
Unit-1: Page | 1 Dr S K Singh

5EC3-01: Computer Architecture
Dr. S. K. Singh, Professor, ECE,
JECRC.

UNIT-I

Syllabus:
 Basic Structure of Computers,
 Functional units,
 Performance issues software,
 Machine instructions and programs,
 Types of instructions,
 Instruction sets: Instruction formats,
 Assembly language,
 Stacks,
 Ques,
 Subroutines.

Introduction:

What are Digital Computers?
The digital computer is a digital system that performs various computational tasks. Digital computers
use the binary number system, which has two digits: 0 and 1. A binary digit is called a bit. Information
is represented in digital computers in groups of bits. By using various coding techniques, groups of bits
can be made to represent not only binary numbers but also other discrete symbols, such as decimal
digits or letters of the alphabet.

Computer architecture

Computer architecture refers to those attributes of a system visible to a programmer or, put another
way, those attributes that have a direct impact on the logical execution of a program [1].

Computer Organization

Computer organization refers to the operational units and their interconnections that realize the
architectural specifications. Examples of architectural attributes include the instruction set, the number
of bits used to represent various data types (e.g., numbers, characters), I/O mechanisms, and interfaces
between the computer and peripherals; and the memory technology used [1].

Unit-1: Page | 2 Dr S K Singh

Computer Design

Computer Design is concerned with the hardware design of the computer. Once the computer
specifications are formulated, it is the task of the designer to develop hardware for the system.

Computer design is concerned with the determination of what hardware should be used and how the
parts should be connected. This aspect of computer hardware is sometimes referred to as computer
implementation. [1].

Basic Structure of Computers
The simplest illustration of a computer shown in figure 1. The computer interacts in some fashion with
its external environment. In general, all of its linkages to the external environment can be classified as
peripheral devices or communication lines.

Figure 1. The Computer [1]

The internal structure of the computer itself, which is shown in Figure 2.There are four main structural
components:

 Central processing unit (CPU): Controls the operation of the computer and performs its data
processing functions; often simply referred to as processor.

 Main memory: Stores data.
 I/O: Moves data between the computer and its external environment.
 System interconnection: Some mechanism that provides for communication among CPU,

main memory, and I/O. A common example of system interconnection is by means of a system
bus, consisting of a number of conducting wires to which all the other components attach.

Its major structural components are as follows:
 Control unit: Controls the operation of the CPU and hence the computer
 Arithmetic and logic unit (ALU): Performs the computer’s data processing functions
 Registers: Provides storage internal to the CPU
 CPU interconnection: Some mechanism that provides for communication among the control

unit, ALU, and registers

Unit-1: Page | 3 Dr S K Singh

Figure 2 The Computer: Top-Level Structure [1]

Functional units of computer
Figure 3 shows the basic functions that a computer can perform. In general, there are only four:

 Data processing
 Data storage
 Data movement
 Control

 The computer, must be able to process data. The data may take a wide variety of forms.

 It is also essential that a computer store data. Even if the computer is processing data, the
computer must temporarily store at least those pieces of data that are being worked on at any
given moment. Files of data are stored on the computer for subsequent retrieval and update.

 The computer must be able to move data between itself and the outside world. When data are

received from or delivered to a device that is directly connected to the computer, the process is
known as input–output (I/O), and the device is referred to as a peripheral.

 When data are moved over longer distances, to or from a remote device, the process is known

as data communications.

 Finally, there must be control of these three functions. Ultimately, this control is exercised by

the individual(s) who provides the computer with instructions.

Unit-1: Page | 4 Dr S K Singh

Figure 3. A Functional View of the Computer [1]

Digital Computers: Computer Architecture
Computer Architecture is concerned with the structure and behavior of the computer as seen by the
user.

It includes the information, formats, the instruction set, and techniques for addressing memory. The
architectural design of a computer system is concerned with the specifications of the various functional
modules, such as processors and memories, and structuring them together into a computer system.

Two basic types of computer architecture are:

1. von Neumann architecture[3]

2. Harvard architecture[4]

1. von Neumann architecture
The von Neumann architecture describes a general framework, or structure, that a computer's
hardware, programming, and data should follow. Although other structures for computing have been
devised and implemented, the vast majority of computers in use today operate according to the von
Neumann architecture.

von Neumann envisioned the structure of a computer system as being composed of the following
components:

1. ALU: The Arithmetic-Logic unit that performs the computer's computational and logical functions.

Unit-1: Page | 5 Dr S K Singh

2. RAM: Memory; more specifically, the computer's main, or fast, memory, also known as Random

Access Memory(RAM).

