
UNIT-1

Microcomputer System

A microcomputer is a computer built on the basis of a microprocessor i.e. a processor

implemented as an integrated circuit. Since all processors are now produced in the form of

integrated circuits, we can say that all computers are microcomputers. The general method for

constructing microcomputers consists in connecting to the microprocessor busses additional sub-

systems such as memories and peripheral device controllers (input/output units).

The basic block diagram of a simple microcomputer is shown in the figure below. We can see

there a microprocessor with three its busses going out: data bus, address bus and control bus. To

these busses, the following devices are connected: operational memory composed of RAM

(Random Access Memory)and ROM (Read Only Memory) memories, as well as input/output

units to which peripheral devices are connected.

Simplified general scheme of a simple microcomputer

Concept of Direct Memory Access (DMA)
 DMA is a process of communication for data transfer between memory and input/output, controlled by an external circuit
called DMA controller, without involvement of CPU.

 8085 MP has two pins HOLD and HLDA which are used for DMA operation.

 First, DMA controller sends a request by making Bus Request (BR) control line high. When MP receives high signal to
HOLD pin, it first completes the execution of current machine cycle, it takes few clocks and sends HLDA signal to the DMA
controller.

 After receiving HLDA through Bus Grant (BG) pin of DMA controller, the DMA controller takes control over system bus
and transfers data directly between memory and I/O without involvement of CPU. During DMA operation, the processor is free to
perform next job which does not need system bus.

 At the end of data transfer, the DMA controller terminates the request by sending low signal to HOLD pin and MP regains
control of system bus by making HLDA low.

Direct Memory Access (DMA)

Use this link for instruction set

https://www.slideshare.net/gokulvlsi/8085-instruction-set

https://www.slideshare.net/gokulvlsi/8085-instruction-set
https://3.bp.blogspot.com/-KhEjB3QjBPQ/VlcMQ7DiKFI/AAAAAAAAAhQ/Bwfogjo2TUc/s1600/DMA.png
https://4.bp.blogspot.com/-y9I8yde0nY8/VlcQna7WCLI/AAAAAAAAAhg/pkJn8sdRDKc/s1600/Capture.JPG

Timing Diagram

Timing Diagram is a graphical representation. It represents the execution

time taken by each instruction in a graphical format. The execution time is

represented in T-states.

Instruction Cycle:

 The time required to execute an instruction is called instruction cycle.

Machine Cycle:

 The time required to access the memory or input/output devices is called machine

cycle.

 T-State:

 The machine cycle and instruction cycle takes multiple clock periods.

 A portion of an operation carried out in one system clock period is called as T-

state.

1 Machine cycles of 8085

The 8085 microprocessor has 5 (seven) basic machine cycles. They are

 Opcode fetch cycle (4T)

 Memory read cycle (3 T)

 Memory write cycle (3 T)

 I/O read cycle (3 T)

 I/O write cycle (3 T)

Signal 1.Opcode fetch machine cycle of 8085 :

Example: MOV B,C

ADDRESS OPCODE MNEMONIC

2000 41H MOV B,C

 Each instruction of the processor has one byte opcode.

 The opcodes are stored in memory. So, the processor executes the opcode

fetch machine cycle to fetch the opcode from memory.

 Hence, every instruction starts with opcode fetch machine cycle.

 The time taken by the processor to execute the opcode fetch cycle is 4T.

 In this time, the first, 3 T-states are used for fetching the opcode from

memory and the remaining T-states are used for internal operations by the

processor.

2. Memory Read Machine Cycle of 8085:

 The memory read machine cycle is executed by the processor to read a data byte

from memory.

 The processor takes 3T states to execute this cycle.

The instructions which have more than one byte word size will use the machine

cycle after the opcode fetch machine cycle.

200

8086 Microprocessor

Definition: 8086 is a 16-bit microprocessor and was designed in 1978 by Intel. Unlike, 8085, an

8086 microprocessor has 20-bit address bus. Thus, is able to access 2
20

 i.e., 1 MB address in the

memory.

As we know that a microprocessor performs arithmetic and logic operations. And an 8086

microprocessor is able to perform these operations with 16-bit data in one cycle. Hence is a 16-

bit microprocessor.

Thus the size of the data bus is 16-bit as it can carry 16-bit data at a time. The architecture of

8086 microprocessor, is very much different from that of 8085 microprocessor.

We have already discussed the introduction to the microprocessor and 8085 microprocessor. So,

lets now proceed further and understand the architecture and working of 8086 microprocessor.

Block Diagram of 8086 Microprocessor

The architecture of 8086 microprocessor is composed of 2 major units, the BIU i.e., Bus

Interface Unit and EU i.e., Execution Unit.

The figure below shows the block diagram of the architectural representation of the 8086

microprocessor:

https://electronicsdesk.com/microprocessor.html
https://electronicsdesk.com/8085-microprocessor.html

Bus Interface Unit (BIU)

The Bus Interface Unit (BIU) manages the data, address and control buses.

The BIU functions in such a way that it:

 Fetches the sequenced instruction from the memory,

 Finds the physical address of that location in the memory where the instruction is stored and

 Manages the 6-byte pre-fetch queue where the pipelined instructions are stored.

An 8086 microprocessor exhibits a property of pipelining the instructions in a queue while

performing decoding and execution of the previous instruction.

This saves the processor time of operation by a large amount. This pipelining is done in a 6-byte

queue.

Also, the BIU contains 4 segment registers. Each segment register is of 16-bit. The segments

are present in the memory and these registers hold the address of all the segments.

6-byte pre-fetch queue: This queue is used in 8086 in order to perform pipelining. As at the

time of decoding and execution of the instruction in EU, the BIU fetches the sequential

upcoming instructions and stores it in this queue.

The size of this queue is 6-byte. This means at maximum a 6-byte instruction can be stored in

this queue. The queue exhibits FIFO behaviour., first in first out.

 Fetching the next instruction while the current instruction executes is called pipelining.

 Segment register − BIU has 4 segment buses, i.e. CS, DS, SS& ES. It holds the

addresses of instructions and data in memory, which are used by the processor to access

memory locations. It also contains 1 pointer register IP, which holds the address of the

next instruction to executed by the EU.

o CS − It stands for Code Segment. It is used for addressing a memory location in

the code segment of the memory, where the executable program is stored.

o DS − It stands for Data Segment. It consists of data used by the program and is

accessed in the data segment by an offset address or the content of other register

that holds the offset address.

o SS − It stands for Stack Segment. It handles memory to store data and addresses

during execution.

o ES − It stands for Extra Segment. ES is additional data segment, which is used by

the string to hold the extra destination data.

 Instruction pointer − It is a 16-bit register used to hold the address of the next

instruction to be executed.

Execution Unit (EU)

The Execution Unit (EU) performs the decoding and execution of the instructions that are being

fetched from the desired memory location.

Control Unit:

Like the timing and control unit in 8085 microprocessor, the control unit in 8086 microprocessor

produces control signal after decoding the opcode to inform the general purpose register to

release the value stored in it. And it also signals the ALU to perform the desired operation.

ALU:

The arithmetic and logic unit carries out the logical tasks according to the signal generated by the

CU. The result of the operation is stored in the desired register.

Flag Register

It is a 16-bit register that behaves like a flip-flop, i.e. it changes its status according to the result

stored in the accumulator. It has 9 flags and they are divided into 2 groups − Conditional Flags

and control flags.

It represents the result of the last arithmetic or logical instruction executed. Following is the list

of conditional flags −

 Carry flag − This flag indicates an overflow condition for arithmetic operations.

 Auxiliary flag − When an operation is performed at ALU, it results in a carry/barrow

from lower nibble (i.e. D0 – D3) to upper nibble (i.e. D4 – D7), then this flag is set, i.e.

carry given by D3 bit to D4 is AF flag. The processor uses this flag to perform binary to

BCD conversion.

 Parity flag − This flag is used to indicate the parity of the result, i.e. when the lower

order 8-bits of the result contains even number of 1’s, then the Parity Flag is set. For odd

number of 1’s, the Parity Flag is reset.

 Zero flag − This flag is set to 1 when the result of arithmetic or logical operation is zero

else it is set to 0.

 Sign flag − This flag holds the sign of the result, i.e. when the result of the operation is

negative, then the sign flag is set to 1 else set to 0.

 Overflow flag − This flag represents the result when the system capacity is exceeded.

Control Flags

Control flags controls the operations of the execution unit. Following is the list of control flags −

 Trap flag − It is used for single step control and allows the user to execute one instruction

at a time for debugging. If it is set, then the program can be run in a single step mode.

 Interrupt flag − It is an interrupt enable/disable flag, i.e. used to allow/prohibit the

interruption of a program. It is set to 1 for interrupt enabled condition and set to 0 for

interrupt disabled condition.

 Direction flag − It is used in string operation. As the name suggests when it is set then

string bytes are accessed from the higher memory address to the lower memory address

and vice-a-versa.

General purpose register

There are 8 general purpose registers, i.e., AH, AL, BH, BL, CH, CL, DH, and DL. These

registers can be used individually to store 8-bit data and can be used in pairs to store 16bit data.

The valid register pairs are AH and AL, BH and BL, CH and CL, and DH and DL. It is referred

to the AX, BX, CX, and DX respectively.

 AX register − It is also known as accumulator register. It is used to store operands for

arithmetic operations.

 BX register − It is used as a base register. It is used to store the starting base address of

the memory area within the data segment.

 CX register − It is referred to as counter. It is used in loop instruction to store the loop

counter.

 DX register − This register is used to hold I/O port address for I/O instruction.

Stack pointer register

It is a 16-bit register, which holds the address from the start of the segment to the memory

location, where a word was most recently stored on the stack.

Calculation of Physical Address

The physical address of an instruction is given as:

PA = Segment address Χ 10 + Offset
For example: Suppose the segment address is 2000 H and the offset address is 4356 H. So, the

generated physical address is 24356 H.

IC 8255 Programmable Peripheral Interface(PPI) Parallel I/O device

The 8255 is a programmable peripheral interface i.e. PPI 8255.It is a general purpose

programmable parallel I/O device.It can be used with almost any microprocessor.It consists of

three 8-bit bidirectional I/O ports (24 I/O lines) which can be configured as per the requirement.

Features of IC 8255:-

1. It consists of 3, 8-bit IO ports i.e. Port A, Port B, and Port C.Port C can be divided into

two ports of 4 bits PortCUPPER and Port Clower. These ports are controlled by 2 groups:

Group A and Group B.

2. Address/data bus must be externally demux'd.

3. It is TTL compatible.

4. It has improved DC driving capability.

5. Fully compatible with Intel microprocessor family.

6. Direct bit set/reset capability is available for port C.

7. It can be operate in 3 modes:-

a) Mode 0-simple I/O

b) Mode 1-strobed I/O

c) Mode 2-strobed bi-directional I/O

The block diagram of 8255 is as shown in fig.

It contains following blocks:

1. Data bus buffer

2. Read/write control logic

3. Group A and group B control

4. Port A and port B

5. Port C

Data bus buffer:-

It is a tri-state 8-bit buffer, which is used to interface the microprocessor to the system data bus.

Data is transmitted or received by the buffer as per the instructions by the CPU. The direction of

data buffer is decided by read and write control signals. When read is activated, it transmits data

to the system data bus. When write is activated, it receives data from system data bus.

Read/write control logic:-

This block is responsible for controlling the internal/external transfer of data/control/status word.

