depending on whether the operation is addition or 
subtraction. 
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#Multiplication 

To illustrates the multiplication of unsigned binary integers, as might be carried out using paper and 
pencil. Several important observations can be made: 

1.  Multiplication involves the generation of partial products, one for each digit in the multiplier. 
These partial products are then summed to produce the final product. 

2.  The partial products are easily defined. When the multiplier bit is 0, the partial product is 
0.When the multiplier is 1, the partial product is the multiplicand. 

 

3.  The total product is produced by summing the partial products. For this operation, each 
successive partial product is shifted one position to the left relative to the preceding partial 
product. 

4.  The multiplication of two n-bit binary integers results in a product of up to bits in length.    
(e.g., 11 X 11 = 1001) 

Compared with the pencil-and-paper approach, there are several things has do to make computerized 
multiplication. First, it can perform a running addition on the partial products rather than waiting until 
the end. This eliminates the need for storage of all the partial products; fewer registers are needed. 
Second, we can save some time on the generation of partial products. For each 1 on the multiplier, an 
add and a shift operation are required; but for each 0, only a shift is required. 

Hardware Implementation of Unsigned Binary Multiplication:  

Figure shown below the multiplier and multiplicand are loaded into two registers (Q and M). A third 
register, the A register, is also needed and is initially set to 0. There is also a 1-bit C register, initialized 
to 0, which holds a potential carry bit resulting from addition. The operation of the multiplier is as 
follows. Control logic reads the bits of the multiplier one at a time. If Q0 is 1, then the multiplicand is 
added to the A register and the result is stored in the A register, with the C bit used for overflow. Then 
all of the bits of the C, A, and Q registers are shifted to the right one bit, so that the C bit goes into An- 
1, A0 goes into Qn- 1, and Q0 is lost. 
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If Q0 is 0, then no addition is per-formed, just the shift. This process is repeated for each bit of the 
original multiplier and an example is given below. The resulting 2n-bit product is contained in the A 
and Q registers. 

 

 A flowchart of the operation is shown below. Note that on the second cycle, when the 
multiplier bit is 0, there is no add operation. 
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Flowchart for Unsigned Binary Multiplication 

 
# TWOS COMPLEMENT MULTIPLICATION 
As addition and subtraction can be performed on numbers in twos complement notation by treating 
them as unsigned integers.  

 
If these numbers are considered to be unsigned integers, then we are adding 9 (1001) plus 3 (0011) to 
get 12 (1100). As twos complement integers, we are adding -7 (1001) to 3 (0011) to get -4 (1100). 
Unfortunately, this simple scheme will not work for multiplication.  

Now it can demonstrate that straightforward multiplication will not work if the multiplicand is 
negative. The problem is that each contribution of the negative multiplicand as a partial product must 
be a negative number on a 2n-bit field; the sign bits of the partial products must line up. 

 

 
Example shows that multiplication of 1001 by 0011. If these are treated as unsigned integers, the 
multiplication of 9 x  3 = 27 proceeds simply. However, if 1001 is interpreted as the twos complement 
-7 value then each partial product must be a negative twos complement number of 2n (8) bits, as 
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shown in (b). Note that this is accomplished by padding out each partial product to the left with binary 
1s. If the multiplier is negative, straightforward multiplication also will not work.  

There are a number of ways out of this problem. One of the most common of these is Booth’s 
algorithm. This algorithm also speeds up the multiplication process, relative to a more straightforward 
approach. 
#Booth’s Algorithm for Twos Complement Multiplication 

 
 

Booth’s algorithm can be described as follows. The multiplier and multiplicand are placed in the Q and 
M registers respectively. There is also a 1-bit register placed logically to the right of the least              
significant bit (Q0) of the Q register and designated Q-1. The results of the multiplication will appear in 
the A and Q registers. A and Q-1 are initialized to 0. As before, control logic scans the bits of the 
multiplier one at a time. Now, as each bit is examined, the bit to its right is also examined. If the two 
bits are the same (1–1 or 0–0), then all of the bits of the A, Q, and Q-1 registers are shifted to the right 1 
bit. If the two bits differ, then the multiplicand is added to or subtracted from the A register, depending 
on whether the two bits are 0–1 or 1–0. Following the addition or subtraction, the right shift occurs. In 
either case, the right shift is such that the leftmost bit of A, namely An- 1, not only is shifted into An- 2, 
but also re-mains in An- 1. This is required to preserve the sign of the number in A and Q. It is known 
as an arithmetic shift, because it preserves the sign bit. The sequence of events in Booth’s algorithm 
for the multipli-cation of 7 by 3 is shown below. 
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#Division 
Division is more complex than multiplication but is based on the same general principles. As the 
paper-and-pencil approach and the operation involves repetitive shifting and addition or subtraction.  