3. Control Unit: This is a component that directs other components of the computer to perform certain

actions, such as directing the fetching of data or instructions from memory to be processed by the

ALU; and

4. Man-machine interfaces; i.e. input and output devices, such as keyboard for input and display

monitor for output.

Block diagram of a Digital Computer[3]

An example of computer architecture base on the von Neumann architecture is the desktop personal
computer.

2. Harvard architecture
The Harvard architecture uses physically separate storage and signal pathways for their instructions
and data[4].

Unit-1: Page | 6 Dr S K Singh

In a computer with Harvard architecture, the CPU can read both an instruction and data from memory
at the same time, leading to double the memory bandwidth.

Microcontroller(single-chip microcomputer)-based computer systems and DSP(Digital Signal
Processor)-based computer systems are examples of Harvard architecture.

Basic Computer Model and different units of Computer
The model of a computer can be described by four basic units in high level abstraction. These basic
units are [2]:

 Central Processor Unit
 Input Unit
 Output Unit
 Memory Unit Input Unit

A. Central Processor Unit [CPU] :

Central processor unit consists of two basic blocks :

 The program control unit has a set of registers and control circuit to generate control signals.

 The execution unit or data processing unit contains a set of registers for storing data and an

Arithmatic and Logic Unit (ALU) for execution of arithmatic and logical operations.

In addition, CPU may have some additional registers for temporary storage of data.

B. Input Unit :

With the help of input unit data from outside can be supplied to the computer. Program or data is read

into main storage from input device or secondary storage under the control of CPU input instruction.

Example of input devices: Keyboard, Mouse, Hard disk, Floppy disk, CD-ROM drive etc.

C. Output Unit :

With the help of output unit computer results can be provided to the user or it can be stored in stograge

device permanently for future use. Output data from main storage go to output device under the control

of CPU output instructions.

Example of output devices: Printer, Monitor, Plotter, Hard Disk, Floppy Disk etc.

Unit-1: Page | 7 Dr S K Singh

D. Memory Unit :

Memory unit is used to store the data and program. CPU can work with the information stored in

memory unit. This memory unit is termed as primary memory or main memory module. These are

basically semi conductor memories.

There ate two types of semiconductor memories -

 Volatile Memory : RAM (Random Access Memory).

 Non-Volatile Memory : ROM (Read only Memory), PROM (Programmable ROM) EPROM

(Erasable PROM), EEPROM (Electrically Erasable PROM).

Secondary Memory :

There is another kind of storage device, apart from primary or main memory, which is known as

secondary memory. Secondary memories are non volatile memory and it is used for permanent

storage of data and program.

Example of secondary memories:

Hard Disk, Floppy Disk, Magenetic Tape ------ These are magnetic devices,

CD-ROM ------ is optical device

Thumb drive (or pen drive) ------ is semiconductor memory.

Machine instructions and programs
Machine Instructions are commands or programs written in machine code of a machine (computer)
that it can recognize and execute. The number of different opcodes varies widely from machine to
machine. A computer must have instructions capable of performing four types of operations [1]

 Data transfer
 Arithmetic
 Logical
 I/O
 Transfer of control

Unit-1: Page | 8 Dr S K Singh

Common Instruction Set Operations

Unit-1: Page | 9 Dr S K Singh

Unit-1: Page | 10 Dr S K Singh

Register transfer notation
Register is a very fast computer memory, used to store data/instruction in-execution.

A Register is a group of flip-flops with each flip-flop capable of storing one bit of information. An n-bit
register has a group of n flip-flops and is capable of storing binary information of n-bits.‹

The contents of a location are denoted by placing square brackets around the name of the location ‹ For
example, R1← [LOC] means that the contents of memory location LOC are transferred into processor
register R1
As another example, R3 ← [R1]+[R2] means that adds the contents of registers R1 and R2, and then
places their sum into register R3

Symbolic Designation Description

R3 ← R1 + R2 Contents of R1+R2 transferred to R3.

R3 ← R1 - R2 Contents of R1-R2 transferred to R3.

R2 ← (R2)' Compliment the contents of R2.

R2 ← (R2)' + 1 2's compliment the contents of R2.

R3 ← R1 + (R2)' + 1 R1 + the 2's compliment of R2 (subtraction).

R1 ← R1 + 1 Increment the contents of R1 by 1.

R1 ← R1 – 1 Decrement the contents of R1 by 1.