It accepts the input from the CPU address and control buses, and in turn issues command to both

the control groups.

CS

It stands for Chip Select. A LOW on this input selects the chip and enables the communication

between the 8255A and the CPU. It is connected to the decoded address, and A0 & A1 are

connected to the microprocessor address lines.

Their result depends on the following conditions −

CS A1 A0 Result

0 0 0 PORT A

0 0 1 PORT B

0 1 0 PORT C

0 1 1 Control Register

1 X X No Selection

WR

It stands for write. This control signal enables the write operation. When this signal goes low,

the microprocessor writes into a selected I/O port or control register.

RESET

This is an active high signal. It clears the control register and sets all ports in the input mode.

RD

It stands for Read. This control signal enables the Read operation. When the signal is low, the

microprocessor reads the data from the selected I/O port of the 8255.

A0 and A1

These input signals work with RD, WR, and one of the control signal. Following is the table

showing their various signals with their result.

A1 A0 RD WR CS Result

0 0 0 1 0 Input Operation

PORT A → Data Bus

0 1 0 1 0 PORT B → Data Bus

1 0 0 1 0 PORT C → Data Bus

0 0 1 0 0
Output Operation

Data Bus → PORT A

0 1 1 0 0 Data Bus → PORT A

1 0 1 0 0 Data Bus → PORT B

1 1 1 0 0 Data Bus → PORT D

Group A and group B control:-

1. Group A consisting of port A and upper part of port C.

2. Group B consisting of port B and lower part of port C.

These block receive control from the CPU and issues commands to their respective ports.

Group A - PA and PCU (PC7 –PC 4)

 Group B - PCL (PC3 – PC 0)

Port A: This has an 8 bit latched/buffered O/P and 8 bit input latch. It can be programmed

in 3 modes – mode 0, mode 1, mode 2.

Port B: This has an 8 bit latched / buffered O/P and 8 bit input latch. It can be

programmed in mode 0, mode1.

Port C : This has an 8 bit latched input buffer and 8 bit output latched/buffer. This port

can be divided into two 4 bit ports and can be used as control signals for port A and port

B. it can be programmed in mode 0.

8255 operating modes:-

1. The 8255 IC provides one control word register.

2. It is selected when A0=1,A1=1,CS =0 and WR=0.The read operation is not allowed for

control register.

3. The bit pattern loaded in control word register specifies an I/O function for each port and

the mode of operation in which the ports are to be used.

4. There are two different control word formats which specify two basic modes:

 BSR (Bit set reset) mode

 I/O mode

1. The two basic modes are selected by D7 bit of control register. When D7=1 it is an I/O

mode and when D7=0; it is a BSR mode.

BSR mode:-

1. The BSR mode is a port C bit set/reset mode.

2. The individual bit of port C can be set or reset by writing control word in the control

register.

3. The control word format of BSR mode is as shown in the fig.

4. The pin of port C is selected using bit select bits [b b b] and set or reset is decided by bit

S/R .̅

5. The BSR mode affects only one bit of port C at a time. The bit set using BSR mode

remains set unless and until you change the bit. So to set any bit of port C, bit pattern is

loaded in control register.

6. If a BSR mode is selected it will not affect I/O mode. I/O modes-

There are three I/O modes of operation:

• Mode 0- Basic I/O

• Mode 1- Strobed I/O

• Mode 2- Bi-directional I/O

The I/O modes are programmed using control register.

The control word format of I/O modes is as shown in the figure below:

Function of each bit is as follows:

1. D7 – When the bit D7 = 1 then I/O mode is selected, if D7=0 then BSR mode is selected.

The function of bits D0 to D6 is independent on mode (I/O mode or BSR mode).

2. D6 and D5 – In I/O mode the bits D6 and D5 specifies the different I/O modes for group

A i.e. Mode 0, Mode 1 and Mode 2 for port A and port C upper.

3. D4 and D3 – In I/O mode the bits D4 and D3 selects the port function for group A. If

these bits = 1 the respective port specified is used as input port. But if bit =0, the port is

used as output port.

4. D2 – In I/O mode the bit D2 specifies the different I/O modes for group B i.e. Mode 0

and Mode 1 for port B and port C lower.

5. D1 and D0 – In I/O mode the bits D1 and D0 selects the port function for group B. If

these bits = 1 the respective port specified is used as input port. But if bit = 0, the port is

used as output port.

All the 3 modes i.e. Mode 0, Mode 1 and Mode 2 are only for group A ports, but for group B

only 2 modes i.e. Mode 0 and Mode 1 are provided. When 8255 is reset, it will clear control

word register contents and all the ports are set to input mode. The ports of 8255 can be

programmed for other modes by sending appropriate bit pattern to control register.

Interfacing of 8085 with 8255 Programmable Peripheral Interface

Circuit diagram to connect the 8085 with 8255

You can understand the connections in the following steps.

 First of all, we need supply power to both 8085 and 8255 by connecting VCC and GND

pins to the appropriate sources.

 RESET OUT pin of 8085 is connected to the RESET pin of 8255. When the

microprocessor is reset, it also resets the 8255 via this connection.

 RD* and WD* pins of 8085 are connected to the RD* and WD* pins of 8255,

respectively. 8085 conveys the type of operation (read or write) to 8255 via these

connections.

 As we have come to know in this 8085 course, pins AD0-AD7 have dual functionality.

They act as both; address bus and data bus. This is achieved by multiplexing. To extract

address from it, we need to demultiplex it, which is achieved using the IC 74LS373. To

learn in detail about the demultiplexing process, you can check out this section

on demultiplexing AD0-AD7.

https://technobyte.org/microprocessors-course-8085/
https://technobyte.org/2020/05/buses-in-8085-demultiplexing-and-generating-control-signals/#Demultiplexing_of_AD0AD7_using_IC_74LS373
https://i2.wp.com/technobyte.org/wp-content/uploads/2020/06/Interfacing-8085-with-8255-circuit-diagram.jpg?ssl=1

 After demultiplexing, pins A0 and A1 (from the output of IC74LS373) are connected to

the pins A0 and A1 of 8255, respectively. These two pins tell 8255 about which port the

microprocessor is talking about.

 The last part of making the connections is the chip select logic.

Chip select logic

For the microprocessor to be able to communicate with 8255, the CS* (active low chip select

signal) should be low. So, we design a logic circuit that takes address lines AD2-AD7 as inputs

and CS* signal as output. The design should be such that if the address allotted to any of the

ports A, B, or C appears on AD0-AD1, output CS* should go low.

Let us allot the address to the ports A, B, and C of 8255.

 Port A: 0010 0000 (20H)

 Port B: 0010 0001 (21H)

 Port C: 0010 0010 (22H)

 Control port: 00100011 (23H)

The last two bits are A0 and A1. The rest of the 6 bits are used to generate chip select signals.

8254 Pin Description

Here is the pin diagram of 8254 −

8254 block diagram:

The architecture of 8254 looks as follows −

Data Bus Buffer

It is a tri-state, bi-directional, 8-bit buffer, which is used to interface the 8253/54 to the system

data bus. It has three basic functions −

 Programming the modes of 8253/54.

 Loading the count value in timers.

 Reading the count values from timers

Data bus buffer is connected to D0-D7 pins of microprocessor.

Read/Write Logic

It includes 5 signals, i.e. RD, WR, CS, and the address lines A0 & A1. In the peripheral I/O

mode, the RD and WR signals are connected to IOR and IOW, respectively. In the memory

mapped I/O mode, these are connected to MEMR and MEMW.

RD’- At low signal CPU is reading data from 8253 in the form of count value.

WR’- At low signal CPU is WRITING DATA TO 8253 in the form of mode information or

loading count values.

Address lines A0 & A1 of the CPU are connected to lines A0 and A1 of the 8253/54, and CS is

tied to a decoded address. The control word register and counters are selected according to the

signals on lines A0 & A1.

A1 A0 Result

0 0 Counter 0

0 1 Counter 1

1 0 Counter 2

1 1 Control Word Register

X X No Selection

Control Word Register

This register is accessed when lines A0 & A1 are at logic 1. It is used to write a command word,

which specifies the counter to be used, its mode, and either a read or write operation. Following

table shows the result for various control inputs.

A1 A0 RD WR CS Result

0 0 1 0 0 Write Counter 0

0 1 1 0 0 Write Counter 1

1 0 1 0 0 Write Counter 2

1 1 1 0 0 Write Control Word

0 0 0 1 0 Read Counter 0

0 1 0 1 0 Read Counter 1

1 0 0 1 0 Read Counter 2

1 1 0 1 0 No operation

X X 1 1 0 No operation

X X X X 1 No operation

Counters

Each counter contains a single, 16 bit-down counter, which can perform operations in either

binary or BCD. Its input and output signals are configured by the mode selection that are stored

in the control word register. The programmer can have the accessibility to read the contents of

any of the three counters without getting effected with the actual count in process.

These 3 counters have 3 signals:

1. CLK

2. GATE

3. OUT

CLK: Clock input pin provides 16 bit timer with the signal that causes the timer to decrement.

GATE: It used to initiate or enable counting.

The effects of gate signal depend on which of the 6 modes of operation is chosen.

OUT: It provides the output from the timer.

Operating Modes of 8253/8254:

Mode 0 ─ Interrupt on Terminal Count

 It is used to generate an interrupt to the microprocessor after a certain interval.

 Initially the output is low after the mode is set. The output remains LOW after the count

value is loaded into the counter.

 The process of decrementing the counter continues till the terminal count is reached, i.e.,

the count become zero and the output goes HIGH and will remain high until it reloads a

new count.

 The GATE signal is high for normal counting. When GATE goes low, counting is

terminated and the current count is latched till the GATE goes high again.

Mode 1 – Programmable One Shot

 It can be used as a mono stable multi-vibrator.

 The gate input is used as a trigger input in this mode.

 The output remains high until the count is loaded and a trigger is applied.

Mode 2 – Rate Generator

 The output is normally high after initialization.

 Whenever the count becomes zero, another low pulse is generated at the output and the

counter will be reloaded.

Mode 3 – Square Wave Generator

 This mode is similar to Mode 2 except the output remains low for half of the timer period

and high for the other half of the period.

Mode 4 − Software Triggered Mode

 In this mode, the output will remain high until the timer has counted to zero, at which

point the output will pulse low and then go high again.

 The count is latched when the GATE signal goes LOW.

 On the terminal count, the output goes low for one clock cycle then goes HIGH. This low

pulse can be used as a strobe.

Mode 5 – Hardware Triggered Mode

 This mode generates a strobe in response to an externally generated signal.

 This mode is similar to mode 4 except that the counting is initiated by a signal at the gate

input, which means it is hardware triggered instead of software triggered.

 After it is initialized, the output goes high.

 When the terminal count is reached, the output goes low for one clock cycle.

Interfacing 8253 with 8085

In that diagram, we can easily find that when A3-2 and A7-5 are at logic 0 and A4 at logic 1, then

only the chip select CS pin of 8253 will be enabled.

This table is showing how the counter is being selected by using A1 and A0 pins of 8253.