As shown the example of the long division of unsigned binary integers. First, the bits of the 
dividend are examined from left to right, until the set of bits examined represents a number greater 
than or equal to the divisor; this is referred to as the divisor being able to divide the number. Until this 
event occurs, 0s are placed in the quotient from left to right. When the event occurs, a 1 is placed in the 
quotient and the divisor is subtracted from the partial dividend. The result is referred to as a partial 
remainder. From this point on, the division follows a cyclic pattern. 

 
Emxaple of Division of Unsigned Binary Integers 

 
At each cycle, additional bits from the dividend are appended to the partial remainder until the result is 
greater than or equal to the divisor. As before, the divisor is subtracted from this number to produce a 
new partial remainder. The process continues until all the bits of the dividend are exhausted.  

Flowchart shows a machine algorithm that corresponds to the long division process. The 
divisor is placed in the M register, the dividend in the Q register. At each step, the A and Q registers 
together are shifted to the left 1 bit. M is subtracted from A to determine whether A divides the partial 
remainder. If it does, then Q0 gets a 1 bit. Otherwise, Q0 gets a 0 bit and M must be added back to A to 
restore the previ-ous value. The count is then decremented, and the process continues for n steps. At 
the end, the quotient is in the Q register and the remainder is in the A register. 
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Flowchart for Unsigned Binary Division 

 
Example of Restoring Twos Complement Division (7/3) 
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There are two major approaches to store real numbers (i.e., numbers with fractional component) in 
modern computing.  

These are: 

(i) Fixed Point Notation and  
(ii) Floating Point Notation.  

In fixed point notation, there are a fixed number of digits after the decimal point, whereas floating 
point number allows for a varying number of digits after the decimal point. 

 Fixed-Point Representation: 

This representation has fixed number of bits for integer part and for fractional part. For example, if 
given fixed-point representation is IIII.FFFF, then you can store minimum value is 0000.0001 and 
maximum value is 9999.9999. There are three parts of a fixed-point number representation: the sign 
field, integer field, and fractional field. 

 

We can represent these numbers using: 

 Signed representation: range from -(2(k-1)-1) to (2(k-1)-1), for k bits. 

 1’s complement representation: range from -(2(k-1)-1) to (2(k-1)-1), for k bits. 

 2’s complementation representation: range from -(2(k-1)) to (2(k-1)-1), for k bits. 

2’s complementation representation is preferred in computer system because of unambiguous property 
and easier for arithmetic operations. 

Example: Assume number is using 32-bit format which reserve 1 bit for the sign, 15 bits for the 
integer part and 16 bits for the fractional part. 

Then, -43.625 is represented as following: 
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Where, 0 is used to represent +ve and 1 is used to represent -ve. 000000000101011 is 15 bit binary 
value for decimal 43 and 1010000000000000 is 16 bit binary value for fractional 0.625. 

The advantage of using a fixed-point representation is performance and disadvantage is relatively 
limited range of values that they can represent. So, it is usually inadequate for numerical analysis as it 
does not allow enough numbers and accuracy. A number whose representation exceeds 32 bits would 
have to be stored inaccurately. 

 

These are above smallest positive number and largest positive number which can be store in 32-bit 
representation as given above format. Therefore, the smallest positive number is 2-16 ≈  0.000015 
approximate and the largest positive number is (215-1)=32768, and gap between these numbers is 2-16. 

Floating-Point Representation: 

This representation does not reserve a specific number of bits for the integer part or the fractional part. 
Instead it reserves a certain number of bits for the number (called the mantissa or significand) and a 
certain number of bits to say where within that number the decimal place sits (called the exponent). 