Types of instructions
 Zero-address instruction
 One-address instruction
 Two-address instruction
 Three-address instruction

Zero-address instruction
For example, PUSH: store operands in a structure called a pushdown stack

One-address instruction
Instruction form: Operation Destination
For example, Add A: add the contents of memory location A to the contents of the accumulator
register and place the sum back into the accumulator
As another example, Load A: copies the contents of memory location A into the accumulator

Unit-1: Page | 11 Dr S K Singh

Two-address instruction
Instruction form: Operation Source, Destination
For example, Add A, B: performs the operation B ← [A]+[B]. When the sum is calculated, the
result is sent to the memory and stored in location B
As another example, Move B, C: performs the operation C ← [B], leaving the contents of
location B unchanged

Three-address instruction
Instruction form: Operation Source1, Source2, Destination
For example, Add A, B, C: adds A and B, and the result is sent to the memory and stored in
location C

One-address instructions:

Two-address instructions:

Three-address instructions:

Unit-1: Page | 12 Dr S K Singh

Exercise

Instruction sets: Instruction formats
Types of Addressing Modes
Below we have discussed different types of addressing modes one by one [1]:

Immediate Mode
In this mode, the operand is specified in the instruction itself. An immediate mode instruction has an
operand field rather than the address field.

For example: ADD 7, which says Add 7 to contents of accumulator. 7 is the operand here.

Register Mode
In this mode the operand is stored in the register and this register is present in CPU. The instruction has
the address of the Register where the operand is stored.

Unit-1: Page | 13 Dr S K Singh

Advantages

 Shorter instructions and faster instruction fetch.

 Faster memory access to the operand(s)

Disadvantages

 Very limited address space

 Using multiple registers helps performance but it complicates the instructions.

Register Indirect Mode
In this mode, the instruction specifies the register whose contents give us the address of operand which
is in memory. Thus, the register contains the address of operand rather than the operand itself.

Direct Addressing Mode
In this mode, effective address of operand is present in instruction itself.

 Single memory reference to access data.
 No additional calculations to find the effective address of the operand.

For Example: ADD R1, 4000 - In this the 4000 is effective address of operand.

NOTE: Effective Address is the location where operand is present.

Unit-1: Page | 14 Dr S K Singh

Indirect Addressing Mode
In this, the address field of instruction gives the address where the effective address is stored in
memory. This slows down the execution, as this includes multiple memory lookups to find the
operand.

Displacement Addressing Mode
In this the contents of the indexed register is added to the Address part of the instruction, to obtain the
effective address of operand.

EA = A + (R), In this the address field holds two values, A(which is the base value) and R(that holds the
displacement), or vice versa.

(a) Relative Addressing Mode

It is a version of Displacement addressing mode.

In this R become the contents of PC(Program Counter) is added to address part of
instruction to obtain the effective address.

EA = A + (PC), where EA is effective address and PC is program counter.

The operand is A cells away from the current cell(the one pointed to by PC)

(b) Base Register Addressing Mode
It is again a version of Displacement addressing mode. This can be defined as EA = A + (R),
where A is displacement and R holds pointer to base address.

Unit-1: Page | 15 Dr S K Singh

Stack Addressing Mode
In this mode, operand is at the top of the stack. For example: ADD, this instruction will POP top two
items from the stack, add them, and will then PUSH the result to the top of the stack.

Instruction Format
 Instruction format defines the layout of the bits of an instruction, in terms of its component

fields [1].
 An instruction format must include an opcode and implicitly or explicitly, zero or more

operands.
 Each explicit operand is referenced using one of the addressing modes.
 Instruction format is affected by, memory size, memory organization, bus structure, processor

complexity, and processor speed.
For example: The PDP-10 has a 36-bit word length and a 36-bit instruction length. The fixed
instruction format is shown in figure below.
 The opcode occupies 9 bits, allowing up to 512 operations (i.e. 29). In fact, a total of 365

different instructions are defined.
 Register occupies 4 bits, one of which is one of 16 general-purpose registers.
 Index register occupies 4 bits, one of which is one of 16 addressing modes
 The other operand reference starts with an 18-bit memory address field. This can be used as an

immediate operand or a memory address (218). In the latter usage, both indexing and indirect
addressing are allowed.

 The same general-purpose registers are also used as index registers.

Example: Design a variable-length opcode to allow all of the following to be encoded in a 36-bit
instruction:

a) Instructions with two 15-bit addresses and one 3-bit register number
b) Instructions with one 15-bit address and one 3-bit register number

Performance issues software
 INSTRUCTION EXECUTION RATE A processor is driven by a clock with a constant

frequency f or, equivalently, a constant cycle time t, where t=1/f .
 Define the instruction count, Ic, for a program as the number of machine instructions executed

for that program until it runs to completion. Note that this is the number of instruction
executions, not the number of instructions in the object code of the program.