CS HEX

Address

Counter

Selection

A7 A6 A5 A4 A3 A2 A1 A0

0 0 0 1 0 0 0 0 10H Counter 0

0 0 0 1 0 0 0 1 11H Counter 1

0 0 0 1 0 0 1 0 12H Counter 2

0 0 0 1 0 0 1 1 13H Control

Word

Register

8259 PIC Microprocessor

8259 microprocessor is defined as Programmable Interrupt Controller

(PIC) microprocessor. There are 5 hardware interrupts and 2 hardware interrupts

in 8085 and 8086 respectively. But by connecting 8259 with CPU, we can increase

the interrupt handling capability. 8259 combines the multi interrupt input sources

into a single interrupt output. Interfacing of single PIC provides 8 interrupts inputs

from IR0-IR7.

For example, Interfacing of 8085 and 8259 increases the interrupt handling

capability of 8085 microprocessor from 5 to 8 interrupt levels.

Features of 8259 PIC microprocessor –

1. Intel 8259 is designed for Intel 8085 and Intel 8086 microprocessor.

2. It can be programmed either in level triggered or in edge triggered interrupt

level.

3. We can masked individual bits of interrupt request register.

4. We can increase interrupt handling capability upto 64 interrupt level by

cascading further 8259 PIC.

5. Clock cycle is not required.

Pin Diagram of 8259 –

We can see through above diagram that there are total 28 pins in 8259 PIC

microprocessor where Vcc :5V Power supply and Gnd: ground. Other pins use are

explained below.

Block Diagram of 8259 PIC microprocessor –

The Block Diagram consists of 8 blocks which are – Data Bus Buffer, Read/Write

Logic, Cascade Buffer Comparator, Control Logic, Priority Resolver and 3

registers- ISR, IRR, IMR.

Data bus buffer –

This Block is used as a mediator between 8259 and 8085/8086 microprocessor by

acting as a buffer. It takes the control word from the 8085 (let say) microprocessor

and transfer it to the control logic of 8259 microprocessor. Also, after selection of

Interrupt by 8259 microprocessor, it transfer the opcode of the selected Interrupt

and address of the Interrupt service sub routine to the other connected

microprocessor. The data bus buffer consists of 8 bits represented as D0-D7 in the

block diagram. Thus, shows that a maximum of 8 bits data can be transferred at a

time.

Read/Write logic –

This block works only when the value of pin CS is low (as this pin is active low).

This block is responsible for the flow of data depending upon the inputs of RD and

WR. These two pins are active low pins used for read and write operations.

1. Priority resolver –

It examines all the three registers and set the priority of interrupts and

according to the priority of the interrupts, interrupt with highest priority is

set in ISR register. Also, it reset the interrupt level which is already been

serviced in IRR.

2. Cascade buffer –

To increase the Interrupt handling capability, we can further cascade more

number of pins by using cascade buffer. So, during increment of interrupt

capability, CSA lines are used to control multiple interrupt structure.

SP/EN (Slave program/Enable buffer) pin is when set to high, works in master

mode else in slave mode. In Non Buffered mode, SP/EN pin is used to specify

whether 8259 work as master or slave and in Buffered mode, SP/EN pin is used as

an output to enable data bus.

PRIORITY MODES OF 825/8254:

Coprocessor

A Coprocessor is a specially designed circuit on microprocessor chip which can perform the

same task very quickly, which the microprocessor performs. It reduces the work load of the

main processor. The coprocessor shares the same memory, IO system, bus, control logic and

clock generator. The coprocessor handles specialized tasks like mathematical calculations,

graphical display on screen, etc.

The 8086 and 8088 can perform most of the operations but their instruction set is not able to

perform complex mathematical operations, so in these cases the microprocessor requires the

math coprocessor like Intel 8087 math coprocessor, which can easily perform these operations

very quickly.

Block Diagram of Coprocessor Configuration

8087 numeric data processor is also known as Math co-processor, Numeric processor

extension and Floating point unit. It was the first math coprocessor designed by Intel to pair

with 8086/8088 resulting in easier and faster calculation.

Once the instructions are identified by the 8086/8088 processor, then it is allotted to the 8087 co-

processor for further execution.

The data types supported by 8087 are −

 Binary Integers

 Packed decimal numbers

 Real numbers

 Temporary real format

The most prominent features of 8087 numeric data processor are as follows −

 It supports data of type integer, float, and real types ranging from 2-10 bytes.

 The processing speed is so high that it can calculate multiplication of two 64-bits real

numbers in ~27 µs and can also calculate square-root in ~35 µs.

8087 Architecture

8087 Architecture is divided into two groups, i.e., Control Unit (CU) and Numeric Extension

Unit (NEU).

 The control unit handles all the communication between the processor and the memory

such as it receives and decodes instructions, reads and writes memory operands,

maintains parallel queue, etc. All the coprocessor instructions are ESC instructions, i.e.,

they start with ‘F’, the coprocessor only executes the ESC instructions while other

instructions are executed by the microprocessor.

Instruction queue:

8087 maintains an instruction queue identical to that of the host processor (8086).

Any instruction having an ESC prefix is decoded and executed by the 8087, other

instructions are ignored by it.

This queue is synchronized by monitoring the QS0 and QS1 lines.

Control word:

Control words are sent to 8087 by writing them to a memory location and having 8087

execute an instruction which reads in the control word from the memory.

The control word is shown in the figure below:

Status word:

To read the status word from an 8087, you have it execute an instruction which writes the

status word to memory where you can read or check it with an 8086 instruction.

The status word is shown in the figure below:

Instruction pointer:

It mainly contains address of the ESC instruction. Its 32 bit complete composition is

 20 bits address of ESC instruction.

 11 bits out of the 16 bit instruction code (the other 5 bits being 11011 for ESC).

 1 bit is always 0.

Data pointer:

It mainly contains address of data. Its 32 bit complete composition is

 20 bits memory address of data.

 12 bits are always 0.

Numeric Extension Unit

 The numeric extension unit handles all the numeric processor instructions like arithmetic,

logical, transcendental, and data transfer instructions. It has 8 register stack, which holds the

operands for instructions and their results.

Register stack:

8087 has eight 80 bit numeric data registers available to the programmer.

These registers operate in LIFO (Last in First Out) manner hence they are called as the register

stack of 8087.

Each register is 80 bits as the data is stored internally in the temporary-real format.

The current top of the stack is called as ST (0) or simply ST and the subsequent registers are

called ST (1), ST (2) etc.

8087 has a 3 bit stack pointer to hold the number of the register that is the current ST.

On initialization the stack pointer contains 000 i.e. Register (0) is the ST.

It is a circular stack i.e. after pushing 8 elements if we PUSH the 9th element it will overwrite on

the 1st element itself.

After the first PUSH, SP is decremented by 1. Therefore, SP = 111 and hence the data is stored at

register 7. So register 7 becomes ST (0).

During POP, data is read from top of stack and SP is incremented by 1. Therefore, SP = 000 so

register 0 becomes ST (0).

Tag word:

8087 contains 2 tag bits for each stack register.

These tag bits indicate the type of number stored in the respective register.

As there are 8 registers, there is 2 x 8 = 16 tag bits called collectively as the Tag word.

When 8087 is initialized, tag word = FFFF (all 1s) as all registers are empty.

Tag bits Information

00 Normal number (non-zero finite)

01 Zero

10 Special number (NaN, Infinity or De-Normal)

11 Empty

• Control Logic

• This block controls the sequence of operations during all DMA cycles by generating the

appropriate control signals and the 16-bit address that specifies the memory location to be

accessed.

• A4 - A7

• These are the higher nibble of the lower byte address generated by DMA in the master

mode.

• READY

• It is an active-high asynchronous input signal, which makes DMA ready by inserting wait

states.

• HRQ

• This signal is used to receive the hold request signal from the output device. In the slave

mode, it is connected with a DRQ input line 8257. In Master mode, it is connected with

HOLD input of the CPU.

• HLDA

• It is the hold acknowledgement signal which indicates the DMA controller that the bus

has been granted to the requesting peripheral by the CPU when it is set to 1.

• MEMR

• It is the low memory read signal, which is used to read the data from the addressed

memory locations during DMA read cycles.

• MEMW

• It is the active-low three state signal which is used to write the data to the addressed

memory location during DMA write operation.

• ADSTB

• This signal is used to convert the higher byte of the memory address generated by the

DMA controller into the latches.

• AEN

• It may be further used to isolate the 8257 data bus from the System Data Bus to facilitate

the transfer of the most significant DMA address bits

• TC

• This output notifies the currently selected peripheral that the present DMA cycle should

be the last cycle for this data block.

• MARK

• The mark will be activated after each 128 cycles or integral multiples of it from the

beginning. It indicates the current DMA cycle is the 128th cycle since the previous

MARK output to the selected peripheral device.

What are Counters &
Time Delays ?

 COUNTERS ARE USED TO KEEP
TRACK OF EVENTS.

 TIME DELAYS ARE IMPORTANT IN
SETTING UP REASONABLY ACCURATE
TIMING BETWEEN TWO EVENTS.

COUNTERS

A Counter is designed simply
by loading an appropriate
number into one of the
registers and using the INR
(Increment by one) or the
DCR (Decrement by one)
instructions. A loop is
established to update the
count, and each count is
checked to determine whether
it has reached the final
number; if not, the loop is
repeated.

Initialize

Update

Is this
Final

Count?

Display

No

Yes

Flowchart of a Counter

TIME DELAYS

The procedure used to design a
specific delay is similar to that
used to set up a counter. A
register is loaded with a
number, depending on the time
delay required, and then the
register is decremented until it
reaches zero by setting up a
loop with a conditional jump
instruction. The loop causes
the delay, depending upon the
clock period of the system.

Load Delay Register

Is this
Final

Count?

Body of loop

No

Yes

Flowchart of a Time Delay

Calculating Time Delays

Each instruction passes through different
combinations of Opcode Fetch, Memory Read,
and Memory Write cycles.

Knowing the combinations of cycles, one can
calculate how long such an instruction would
require to complete.
 Number of Bytes

 Number of Machine Cycles

 Number of T-State.

Calculating Time Delays

Knowing how many T-States an instruction requires,
and keeping in mind that a T-State is one clock cycle
long, we can calculate the time delay using the following
formula:

Time Delay = No. of T-States * Clock Period

For example,

“MVI” instruction uses 7 T-States.
Therefore, if the Microprocessor is running at 2 MHz,
the instruction would require 3.5 mS to complete.

We can design Time Delay
using following three

Techniques:

1. Using One Register.
2. Using a Register Pair.
3. Using a Loop with in a Loop

Using One Register

 A count is loaded in a register, and We can use a loop to produce a
certain amount of time delay in a program.

 The following is an example of a delay using One Register:

MVI C, FFH 7 T-States

LOOP DCR C 4 T-States

JNZ LOOP 10 T-States

 The first instruction initializes the loop counter and is executed only
once requiring only 7 T-States.

 The following two instructions form a loop that requires 14 T-States to
execute and is repeated 255 times until C becomes 0.

 We need to keep in mind though that in the last iteration of the loop,
the JNZ instruction will fail and require only 7 T-States rather than the
10.

 Therefore, we must deduct 3 T-States from the total delay to get an
accurate delay calculation.

 To calculate the delay, we use the following formula:

Tdelay = TO + TL

Tdelay = total delay

TO = delay outside the loop

TL = delay of the loop

 TO is the sum of all delays outside the loop.

 TL is calculated using the formula
TL = T * Loop T-States * N (no. of iterations)

Using One Register

Using these formulas, we can calculate the time delay
for the previous example:

 TO = 7 T-States

(Delay of the MVI instruction)

 TL = (14 X 255) - 3 = 3567 T-States

(14 T-States for the 2 instructions repeated 255 times
(FF16 = 25510) reduced by the 3 T-States for the final JNZ.)