The floating number representation of a number has two part: the first part represents a signed fixed 
point number called mantissa. The second part of designates the position of the decimal (or 
binary) point and is called the exponent. The fixed point mantissa may be fraction or an integer. 
Floating -point is always interpreted to represent a number in the following form: m x re.  
 Only the mantissa m and the exponent e are physically represented in the register (including 
their sign). A floating-point binary number is represented in a similar manner except that is uses base 2 
for the exponent. A floating-point number is said to be normalized if the most significant digit of the 
mantissa is 1. 
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So, actual number is ±S x B±E, where ±  is the sign , s is the significant or mantissa, E is the exponent 
value, and Bias is the bias number. 

Note that signed integers and exponent are represented by either sign representation, or one’s 
complement representation, or two’s complement representation. 

The floating point representation is more flexible. Any non-zero number can be represented in the 
normalized form of  ±(1.b1b2b3 ...)2x2n This is normalized form of a number x. 

Example: Suppose number is using 32-bit format: the 1 bit sign bit, 8 bits for signed exponent, and 
23 bits for the fractional part. The leading bit 1 is not stored (as it is always 1 for a normalized 
number) and is referred to as a “hidden bit”. 

Then −53.5 is normalized as  -53.5 = (-110101.1)2 = (-1.101011)x25 , which is represented as following 
below, 

 

Where 10000100 is the 8-bit binary value of exponent value +5 in form of baised representation. 

Note that with bias of 127, 8-bit exponent field is used to store true integer exponents values are           
-127 ≤  n ≤ 128. 

The smallest normalized positive number that fits into 32 bits is 
(1.00000000000000000000000)2x2-127=2-127≈5.87x10-39 , and  largest normalized positive number that 
fits into 32 bits is (1.11111111111111111111111)2x2128≈ 3.40x1038 . These numbers are represented as 
following below, 

0 00000000 000000000000000000000002 = 2−127 ≈ 5.87x10-39  
(smallest positive normal number) 
 
0 11111111 111111111111111111111112 = (1.11111111111111111111111)2x2128≈ 3.40x1038  
 (largest positive normal number) 
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The precision of a floating-point format is the number of positions reserved for binary digits plus one 
(for the hidden bit). In the examples considered here the precision is 23+1=24.   
 The gap between 1 and the next normalized floating-point number is known as machine 
epsilon. the gap is (1+2-23)-1=2-23for above example, but this is same as the smallest positive floating-
point number because of non-uniform spacing unlike in the fixed-point scenario. Note that non-
terminating binary numbers can be represented in floating point representation, e.g., 1/3 = (0.010101 
...)2 cannot be a floating-point number as its binary representation is non-terminating. 

IEEE Floating point Number Representation: 

IEEE (Institute of Electrical and Electronics Engineers) has standardized Floating-Point Representation 
as following diagram. 

 

 

So, actual number is (-1)s(1+m)x2(e-Bias), where s is the sign bit, m is the mantissa, e is the exponent 
value, and Bias is the bias number. The sign bit is 0 for positive number and 1 for negative number. 
Exponents are represented by or two’s complement representation. 

According to IEEE 754 standard, the floating-point number is represented in following ways: 

 Half Precision (16 bit): 1 sign bit, 5 bit exponent, and 10 bit mantissa 

 Single Precision (32 bit): 1 sign bit, 8 bit exponent, and 23 bit mantissa 

 Double Precision (64 bit): 1 sign bit, 11 bit exponent, and 52 bit mantissa 

 Quadruple Precision (128 bit): 1 sign bit, 15 bit exponent, and 112 bit mantissa 

Special Value Representation:         
 There are some special values depended upon different values of the exponent and mantissa in 
the IEEE 754 standard. 

 All the exponent bits 0 with all mantissa bits 0 represents 0. If sign bit is 0, then +0, else -0. 

 All the exponent bits 1 with all mantissa bits 0 represents infinity. If sign bit is 0, then +∞, else -∞. 

 All the exponent bits 0 and mantissa bits non-zero represents denormalized number. 

 All the exponent bits 1 and mantissa bits non-zero represents error. 
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FLOATING POINT ARITHMETIC 
 
Arithmetic operations on floating point numbers consist of addition, subtraction, multiplication and 
division. 
 The operations are done with algorithms similar to those used on sign magnitude integers 
(because of the similarity of representation) -- example, only add numbers of the same sign.  If the 
numbers are of opposite sign, must do subtraction. 
 