 An important parameter is the average cycles per instruction CPI for a program. If all
instructions required the same number of clock cycles, then CPI would be a constant value for a
processor. However, on any give processor, the number of clock cycles required varies for
different types of instructions, such as load, store, branch, and so on.

 Let CPIi be the number of cycles required for instruction type i. and
 Ii be the number of executed instructions of type i for a given program.

Then we can calculate an overall CPI as follows[1]:

Unit-1: Page | 16 Dr S K Singh

The processor time T needed to execute a given program can be expressed as

T = Ic * CPI * t
A common measure of performance for a processor is the rate at which instructions are executed,
expressed as millions of instructions per second (MIPS), referred to as the MIPS rate.
We can express the MIPS rate in terms of the clock rate and CPI as follows:

For example, consider the execution of a program which results in the execution of 2 million
instructions on a 400-MHz processor. The program consists of four major types of instructions. The
instruction mix and the CPI for each instruction type are given below based on the result of a program
trace experiment:

The average CPI when the program is executed on a uniprocessor with the above trace results is

The corresponding MIPS rate is

Assembly Language
 A complete set of symbolic names and rules for their use constitute a programming language,

generally referred to as an assembly language.
 Programs written in an assembly language can be automatically translated into a sequence of

machine instructions by a program called an assembler.
 When the assembler program is executed, it reads the user program, analyzes it, and then

generates the desired machine language program.
 The user program in its original alphanumeric text format is called a source program, and the

assembled machine language program is called an object program.

Stack and Queue

 A stack is a list of data elements, usually words or bytes, with the accessing restriction that
elements can be added or removed at one end of the list only [5]

o It is also called a last-in-first-out (LIFO) stack
o A stack has two basic operations: push and pop
o The terms push and pop are used to describe placing a new item on the stack and

removing the top item from the stack, respectively.
 Another useful data structure that is similar to the stack is called a queue

o Data are stored in and retrieved from a queue on a first-in-firstout (FIFO) basis
o Two pointers are needed to keep track of the two ends of the queue

Unit-1: Page | 17 Dr S K Singh

Example: Assume a stack-oriented processor that includes the stack operations PUSH and POP.
Arithmetic operations automatically involve the top one or two stack elements. Begin with an empty
stack. What stack elements remain after the following instructions are executed?

PUSH 4
PUSH 7
PUSH 8
ADD
PUSH 10
SUB
MUL

Answer:

Expression Evaluation[1]

 Mathematical formulas are usually expressed in infix notation. In this form, a binary operator appears
between the operands (e.g., A + B). Generally, multiplication takes precedence over addition, so that a
+ b x c is equivalent a + (b x c).

 An alternative technique is known as reverse Polish, or postfix, notation. In this notation, the operator
follows its two operands. For example,

 Note that, no parentheses are required when using reverse Polish. The advantage of postfix notation is

that an expression in this form is easily evaluated using a stack.
 An expression in postfix notation is scanned from left to right. For each element of the expression, the

following rules are applied:
 1. If the element is a variable or constant, push it onto the stack.
 2. If the element is an operator, pop the top two items of the stack, perform the operation, and push the

result.
 After the entire expression has been scanned, the result is on the top of the stack.
 Example: Use of Stack to Compute f = (a - b) / [(d * e) + c]

Unit-1: Page | 18 Dr S K Singh

Subroutine
 In a given program, it is often necessary to perform a particular subtask many times on

different data values. Such a subtask is called a subroutine[5].

 The location where the calling program resumes execution is the location pointed by the
updated PC while the Call instruction is being executed. Hence the contents of the PC must be
saved by the Call instruction to enable correct return to the calling program

Subroutine Nesting

 A common programming practice, called subroutine nesting, is to have one subroutine call
another.

 Subroutine nesting call be carried out to any depth. Eventually, the last subroutine called
completes its computations and returns to the subroutine that called it.

 The return address needed for this first returns is the last one generated in the nested call
sequence. That is, return addresses are generated and used in a last-in-first-out order.

 Many processors do this by using a stack pointer and the stack pointer points to a stack called
the processor stack.

Unit-1: Page | 19 Dr S K Singh

Example of Subroutine Nesting

References:

1. Computer Organization and Architecture: Designing for Performance, 8th Edition, Authors: William
Stallings Publisher: Prentice-Hall India.

2. https://nptel.ac.in/courses/106/103/106103068/
3. https://en.wikipedia.org/wiki/Von_Neumann_architecture
4. https://en.wikipedia.org/wiki/Harvard_architecture
5. http://www.ee.ncu.edu.tw/~jfli/computer/lecture/ch03.pdf

--------------------------------End of Unit-1-----------------------------------