 Tdelay = [(TO + TL)/f]

= (7 + 3567)/2MHz

= (3574) X 0.5 mSec

= 1.787 mSec

(Assuming f = 2 MHz)

Using One Register

Using a Register Pair

Using a single register, one can repeat a loop for a
maximum count of 255 times.

It is possible to increase this count by using a
register pair for the loop counter instead of the
single register.

 A minor problem arises in how to test for the final count since
DCX and INX do not modify the flags.

 However, if the loop is looking for when the count becomes
zero, we can use a small trick by ORing the two registers in the
pair and then checking the zero flag.

Using a Register Pair

The following is an example of a delay loop set up
with a register pair as the loop counter.

LXI B, 1000H 10 T-States

LOOP DCX B 6 T-States

MOV A, C 4 T-States

ORA B 4 T-States

JNZ LOOP 10 T-States

Using a Register Pair

Using the same formula from before, we can
calculate:

 TO = 10 T-States
(The delay for the LXI instruction)

 TL = (24 X 4096) - 3 = 98301 T- States
(24 T-States for the 4 instructions in the loop repeated 4096
times (100016 = 409610) reduced by the 3 T-States for the JNZ in
the last iteration.)

 TDelay = (10 + 98301) X 0.5 mSec = 49.155 mSec

Using a Loop with in a Loop

Nested loops can be
easily setup in
Assembly language by
using two registers for
the two loop counters
and updating the right
register in the right
loop.

Initialize loop 1

Update the count1

Is this
Final

Count?

Body of loop 1

No

Yes

Initialize loop 2

Body of loop 2

Update the count 2

Is this
Final

Count?

No

Yes

Flowchart for time delay with two loops

 Instead (or in conjunction with) Register Pairs, a
nested loop structure can be used to increase the
total delay produced.

MVI B, 10H 7 T-States

LOOP2 MVI C, FFH 7 T-States

LOOP1 DCR C 4 T-States

JNZ LOOP1 10 T-States

DCR B 4 T-States

JNZ LOOP2 10 T-States

Using a Loop with in a Loop

 The calculation remains the same except that the formula must be
applied recursively to each loop.

Start with the inner loop, then plug that delay in the calculation of
the outer loop.

 Delay of inner loop,

TO1 = 7 T-States

(MVI C, FFH instruction)

TL1 = (255 X 14) - 3 = 3567 T-States

(14 T-States for the DCR C and JNZ instructions repeated 255
times (FF16 = 25510) minus 3 for the final JNZ.)

TLOOP1 = 7 + 3567 = 3574 T-States

Using a Loop with in a Loop

 Delay of outer loop

TO2 = 7 T-States

(MVI B, 10H instruction)

TL1 = (16 X (14 + 3574)) - 3 = 57405 T-States

(14 T-States for the DCR B and JNZ instructions and 3574
T-States for loop1 repeated 16 times (1016 = 1610) minus 3 for the final
JNZ.)

TDelay = 7 + 57405 = 57412 T-States

 Total Delay

TDelay = 57412 X 0.5 mSec = 28.706 mSec

Using a Loop with in a Loop

Increasing the Time Delay

The Delay can be further increased by using
register pairs for each of the loop counters in
the nested loops setup.

It can also be increased by adding dummy
instructions (like NOP) in the body of the
loop.

The 8279 Programmable Keyboard/ Display Interface

8279 is a hardware approach to interfacing a matrix keyboard and multiplexed display, the

software approach have many disadvantage like microprocessor is occupied for considerable

amount of time in checking the keyboard and refreshing the display. The 8279 relieves the

processor from this task. The only disadvantage of using the 8279 is the cost.

8279 programmable keyboard/display controller is designed by Intel that interfaces a keyboard

with the CPU. The keyboard first scans the keyboard and identifies if any key has been pressed.

It then sends their relative response of the pressed key to the CPU and vice-a-versa.

Two Ways the Keyboard is Interfaced with the CPU

The Keyboard can be interfaced either in the interrupt or the polled mode.

 In the Interrupt mode, the processor is requested service only if any key is pressed, otherwise

the CPU will continue with its main task.

In the Polled mode, the CPU periodically reads an internal flag of 8279 to check whether any

key is pressed or not with key pressure.

Working of 8279:

The keyboard consists of maximum 64 keys, which are interfaced with the CPU by using the

key-codes. These key-codes are de-bounced and stored in an 8-byte FIFO RAM, which can be

accessed by the CPU. If more than 8 characters are entered in the FIFO, then it means more than

eight keys are pressed at a time. This is when the overrun status is set.

If a FIFO contains a valid key entry, then the CPU is interrupted in an interrupt mode else the

CPU checks the status in polling to read the entry. Once the CPU reads a key entry, then FIFO

is updated, and the key entry is pushed out of the FIFO to generate space for new entries.

Architecture and Description

It consists of four main sections:

1. CPU interface and control section

2. Scan section

3. Keyboard section

4. Display section

1. CPU interface and control section:

 I/O Control and Data Buffer

This unit controls the flow of data through the microprocessor. It is enabled only when D is low.

Its data buffer interfaces the external bus of the system with the internal bus of the

microprocessor. The pins A0, RD, and WR are used for command, status or data read/write

operations.

Control and Timing Register and Timing Control

This unit contains registers to store the keyboard, display modes, and other operations as

programmed by the CPU. The timing and control unit handles the timings for the operation of

the circuit.

2. Scan section

Scan Counter

It has two modes i.e. Encoded mode and Decoded mode. In the encoded mode, the counter

provides the binary count that is to be externally decoded to provide the scan lines for the

keyboard and display.

In the decoded scan mode, the counter internally decodes the least significant 2 bits and

provides a decoded 1 out of 4 scan on SL0-SL3.

3. Keyboard section

Return Buffers, Keyboard Debounce, and Control

This unit first scans the key closure row-wise, if found then the keyboard debounce unit

debounces the key entry. In case, the same key is detected, then the code of that key is directly

transferred to the sensor RAM along with SHIFT & CONTROL key status.

FIFO/Sensor RAM and Status Logic

This unit acts as 8-byte first-in-first-out (FIFO) RAM where the key code of every pressed key

is entered into the RAM as per their sequence. The status logic generates an interrupt request

after each FIFO read operation till the FIFO gets empty.

In the scanned sensor matrix mode, this unit acts as sensor RAM where its each row is loaded

with the status of their corresponding row of sensors into the matrix. When the sensor changes

its state, the IRQ line changes to high and interrupts the CPU.

4. Display section

Display Address Registers and Display RAM

This unit consists of display address registers which holds the addresses of the word currently

read/written by the CPU to/from the display RAM.

M Krishhna Kumar MAM/M3/LU9g/V1/2004 1

Interfacing Analog to Digital Data
Converters

• In most of the cases, the PIO 8255 is used for interfacing
the analog to digital converters with microprocessor.

• We have already studied 8255 interfacing with 8086 as an
I/O port, in previous section. This section we will only
emphasize the interfacing techniques of analog to digital
converters with 8255.

• The analog to digital converters is treaded as an input
device by the microprocessor, that sends an initialising
signal to the ADC to start the analogy to digital data
conversation process. The start of conversation signal is a
pulse of a specific duration.

M Krishhna Kumar MAM/M3/LU9g/V1/2004 2

• The process of analog to digital conversion is a slow
process, and the microprocessor has to wait for the digital
data till the conversion is over. After the conversion is
over, the ADC sends end of conversion EOC signal to
inform the microprocessor that the conversion is over and
the result is ready at the output buffer of the ADC. These
tasks of issuing an SOC pulse to ADC, reading EOC signal
from the ADC and reading the digital output of the ADC
are carried out by the CPU using 8255 I/O ports.

Interfacing Analog to Digital Data
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 3

• The time taken by the ADC from the active edge of SOC
pulse till the active edge of EOC signal is called as the
conversion delay of the ADC.

• It may range any where from a few microseconds in case
of fast ADC to even a few hundred milliseconds in case of
slow ADCs.

• The available ADC in the market use different conversion
techniques for conversion of analog signal to digitals.
Successive approximation techniques and dual slope
integration techniques are the most popular techniques
used in the integrated ADC chip.

Interfacing Analog to Digital Data
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 4

• General algorithm for ADC interfacing contains the
following steps:

1. Ensure the stability of analog input, applied to the ADC.
2. Issue start of conversion pulse to ADC
3. Read end of conversion signal to mark the end of

conversion processes.
4. Read digital data output of the ADC as equivalent digital

output.

Interfacing Analog to Digital Data
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 5

• Analog input voltage must be constant at the input of the
ADC right from the start of conversion till the end of the
conversion to get correct results. This may be ensured by a
sample and hold circuit which samples the analog signal
and holds it constant for a specific time duration. The
microprocessor may issue a hold signal to the sample and
hold circuit.

• If the applied input changes before the complete
conversion process is over, the digital equivalent of the
analog input calculated by the ADC may not be correct.

Interfacing Analog to Digital Data
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 6

ADC 0808/0809 :
• The analog to digital converter chips 0808 and 0809 are 8-

bit CMOS, successive approximation converters. This
technique is one of the fast techniques for analog to digital
conversion. The conversion delay is 100µs at a clock
frequency of 640 KHz, which is quite low as compared to
other converters. These converters do not need any
external zero or full scale adjustments as they are already
taken care of by internal circuits. These converters
internally have a 3:8 analog multiplexer so that at a time
eight different analog conversion by using address lines -

Interfacing Analog to Digital Data
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 7

ADD A, ADD B, ADD C. Using these address inputs,
multichannel data acquisition system can be designed
using a single ADC. The CPU may drive these lines using
output port lines in case of multichannel applications. In
case of single input applications, these may be hardwired
to select the proper input.

• There are unipolar analog to digital converters, i.e. they are
able to convert only positive analog input voltage to their
digital equivalent. These chips do no contain any internal
sample and hold circuit.

Interfacing Analog to Digital Data
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 8

Analog I/P
selected

Address lines

AC B

I / P 0

I / P 1

I / P 2

I / P 3

I / P 4

I / P 5

I / P 6

I / P 7

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Fig

M Krishhna Kumar MAM/M3/LU9g/V1/2004 9

• If one needs a sample and hold circuit for the conversion
of fast signal into equivalent digital quantities, it has to be
externally connected at each of the analog inputs.

• Vcc Supply pins +5V
• GND GND
• Vref + Reference voltage positive +5 Volts

maximum.
• Vref _ Reference voltage negative 0Volts

minimum.

Interfacing Analog to Digital Data
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 10

• I/P0 –I/P7 Analog inputs
• ADD A,B,C Address lines for selecting analog

inputs.
• O7 – O0 Digital 8-bit output with O7 MSB and

O0 LSB
• SOC Start of conversion signal pin
• EOC End of conversion signal pin
• OE Output latch enable pin, if high enables

output
• CLK Clock input for ADC

Interfacing Analog to Digital Data
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 11

M Krishhna Kumar MAM/M3/LU9g/V1/2004 12

O/P
Latch

O/P
Enable

8-bit
O/P

EOC

CLOCKSOC

Control and
Timing unit
and S.A.R.