# ADDITION 
 
 Example on decimal value given in scientific notation: 
 

  3.25 x 103 
+ 2.63 x 10-1 

----------------- 
 
      First step:  Align decimal points 
      
 Second step:  Add 
 

   3.25         x 103 
+ 0.000263 x 103 
-------------------- 
   3.250263 x 103 

(presumes use of infinite precision, without regard for accuracy) 
 
      Third step:  Normalize the result (already normalized!) 
 
Example on floating point value given in binary: i.e. 100 + 0.25 = 100.25 = 1.0025 X 102 
 
 .25 =   0 01111101 00000000000000000000000 
 
 100 =  0 10000101 10010000000000000000000  to add these fl. pt. representations, 
    
 Step 1:  Align radix points 

 Shifting the mantissa LEFT by 1 bit DECREASES THE EXPONENT by 1 
 Shifting the mantissa RIGHT by 1 bit INCREASES THE EXPONENT by 1 

It has to shift the mantissa right, because the bits that fall off the end should come from the least 
significant end of the mantissa. 
 

 Choose to shift the .25, since we want to increase it's exponent. 
 Shift by  10000101 – 01111101 = 00001000   (8) places. 

 
            0 01111101 00000000000000000000000 (original value) 
            0 01111110 10000000000000000000000 (shifted 1 place) 
  (Note that hidden bit is shifted into MSB of mantissa) 
            0 01111111 01000000000000000000000 (shifted 2 places) 
            0 10000000 00100000000000000000000 (shifted 3 places) 
            0 10000001 00010000000000000000000 (shifted 4 places) 
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            0 10000010 00001000000000000000000 (shifted 5 places) 
            0 10000011 00000100000000000000000 (shifted 6 places) 
            0 10000100 00000010000000000000000 (shifted 7 places) 
            0 10000101 00000001000000000000000 (shifted 8 places) 
 
Step 2: Add (Include  the hidden bit for the 100) 
 
         0 10000101 1.10010000000000000000000  (100) 
      + 0 10000101 0.00000001000000000000000  (.25) 
      --------------------------------------------------------------- 
         0 10000101 1.10010001000000000000000 
 
Step 3:  Normalize the result (get the "hidden bit" to be a 1), it already is for this example. 
 
   The result is 0 10000101 10010001000000000000000 and can be verified on 
https://www.exploringbinary.com/floating-point-converter/ 
 
# SUBTRACTION 
 
     Like addition as far as alignment of radix points then the algorithm for subtraction of sign mag. 
numbers takes over. 
 
#MULTIPLICATION 
Example on decimal values given in scientific notation: 
 
     Algorithm:  multiply mantissas 
   add exponents 
 
        3.0 x 101 
       0.5 x 102     
      ------------- 
        1.50 x 103 
 
Example in binary:    Use a mantissa that is only 4 bits so that 
 
   0 10000011 1110  0 10000011 1110 
                 x 0 10000100 1001  0 10000100 1001 
                                ---------------------- 
 
   Mantissa multiplication:           1.1110 
    (don't forget hidden bit)      x 1.1001 
        ----------- 
                  becomes   10.1110111 
 
    Add exponents:       Always add true exponents (otherwise the bias gets added in twice) 
 
     Biased: 
     10000011 - 01111111=  00000100 (true exp  is 4) and 
  10000100 -01111111 = 00000101 (true exp is 5) 
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   Add true exponents      5 + 4 is 9 
 
     Re-bias exponent:     9 + 127 = 136. 
   Unsigned representation for 136 is  10001000. 
 
Now  put the result back together (and add sign bit). 
 
 0 10001000  10.1110111  
 
     Normalize the result: 
  (moving the radix point one place to the left increases the exponent by 1.) 
 
     0 10001000  10.1110111 becomes 0 10001001  1.01110111 
 
This is the value stored (not the hidden bit!):  0 10001001 01110111 
 
https://www.rapidtables.com/calc/math/binary-calculator.html 
 
#DIVISION 
 
   Similar to multiplication. 
 
   True division: do unsigned division on the mantissas (don't forget the hidden bit) 
   subtract TRUE exponents 
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