256 R
Register

ladder and
Switch tree

V ref + V ref _

8 Channel
Analog

Multiplexer

ABC

I / P 0

I / P 1

I / P 2

I / P 3

I / P 4

I / P 5

I / P 6

I / P 7

Block Diagram of ADC 0808 / 0809
Address Lines

M Krishhna Kumar MAM/M3/LU9g/V1/2004 13

CLOCK

START

ALE

EOC

OE

O / P

Timing Diagram of ADC 0808

M Krishhna Kumar MAM/M3/LU9g/V1/2004 14

• Example: Interfacing ADC 0808 with 8086 using 8255
ports. Use port A of 8255 for transferring digital data
output of ADC to the CPU and port C for control signals.
Assume that an analog input is present at I/P2 of the ADC
and a clock input of suitable frequency is available for
ADC.

• Solution: The analog input I/P2 is used and therefore
address pins A,B,C should be 0,1,0 respectively to select
I/P2. The OE and ALE pins are already kept at +5V to
select the ADC and enable the outputs. Port C upper acts
as the input port to receive the EOC signal while port C
lower acts as the output port to send SOC to the ADC.

Interfacing Analog to Digital Data
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 15

• Port A acts as a 8-bit input data port to receive the digital
data output from the ADC. The 8255 control word is
written as follows:

D7 D6 D5 D4 D3 D2 D1 D0
1 0 0 1 1 0 0 0

• The required ALP is as follows:
MOV AL, 98h ;initialise 8255 as
OUT CWR, AL ;discussed above.
MOV AL, 02h ;Select I/P2 as analog
OUT Port B, AL ;input.

Interfacing Analog to Digital Data
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 16

MOV AL, 00h ;Give start of conversion
OUT Port C, AL ; pulse to the ADC
MOV AL, 01h
OUT Port C, AL
MOV AL, 00h
OUT Port C, AL

WAIT: IN AL, Port C ;Check for EOC by
RCR ; reading port C upper and
JNC WAIT ;rotating through carry.
IN AL, Port A ;If EOC, read digital equivalent

;in AL
HLT ;Stop.

Interfacing Analog to Digital Data
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 17

Interfacing 0808 with 8086

CS

D0 – D7

8255

ADC
0808

Vref +

Clock up

Analog
I/P
Voltage

CA B

GND

ALE

OE

+5V

EOC

SOC

Vref +

+ 5 V

+ 5 V Vcc

O7 – O0

A2

A1

Reset

IORD

IOWR PB2

PB1

PB0

PA7 – PA0

PC7

PC0

M Krishhna Kumar MAM/M3/LU9g/V1/2004 18

Interfacing Digital To Analog
Converters (cont..)

INTERFACING DIGITAL TO ANALOG CONVERTERS: The
digital to analog converters convert binary number into
their equivalent voltages. The DAC find applications in
areas like digitally controlled gains, motors speed controls,
programmable gain amplifiers etc.

AD 7523 8-bit Multiplying DAC : This is a 16 pin DIP,
multiplying digital to analog converter, containing R-2R
ladder for D-A conversion along with single pole double
thrown NMOS switches to connect the digital inputs to the
ladder.

M Krishhna Kumar MAM/M3/LU9g/V1/2004 19

OUT 1

OUT 2

GND

MSB B1

B2

B3

B4

B5 B6

B7

B8

RFB

Vref in

V +

NC

NC

LSB

AD 7523

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

 Pin Diagram of AD 7523

M Krishhna Kumar MAM/M3/LU9g/V1/2004 20

2R

R2 R4 R6 R8

2R2R2R2R2R R1 R3 R5
R7

D1 D2 D3D0

+

-
V0

+5V
(MSB)

LSB

Fig:

Interfacing Analog to Digital Data
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 21

• The pin diagram of AD7523 is shown in fig the supply
range is from +5V to +15V, while Vref may be any where
between -10V to +10V. The maximum analog output
voltage will be any where between -10V to +10V, when all
the digital inputs are at logic high state.

• Usually a zener is connected between OUT1 and OUT2 to
save the DAC from negative transients. An operational
amplifier is used as a current to voltage converter at the
output of AD to convert the current out put of AD to a
proportional output voltage.

Interfacing Digital To Analog
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 22

• It also offers additional drive capability to the DAC output.
An external feedback resistor acts to control the gain. One
may not connect any external feedback resistor, if no gain
control is required.

• EXAMPLE: Interfacing DAC AD7523 with an 8086 CPU
running at 8MHZ and write an assembly language program
to generate a sawtooth waveform of period 1ms with
Vmax 5V.

• Solution: Fig shows the interfacing circuit of AD 74523
with 8086 using 8255. program gives an ALP to generate a
sawtooth waveform using circuit.

Interfacing Digital To Analog
Converters (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 23

ASSUME CS:CODE
CODE SEGMENT
START: MOV AL,80h ;make all ports output

OUT CW, AL
AGAIN: MOV AL,00h ;start voltage for ramp
BACK : OUT PA, AL

INC AL
CMP AL, 0FFh
JB BACK
JMP AGAIN
CODE ENDS
END START

Example (cont..)

M Krishhna Kumar MAM/M3/LU9g/V1/2004 24

MSB

LSB
V0

8255A

CS

+

-

AD7523

GND

+5V +10V

VZ

OUT1

OUT2

RFB

3

11

4 1

2

16

1415

PA0

PA7

Fig: Interfacing of AD7523

M Krishhna Kumar MAM/M3/LU9g/V1/2004 25

• In the above program, port A is initialized as the output
port for sending the digital data as input to DAC. The ramp
starts from the 0V (analog), hence AL starts with 00H. To
increment the ramp, the content of AL is increased during
each execution of loop till it reaches F2H.

• After that the saw tooth wave again starts from 00H, i.e.
0V(analog) and the procedure is repeated. The ramp period
given by this program is precisely 1.000625 ms. Here the
count F2H has been calculated by dividing the required
delay of 1ms by the time required for the execution of the
loop once. The ramp slope can be controlled by calling a
controllable delay after the OUT instruction.

Interfacing Analog to Digital Data
Converters (cont..)

Cache Memory

Cache Memory is a special very high-speed memory. It is used to speed up and synchronizing

with high-speed CPU. Cache memory is costlier than main memory or disk memory but

economical than CPU registers. Cache memory is an extremely fast memory type that acts as a

buffer between RAM and the CPU. It holds frequently requested data and instructions so that

they are immediately available to the CPU when needed.

Cache memory is used to reduce the average time to access data from the Main memory. The

cache is a smaller and faster memory which stores copies of the data from frequently used

main memory locations. There are various different independent caches in a CPU, which store

instructions and data.

Levels of memory:

 Level 1 or Register –
It is a type of memory in which data is stored and accepted that are immediately stored in

CPU. Most commonly used register is accumulator, Program counter, address register etc.

 Level 2 or Cache memory –
It is the fastest memory which has faster access time where data is temporarily stored for

faster access.

 Level 3 or Main Memory –
It is memory on which computer works currently. It is small in size and once power is off

data no longer stays in this memory.

 Level 4 or Secondary Memory –
It is external memory which is not as fast as main memory but data stays permanently in

this memory.

Cache Performance:
When the processor needs to read or write a location in main memory, it first checks for a

corresponding entry in the cache.

 If the processor finds that the memory location is in the cache, a cache hit has occurred and

data is read from cache

 If the processor does not find the memory location in the cache, a cache miss has occurred.

For a cache miss, the cache allocates a new entry and copies in data from main memory,

then the request is fulfilled from the contents of the cache.

The performance of cache memory is frequently measured in terms of a quantity called Hit

ratio.
Hit ratio = hit / (hit + miss) = no. of hits/total accesses

Virtual Memory

All of us are aware of the fact that our program needs to be available in main memory for the

processor to execute it. Assume that your computer has something like 32 or 64 MB RAM

available for the CPU to use. Unfortunately, that amount of RAM is not enough to run all of the

programs that most users expect to run at once. For example, if you load the operating system, an

e-mail program, a Web browser and word processor into RAM simultaneously, 32 MB is not

enough to hold all of them. If there were no such thing as virtual memory, then you will not be

able to run your programs, unless some program is closed. With virtual memory, we do not view

the program as one single piece. We divide it into pieces, and only the one part that is currently

being referenced by the processor need to be available in main memory. The entire program is

available in the hard disk. As the copying between the hard disk and main memory happens

automatically, you don’t even know it is happening, and it makes your computer feel like is has

unlimited RAM space even though it only has 32 MB installed. Because hard disk space is so

much cheaper than RAM chips, it also has a n economic benefit.

Techniques that automatically move program and data blocks into the physical main memory

when they are required for execution are called virtual-memory techniques.

80286 Microprocessor
 80286 Microprocessor is a 16-bit microprocessor that has the ability to

execute 16-bit instruction at a time.

 It has non-multiplexed data and address bus.

 The size of data bus is 16-bit whereas the size of address bus is 24-bit.

 It was invented in February 1982 by Intel.

 80286 Microprocessor was basically an advancement of 8086

microprocessor. Further in 1985, Intel produced upgraded version of 80286

which was a 32-bit microprocessor.

Factors that make 80286 more advantageous than 8086 microprocessor:

 It has non-multiplexed address and data bus that reduces operational speed.

 The addressable memory in case of 80286 is 16 MB.

 It offers an additional adder for address calculation.

 80286 has faster multipliers that lead to quick operation.

 The performance per clock cycle of 80286 is almost twice when compared with

8086 or 8088.

Operating modes of 80286 microprocessor

80286 operates in two modes:

https://electronicsdesk.com/microprocessor.html
https://electronicsdesk.com/8086-microprocessor.html
https://electronicsdesk.com/8086-microprocessor.html
https://electronicsdesk.com/8086-microprocessor.html

In real address mode, this microprocessor acts as a version of 8086 which is quite

faster. Also without any special modification, the instruction programmed for 8086

can be executed in 80286. It offers memory addressability of 1 MB of physical

memory.

The protected virtual-address mode of 80286 supports multitasking because

multiple programs can be executed using virtual memory. This mode of 80286

offers memory addressability of 16 MB of physical memory along with 1 GB of

virtual memory.

As using virtual memory, space for other programs can be saved. Sometimes bulky

programs also do exist that cannot be stored in physical memory, so virtual

memory is utilized in order to execute large programs.

This mode is used in 80286, so that in case of memory failure in real address

mode, it can stay in protected manner.

What is virtual memory?

Virtual memory is that part of hard disk which can be utilized for storing large

instructions inside the system. This extra memory can be addressed by the

computer other than the physical memory.

When there exists an instruction that is to be loaded in the memory but whose size

is greater than the provided physical memory. Then some part of hard disk is used

in order to store that instruction, which is known as virtual memory.

Architecture of 80286 Microprocessor

The figure below shows the architectural representation of 80286 Microprocessor:

We have already mentioned earlier that it is a 16-bit microprocessor thus holds a

16-bit data bus and 24-bit address bus. Also, unlike the 8086 microprocessor, it

offers non-multiplexed address and data bus, which increases the operating speed

of the system.

80286 is composed of nearly around 125K transistors and the pin configuration has

a total of 68 pins.

The CPU, central processing unit of 80286 microprocessor, consists of 4 functional

block:

 Address Unit

 Bus Unit

 Instruction Unit

 Execution Unit

Firstly, the physical address from where the data or instruction is to be fetched is

calculated, by the address unit. Once the physical address is calculated then the

calculated address is handed over to the bus unit. More specifically we can say,

that the calculated address is loaded on the address bus of the bus unit.

This address specifies the memory location from where the data or instruction is to

be fetched. The fetching of data through the memory is done through the data bus.

For faster execution of instruction, the BU fetches the instructions in advanced

from the memory and stores them in the queue.

This is done through the bus control module. As we have discussed that the

prefetched instructions are stored in a 6-byte instruction queue. This instruction

queue then further sends the instruction to the instruction unit.

The instruction unit on receiving the instructions now starts decoding the

instruction. As instructions are stored in prefetched queue thus the decoder

continuously decodes the fetched instructions and stores them into decoded

instruction queue.

Now after the instructions gets decoded then further these are needed to be

executed. So, the instructions from decoded instruction queue are fed to

the execution unit. The main component of EU is ALU i.e., arithmetic and logic

unit that performs the arithmetic and logic operations over the operand according

to the decoded instruction.

Once the execution of the instruction is performed then the result of the operation

i.e., the desired data is send to the register bank through the data bus.

As we have already discussed that 80286 is just a modified version of 8086. The

register set in 80286 is same as that of 8086 microprocessor.

 It holds 8 general purpose registers of 16 bit each.

 It contains 4 segment register each of 16-bit.

 Also has status and control register and instruction pointer.

Interrupt of 80286 Microprocessor

We know that whenever an interrupt gets generated in a system, then the execution

of the current program is stopped and the execution gets transferred to the new

program location where the interrupt is generated.

But once the interrupt gets executed then in order to get back to the original

program, its address as well as machine state must be stored in the stack. Basically

there exist 3 categories of interrupt in 80286 microprocessor:

 External interrupt (Hardware interrupt)

 INT instruction interrupt (Software interrupt)

 Internally generated interrupt due to some exceptions

External or hardware initiate interrupt are those interrupts that gets generated

due to an external input. And are basically of two types:

1. Maskable interrupt

2. Non-maskable interrupt

Sometimes when multiple programs are allowed to be executed in a system, then

this leads to generation of INT instruction, and such an interrupt is known

as software interrupt.

Another interrupt in 80286 exist due to some unusual conditions or situations

generated in the system that leads to prevention of further execution of the current

instruction.

So, this is all about the modes of operation, architecture and interrupts of 80286

microprocessor.

80486 Microprocessor

Features:

• The 32-bit 80486 is the next evolutionary step up from the 80386. It is also known as i486 or 486.

• It was introduced in 1989.

• One of the most obvious feature included in a 80486 is a built in math coprocessor. This coprocessor

is essentially the same as the 80387 processor used with a 80386, but being integrated on the chip

allows it to execute math instructions about three times as fast as a 80386/387 combination.

• 80486 has an 8Kbyte code and data cache.

• To make room for the additional signals, the 80486 is packaged in a 168 pin, pin grid array package

instead of the 132 pin PGA used for the 80386.

• A 50 MHz 80486 executes around 40 million instructions per second on average.

• 32 bit address and data bus.

• The 80486 microprocessor is an improved version of the 80386 microprocessor that contains an 8K-

byte cache and an 80387 arithmetic co processor. it executes many instructions in one clocking

period.

• It contains 4GB RAM.

• The 80486 introduced the concept of instruction pipelining. Instruction pipelining partitions the

execution process into multiple independent steps capable of occurring in parallel.
• The 80486 achieved instruction-level parallelism (ILP) through instruction pipelining. Prior to the

80486, the predecessor to the Pentium, each instruction was executed serially. In other words, each

instruction began and finished execution before the execution of the next instruction could begin.

This resulted in inefficient utilization of the processor’s resources, as instruction execution did not

require all of those resources simultaneously.

• The execution pipeline of the 80486 is partitioned into five stages, meaning that ideally five

instructions are executing simultaneously (5 pipelining feature).

80486 overcome problem of Floating Point Operations:

Prior to the 80486 microprocessor the x86 processors had a companion processor like math coprocessor

80387 for floating point operations. These numeric extra processor required transactions between the

main processor and coprocessor. It takes more time. But the 80486 has the FPU integrated into the

processor which eliminates the additional bus cycles.

80486 microprocessor Architecture:

The 80486 microprocessor consists of the functional units illustrated in figure:

• Bus Interface Unit

• Cache Unit

• Instruction Pipeline/Decode Unit (consists of instruction prefetch and instruction decode units)

https://www.sciencedirect.com/topics/computer-science/parallelism
https://www.sciencedirect.com/topics/computer-science/execution-pipeline

• Control Unit

• Floating-Point Unit

• Data Path Unit

The Bus Unit

The bus unit provides the physical interface between the 80486 and external devices. The bus unit

consists of the following functional entities:

Address drivers/receivers:

When the 80486 is executing a bus cycle, the address drivers are used to drive the address out onto the

processor's local address bus.

Bus control:

Senses when the microprocessor is communicating with 8- or 16-bit devices. Used to control the buses

during the execution of a burst transfer.

Instruction Prefetch

The Prefetcher reads instructions in 16-byte blocks (lines). The line of code is read into both the internal

cache and the 32-byte prefetch queue.

The 80486 Cache Unit

The 80486 microprocessor incorporates a cache controller and 8KB of fast access static RAM cache

memory.

Two-Stage Instruction Decode

During the stage 1 decode, the opcode byte is decoded. During the stage 2 decode, the displacement is

added to the address and any immediate operands are taken into account.

Execution

The instruction is executed.

Register Write-Back

Instruction execution is completed and the result written back to a target register.

The Floating-Point Unit

The floating-point unit executes the same instruction set as the 80387 Numeric Co-Processor extension.

The Memory Management Unit (MMU)

The MMU consists of two sub-units:

The segmentation unit: Calculates effective and linear addresses from the segment and offset. It has

been redesigned to generate one address per clock.

The paging unit: The paging unit translates the linear address to a physical address.

General-purpose registers

Intel 80486 registers

3
1 ...

1
5 ...

0
7 ...

0
0 (bit position)

Main registers (8/16/32 bits)

EAX AH AL A register

EBX BH BL B register

ECX CH CL C register

EDX DH DL D register

Index registers (16/32 bits)

ESI SI Source Index

EDI DI Destination Index

EBP BP Base Pointer

ESP SP Stack Pointer

Program counter (16/32 bits)

EIP IP Instruction Pointer

Segment selectors (16 bits)

 CS Code Segment

 DS Data Segment

 ES Extra Segment

 FS F Segment

 GS G Segment

 SS Stack Segment

Status register

1

7
1

6
1

5
1

4
1

3
1

2
1

1
1

0
0

9
0

8
0

7
0

6
0

5
0

4
0

3
0

2
0

1
0

0 (bit

position)

 V R 0 N IOPL O D I T S Z 0 A 0 P 1 C EFlags

Floating-point registers (80 bits)

7
9 ...

0
0 (bit position)

ST0 STack register 0

ST1 STack register 1

ST2 STack register 2

ST3 STack register 3

ST4 STack register 4

ST5 STack register 5

ST6 STack register 6

ST7 STack register 7

Arithmetic logic unit (ALU). This unit handles all integer and bit-oriented math functions.

Flags. The flag register basically consists of two bit fields:

The flag status bits reflect the results of the previously executed instruction.

The flag control bits allow the programmer to alter certain operational characteristics of the

microprocessor.

EFlags: EFLAGS indicate the condition of the microprocessor and control its operation. Figure 2-2 shows
the flag registers of all versions of the microprocessor. The 8086-80286 contain a FLAG register (16 bits)
and the 80386 and above contain an EFLAG register (32-bit extended flag register).

https://en.wikipedia.org/wiki/Virtual_8086_mode
https://en.wikipedia.org/wiki/IOPL
https://en.wikipedia.org/wiki/Overflow_flag
https://en.wikipedia.org/wiki/Direction_flag
https://en.wikipedia.org/wiki/IF_(x86_flag)
https://en.wikipedia.org/wiki/Trap_flag
https://en.wikipedia.org/wiki/Sign_flag
https://en.wikipedia.org/wiki/Zero_flag
https://en.wikipedia.org/wiki/Adjust_flag
https://en.wikipedia.org/wiki/Parity_flag
https://en.wikipedia.org/wiki/Carry_flag
https://en.wikipedia.org/wiki/FLAGS_register

The rightmost five flag bits and the overflow flag change after many arithmetic and logic in-
structions execute. The flags never change for any data transfer or program control operation.
Some of the flags are also used to control features found in the microprocessor. Following is a list of
each flag bit, with a brief description of their function.

C (carry) Carry holds the carry after addition or the borrow after subtraction. The carry flag also
indicates error conditions, as dictated by some programs and procedures. This is especially true of the
DOS function calls.

P (parity) Parity is a logic 0 for odd parity and a logic 1 for even parity. Parity is a count of ones in
a number expressed as even or odd.

If a number contains zero one bits, it has even parity.

A(auxiliary carry) The auxiliary carry holds the carry (half-carry) after addition or the borrow after
subtraction between bits positions 3 and 4 of the result.

Z (zero) The zero flag shows that the result of an arithmetic or logic operation is zero. If Z=1, the result is
zero; if Z= 0, the result is not zero.

 S (sign) The sign flag holds the arithmetic sign of the result after an arithmetic or logic instruction
executes. If S=1, the sign bit (leftmost hit of a number) is set or negative; if S=0, the sign bit is cleared or
positive.

 T (trap) The trap flag enables trapping through an on-chip debugging feature. (A program is debugged
to find an error or bug.) If the T flag is enabled (1), the microprocessor interrupts the flow of the
program on conditions as indicated by the debug registers and control registers. lf the T flag is a logic 0,
the trapping (debugging) feature is disabled.

 I (interrupt) The interrupt flag controls the operation of the INTR (interrupt request) input pin. If I=1.
the INTR pin is enabled: if I= 0, the INTR pin is disabled. The state of the I flag bit is controlled by the STI
(set I flag) and CLI (clear I flag) instructions.

 D (direction) The direction flag selects either the increment or decrement mode for the Dl and/or SI
registers during string instructions. If D=1, the registers are automatically decremented:
if D=1, the registers are automatically incremented.

0 (overflow) Overflows occurs when signed numbers are added or subtracted. An overflow indicates
that the result has exceeded the capacity of the machine. For unsigned operations, the overflow
flag is ignored.

IOPL (I/0 privilege level) IOPL is used in protected mode operation to select the privilege level for I/O
devices. If the current privilege level is higher or more trusted than the IOPL, I/O executes without
hindrance. If the IOPL is lower than the current privilege level, an interrupt occurs, causing execution to
suspend. Note that an IOPL of 00 is the highest or most trusted: if IOPL is 11, it is the lowest or least
trusted.

 NT (nested task) The nested task flag indicates that the current task is nested within another task in
protected mode operation. This line is set when the task is nested by software.

 RF (resume) The resume flag is used with debugging to control the resumption of execution after the
next instruction.

 VM (virtual mode) The VM flag bit selects virtual mode operation in a protected mode system.

 AC (alignment check) The alignment check flag bit activates if a word or doubleword is addressed on a
non-word or non-doubleword boundary. Only the 80486SX microprocessor contains the alignment
check bit that is primarily used by its companion numeric coprocessor.

16-bit Processors

• The 8086 has 16-bit registers and a 16-bit
external data bus, with 20-bit addressing giving a
1-MByte address space.

• The 8088 is similar to the 8086 except it has an 8-
bit external data bus.

• The Intel 286,386,486 Processor:

80286 Microprocessor is a 16-bit microprocessor
that has the ability to execute 16-bit instruction at a
time. It has non-multiplexed data and address bus.

https://electronicsdesk.com/microprocessor.html

The size of data bus is 16-bit whereas the size
of address bus is 24-bit. Further in 1985, Intel
produced upgraded version of 80286 which
was a 32-bit microprocessor. The addressable
memory in case of 80286 is 16 MB.

• The Intel386 processor was the first 32-bit
processor invented by Intel. It introduced 32-
bit registers.

• The 32-bit 80486 is the next evolutionary step
up from the 80386. It is also known as i486 or
486. It was introduced in 1989.

Pentium

Processor

Features of Pentium

• After the 80486, Intel introduced the Pentium family
of microprocessors in 1993.

• Pentium processors had a 32-bit internal architecture
(registers).

• The external address and data buses were each 32 bits
wide.

• Pentiums were based on superscalar architecture, which
used two pipelines for parallel processing.

• They also had better cache memory than 80486
processors. The 80486 had a 8-KB cache for storing both
code and data, the Pentium had a 16-KB cache, with 8-KB
reserved for caching data and 8-KB reserved for caching
instructions.

https://www.sciencedirect.com/topics/engineering/microprocessor-chips
https://www.sciencedirect.com/topics/engineering/pentium-processor

Pentium Architecture

It is not a load/store architecture. -- The
instruction set is huge. We go over only a
fraction of the instruction set. The text only
presents a fraction. -- There are lots of
restrictions on how instructions/operands are
put together, but there is also an amazing
amount of flexibility.

• Code Cache:

– 2 way set associative cache

– 256 lines b/w code cache and prefetch buffer, permitting
prefetching of 32 bytes (256/8) of instructions.

• Prefetch Buffers: When instructions are prefetched from
cache, they are placed into one set of prefetch buffers. Four
prefetch buffers within the processor works as two
independent pairs. The other set is used as when a branch
operation is predicted. Prefetch buffer sends a pair of
instructions to instruction decode.

• Instruction Decode Unit: It occurs in two stages –
Decode1 (D1) and Decode2(D2).
▫ D1 checks whether instructions can be paired.
▫ D2 calculates the address of memory resident
operands.

• Control Unit : This unit interprets the instruction
word and microcode entry point fed to it by
Instruction Decode Unit.

• It handles exceptions, breakpoints and
interrupts. It controls the integer pipelines and
floating point sequences.

Pentium Registers

• Four 32-bit registers can be used as

• ∗ Four 32-bit register (EAX, EBX, ECX, EDX)

• ∗ Four 16-bit register (AX, BX, CX, DX)

• ∗ Eight 8-bit register (AH, AL, BH, BL, CH, CL, DH, DL)

• Some registers have special use

• ∗ ECX for count in loop instructions

Pentium Registers (Eflags)

Flag bits, with a brief description of
function.

• C (carry) holds the carry after addition or
borrow after subtraction.
▫ also indicates error conditions
P (parity) is the count of ones in a number
expressed as even or odd. Logic 0 for odd
parity; logic 1 for even parity.
▫ if a number contains three binary one bits,
it has odd parity
▫ if a number contains no one bits, it has
even parity

• A (auxiliary carry) holds the carry (half- carry) after addition or
the borrow after subtraction between bit positions 3 and 4 of the
result.

• Z (zero)shows that the result of an arithmetic or logic operation is
zero.

• S (sign) flag holds the arithmetic sign of the result after an
arithmetic or logic instruction executes.

• T (trap)The trap flag enables trapping through an on-chip
debugging feature.

• I (interrupt) controls operation of the INTR (interrupt
request) input pin.

• D (direction)selects increment or decrement mode for the DI
and/or SI registers.

• O (overflow)occurs when signed numbers are added or
subtracted, an overflow indicates the result has exceeded the capacity of
the machine.

• IOPL used in protected mode operation to
select the privilege level for I/O devices.

• NT (nested task) flag indicates the current task
is nested within another task in protected mode
operation.

• RF (resume) used with debugging to control
resumption of execution after the next instruction.

• VM (virtual mode) flag bit selects virtual
mode operation in a protected mode system.

• AC, (alignment check) flag bit activates if a
word or doubleword is addressed on a non-word
or non-doubleword boundary.

• VIF is a copy of the interrupt flag bit available to
the Pentium 4–(virtual interrupt)

• VIP (virtual) provides information about a
virtual mode interrupt for (interrupt pending)
Pentium.
• ▫ used in multitasking environments to provide

virtual interrupt flags

• ID (identification) flag indicates that the
Pentium microprocessors support the
CPUID instruction.
• ▫ CPUID instruction provides the system with

information about the Pentium microprocessor

Difference between Microprocessor
and Microcontroller

• Microprocessor consists of only a Central
Processing Unit, whereas Micro Controller
contains a CPU, Memory, I/O all integrated
into one chip.

• Microprocessor is used in Personal Computers
whereas Micro Controller is used in an
embedded system.

Von Neumann and Harvard
Architecture

• Von Neumann Architecture is a digital computer
architecture whose design is based on the
concept of stored program computers where
program data and instruction data are stored in
the same memory.

• Harvard Architecture is the digital computer
architecture whose design is based on the
concept where there are separate storage and
separate buses (signal path) for instruction and
data.

8051 Microcontroller

8051 microcontroller is designed by Intel in 1981. It is an 8-bit
microcontroller based on Harvard architecture and primarily
developed for use in embedded systems.
When it became widely popular, Intel allowed other manufacturers
to make and market different flavors of 8051 with its code
compatible with 8051. It means that if you write your program for
one flavor of 8051, it will run on other flavors too, regardless of the
manufacturer. This has led to several versions with different speeds
and amounts of on-chip RAM.
At first, it was created using NMOS technology but as NMOS
technology needs more power to function therefore Intel re-
intended Microcontroller 8051 employing CMOS technology and a
new edition came into existence with a letter ‘C’ in the title name,
for illustration: 80C51.

Features:
• 4KB bytes on-chip program memory (ROM)
• 128 bytes on-chip data memory (RAM)
• Four register banks
• 8-bit bidirectional data bus
• 16-bit unidirectional address bus
• 32 general purpose registers each of 8-bit
• 16 bit Timers (usually 2, but may have more or less)
• Three internal and two external Interrupts
• 16-bit program counter and data pointer

Block Diagram of 8051 Microcontroller

• CPU (Central Processor Unit):
As you may be familiar that the Central Processor Unit or

CPU is the mind of any processing machine. It scrutinizes
and manages all processes that are carried out in the
Microcontroller.

• Interrupts:
Interrupt is a subroutine call that reads the

Microcontroller’s key function or job and helps it to
perform some other program which is extra important
then. Interrupts provide us a method to postpone or delay
the current process, carry out a sub-routine task and then
all over again restart standard program implementation.

There are 5 interrupt supplies in the 8051
Microcontroller, two out of five are peripheral
interrupts, two are timer interrupts and one is serial
port interrupt.

• The interrupts of the 8051 microcontrollers have the
following sources

• TF0 (Timer 0 Overflow Interrupt)
• TF1 (Timer 1 Overflow Interrupt)
• INT0 (External Hardware Interrupt)
• INT1 (External Hardware Interrupt)
• RI/TI (Serial Communication Interrupt)

• Memory:
• The micro-controller needs a program that is a set of

commands. These programs need a storage space. The
memory which is brought into play to accumulate the
program of the Microcontroller is recognized as Program
memory or code memory. In common language, it’s also
known as Read-Only Memory or ROM.

• The storage space which is employed to momentarily data
storage for functioning is acknowledged as Data Memory
and we employ Random Access Memory or RAM for this
principle reason. Microcontroller 8051 contains code
memory or program memory 4K so which has 4KB Rom and
it also comprises data memory (RAM) of 128 bytes.

• Bus

• Fundamentally Bus is a group of wires which
function as a communication canal or means
for the transfer of Data. There are two types
of buses:

• Address Bus: Microcontroller 8051 consists of
a 16-bit address bus.

• Data Bus: Microcontroller 8051 comprise of 8
bits data bus.

• Oscillator

• As we all make out the Microcontroller is a digital
circuit piece of equipment, thus it needs a timer
for its function. For this function, Microcontroller
8051 consists of an on-chip oscillator.

• Timer and Control Unit

• The main function of a timer is to make a delay
otherwise time gap among two events. This
microcontroller includes two timers where each
timer is 16-bit.

Registers

• Registers are used in the CPU to store
information on temporarily basis which could
be data to be processed, or an address
pointing to the data which is to be fetched. In
8051.

• The most widely used registers of the 8051 are
A (accumulator), B, R0-R7, DPTR (data
pointer), and PC (program counter). All these
registers are of 8-bits, except DPTR and PC.

• Storage Registers in 8051
We will discuss the following types of storage registers here −

• Accumulator
• R register
• B register
• Data Pointer (DPTR)
• Program Counter (PC)
• Stack Pointer (SP)
• Accumulator

The accumulator, register A, is used for all arithmetic and logic
operations. If the accumulator is not present, then every result of
each calculation (addition, multiplication, shift, etc.) is to be stored
into the main memory. Access to main memory is slower than
access to a register like the accumulator

• The "R" Registers

• The "R" registers are a set of eight registers,
namely, R0, R1 to R7. These registers function as
auxiliary or temporary storage registers in many
operations.

• The "B" Register

• The "B" register is very similar to the Accumulator
in the sense that it may hold an 8-bit (1-byte)
value. The "B" register is used only by two 8051
instructions: MUL AB and DIV AB.

• The Data Pointer

• The Data Pointer (DPTR) is the 8051’s only user-
accessible 16-bit (2-byte) register. It is used by the
8051 to access external memory using the
address indicated by DPTR.

• The Program Counter

• The Program Counter (PC) is a 2-byte address
which tells the 8051 where the next instruction to
execute can be found in the memory.

• Stack Pointer

• The stack is a section of a RAM used by the
CPU to store information such as data or
memory address on temporary basis. The
register used to access the stack is known as
the stack pointer register. The stack pointer in
the 8051 is 8-bits wide.

Register Bank of 8051

The 8051 microcontroller

consists of four register banks,

such as Bank0, Bank1, Bank2,

Bank3 which are selected by

the PSW (Program Status Word)

register. These register banks

are present in the internal RAM

memory of the 8051 microcontroller.

Program Status Word (PSW)

• The program status word (PSW) register is an 8-bit register.I
t is also referred to as the flag register. Although the PSW
register is 8 bits wide, only 6 bits of it are used by the
8051.The two unused bits are user-definable flags.

• Four of the flags are called conditional flags, meaning that
they indicate some conditions that result after an
instruction is executed.

• These four are CY (carry), AC (auxiliary carry), P (parity),
and OV (overflow).As seen from below figure, the bits
PSW.3 and PSW.4 are designated as RS0 and RS1 as register
selection bit, respectively, and are used to change the bank
registers.

Applications of 8051 Microcontroller

• Light sensing and controlling devices.

• Temperature sensing and controlling devices.

• Fire detections and safety devices.

• Automobile applications.

• Defense applications.

Thank You

Timers of 8051 and their Associated Registers

The 8051 has two timers, Timer 0 and Timer 1. They can be used as timers or as event counters.

Both Timer 0 and Timer 1 are 16-bit wide. Since the 8051 follows an 8-bit architecture, each 16

bit is accessed as two separate registers of low-byte and high-byte.

Timer 0 Register

The 16-bit register of Timer 0 is accessed as low- and high-byte. The low-byte register is called

TL0 (Timer 0 low byte) and the high-byte register is called TH0 (Timer 0 high byte). These

registers can be accessed like any other register. For example, the instruction MOV TL0,

#4H moves the value into the low-byte of Timer #0.

Timer 1 Register

The 16-bit register of Timer 1 is accessed as low- and high-byte. The low-byte register is called

TL1 (Timer 1 low byte) and the high-byte register is called TH1 (Timer 1 high byte). These

registers can be accessed like any other register. For example, the instruction MOV TL1,

#4H moves the value into the low-byte of Timer 1.

TMOD (Timer Mode) Register

Both Timer 0 and Timer 1 use the same register to set the various timer operation modes. It is

an 8-bit register in which the lower 4 bits are set aside for Timer 0 and the upper four bits for

Timers. In each case, the lower 2 bits are used to set the timer mode in advance and the upper 2

bits are used to specify the location.

Gate − When set, the timer only runs while INT(0,1) is high.

C/T − Counter/Timer select bit.

M1 − Mode bit 1.

M0 − Mode bit 0.

GATE

Every timer has a means of starting and stopping. Some timers do this by software, some by

hardware, and some have both software and hardware controls. 8051 timers have both software

and hardware controls. The start and stop of a timer is controlled by software using the

instruction SETB TR1 and CLR TR1 for timer 1, and SETB TR0 and CLR TR0 for timer 0.

The SETB instruction is used to start it and it is stopped by the CLR instruction. These

instructions start and stop the timers as long as GATE = 0 in the TMOD register. Timers can be

started and stopped by an external source by making GATE = 1 in the TMOD register.

C/T (CLOCK / TIMER)

This bit in the TMOD register is used to decide whether a timer is used as a delay generator or

an event manager. If C/T = 0, it is used as a timer for timer delay generation. The clock source

to create the time delay is the crystal frequency of the 8051. If C/T = 0, the crystal frequency

attached to the 8051 also decides the speed at which the 8051 timer ticks at a regular interval.

Timer frequency is always 1/12th of the frequency of the crystal attached to the 8051. Although

various 8051 based systems have an XTAL frequency of 10 MHz to 40 MHz, we normally

work with the XTAL frequency of 11.0592 MHz. It is because the baud rate for serial

communication of the 8051.XTAL = 11.0592 allows the 8051 system to communicate with the

PC with no errors.

M1 / M2

M1 M2 Mode

0 0 13-bit timer mode.

0 1 16-bit timer mode.

1 0 8-bit auto reload mode.

1 1 Spilt mode.

Different Modes of Timers

Mode 0 (13-Bit Timer Mode)

Both Timer 1 and Timer 0 in Mode 0 operate as 8-bit counters. Timer register is configured as a

13-bit register consisting of all the 8 bits of TH1 and the lower 5 bits of TL1. The upper 3 bits

of TL1 are indeterminate and should be ignored. The timer interrupt flag TF1 is set when the

count rolls over from all 1s to all 0s. Mode 0 operation is the same for Timer 0 as it is for Timer

1.

Mode 1 (16-Bit Timer Mode)

Timer mode "1" is a 16-bit timer and is a commonly used mode. It functions in the same way as

13-bit mode except that all 16 bits are used. TLx is incremented starting from 0 to a maximum

255. Once the value 255 is reached, TLx resets to 0 and then THx is incremented by 1.

Mode 2 (8 Bit Auto Reload)

Both the timer registers are configured as 8-bit counters (TL1 and TL0) with automatic reload.

Overflow from TL1 (TL0) sets TF1 (TF0) and also reloads TL1 (TL0) with the contents of Th1

(TH0), which is preset by software. The reload leaves TH1 (TH0) unchanged.

The benefit of auto-reload mode is that you can have the timer to always contain a value from

200 to 255. If you use mode 0 or 1, you would have to check in the code to see the overflow

and, in that case, reset the timer to 200. In this case, precious instructions check the value and/or

get reloaded. In mode 2, the microcontroller takes care of this. Once you have configured a

timer in mode 2, you don't have to worry about checking to see if the timer has overflowed, nor

do you have to worry about resetting the value because the microcontroller hardware will do it

all for you. The auto-reload mode is used for establishing a common baud rate.

Mode 3 (Split Timer Mode)

Timer mode "3" is known as split-timer mode. When Timer 0 is placed in mode 3, it becomes

two separate 8-bit timers. Timer 0 is TL0 and Timer 1 is TH0. Both the timers count from 0 to

255 and in case of overflow, reset back to 0. All the bits that are of Timer 1 will now be tied to

TH0.

When Timer 0 is in split mode, the real Timer 1 (i.e. TH1 and TL1) can be set in modes 0, 1 or

2, but it cannot be started/stopped as the bits that do that are now linked to TH0. The real timer

1 will be incremented with every machine cycle.

Initializing a Timer

Decide the timer mode. Consider a 16-bit timer that runs continuously, and is independent of

any external pins.

Initialize the TMOD SFR. Use the lowest 4 bits of TMOD and consider Timer 0. Keep the two

bits, GATE 0 and C/T 0, as 0, since we want the timer to be independent of the external pins.

As 16-bit mode is timer mode 1, clear T0M1 and set T0M0. Effectively, the only bit to turn on

is bit 0 of TMOD. Now execute the following instruction −

MOV TMOD,#01h

Now, Timer 0 is in 16-bit timer mode, but the timer is not running. To start the timer in running

mode, set the TR0 bit by executing the following instruction −

SETB TR0

Now, Timer 0 will immediately start counting, being incremented once every machine cycle.

Reading a Timer

A 16-bit timer can be read in two ways. Either read the actual value of the timer as a 16-bit

number, or you detect when the timer has overflowed.

Detecting Timer Overflow

When a timer overflows from its highest value to 0, the microcontroller automatically sets the

TFx bit in the TCON register. So instead of checking the exact value of the timer, the TFx bit

can be checked. If TF0 is set, then Timer 0 has overflowed; if TF1 is set, then Timer 1 has

overflowed.

RISC and CISC Processor

 A microprocessor is a processing unit on a single chip. It is an integrated circuit which

performs the core functions of a computer CPU. It is a multipurpose programmable silicon chip

constructed using Metal Oxide Semiconductor (MOS) technology which is clock driven and

register based. It accepts binary data as input and provides output after processing it as per the

specification of instructions stored in the memory. These microprocessors are capable of

processing 128 bits at a time at the speed of one billion instructions per second.

Characterstics of a micro processor:

 Instruction Set –
Set of complete instructions that the microprocessor executes is termed as the instruction

set.

 Word Length –
The number of bits processed in a single instruction is called word length or word size.

Greater the word size, larger the processing power of the CPU.

 System Clock Speed –
Clock speed determines how fast a single instruction can be executed in a processor. The

microprocessor’s pace is controlled by the System Clock. Clock speeds are generally

measured in million of cycles per second (MHz) and thousand million of cycles per second

(GHz). Clock speed is considered to be a very important aspect of predicting the

performance of a processor.

Classification of Microprocessors:
Besides the classification based on the word length, the classification is also based on the

architecture i.e. Instruction Set of the microprocessor. These are categorised into RISC and

CISC.

1. RISC:
It stands for Reduced Instruction Set Computer. It is a type of microprocessor architecture

that uses a small set of instructions of uniform length. These are simple instructions which

are generally executed in one clock cycle. RISC chips are relatively simple to design and

inexpensive.The setback of this design is that the computer has to repeatedly perform

simple operations to execute a larger program having a large number of processing

operations.

Examples: SPARC, POWER PC etc.

2. CISC:
It stands for Complex Instruction Set Computer. These processors offer the users, hundreds

of instructions of variable sizes. CISC architecture includes a complete set of special

purpose circuits that carry out these instructions at a very high speed. These instructions

interact with memory by using complex addressing modes. CISC processors reduce the

program size and hence lesser number of memory cycles are required to execute the

programs. This increases the overall speed of execution.

Examples: Intel architecture, AMD

3. EPIC:
It stands for Explicitly Parallel Instruction Computing. The best features of RISC and CISC

processors are combined in the architecture. It implements parallel processing of

instructions rather than using fixed length instructions. The working of EPIC processors are

supported by using a set of complex instructions that contain both basic instructions as well

as the information of execution of parallel instructions. It substantially increases the

efficiency of these processors.

Below are few differences between RISC and CISC:

CISC RISC

A large number of instructions are

present in the architecture.

Very fewer instructions are present. The

number of instructions are generally less

than 100.

Some instructions with long execution

times. These include instructions that

copy an entire block from one part of

memory to another and others that

copy multiple registers to and from

memory.

No instruction with a long execution time

due to very simple instruction set. Some

early RISC machines did not even have an

integer multiply instruction, requiring

compilers to implement multiplication as a

sequence of additions.

Variable-length encodings of the

instructions.

Example: IA32 instruction size can

range from 1 to 15 bytes.

Fixed-length encodings of the instructions

are used.

Example: In IA32, generally all

instructions are encoded as 4 bytes.

Multiple formats are supported for

specifying operands. A memory

operand specifier can have many

different combinations of

displacement, base and index

Simple addressing formats are supported.

Only base and displacement addressing is

allowed.

CISC RISC

registers.

CISC supports array. RISC does not supports array.

Arithmetic and logical operations can

be applied to both memory and

register operands.

Arithmetic and logical operations only use

register operands. Memory referencing is

only allowed by load and store

instructions, i.e. reading from memory

into a register and writing from a register

to memory respectively.

Implementation programs are hidden

from machine level programs. The

ISA provides a clean abstraction

between programs and how they get

executed.

Implementation programs exposed to

machine level programs. Few RISC

machines do not allow specific instruction

sequences.

Condition codes are used. No condition codes are used.

The stack is being used for procedure

arguments and return addresses.

Registers are being used for procedure

arguments and return addresses. Memory

references can be avoided by some

procedures.

ARM processor and its features.

Advanced RISC Machine (ARM) Processor is considered to be family of Central Processing

Units that is used in music players, smartphones, wearables, tablets and other consumer

electronic devices.

The architecture of ARM processor is created by Advanced RISC Machines, hence name

ARM. This needs very few instruction sets and transistors. It has very small size. This is reason

that it is perfect fit for small size devices. It has less power consumption along with reduced

complexity in its circuits.

They can be applied to various designs such as 32-bit devices and embedded systems. They can

even be upgraded according to user needs.

The main features of ARM Processor are mentioned below :

1. Multiprocessing Systems –
ARM processors are designed so that they can be used in cases of multiprocessing systems

where more than one processors are used to process information. First AMP processor

introduced by name of ARMv6K had ability to support 4 CPUs along with its hardware.

2. Tightly Coupled Memory –
Memory of ARM processors is tightly coupled. This has very fast response time. It has low

latency (quick response) that can also be used in cases of cache memory being

unpredictable.

3. Memory Management –
ARM processor has management section. This includes Memory Management Unit and

Memory Protection Unit. These management systems become very important in managing

memory efficiently.

4. Thumb-2 Technology –
Thumb-2 Technology was introduced in 2003 and was used to create variable length

instruction set. It extends 16-bit instructions of initial Thumb technology to 32-bit

instructions. It has better performance than previously used Thumb technology.

5. One cycle execution time –
ARM processor is optimised for each instruction on CPU. Each instruction is of fixed

length that allows time for fetching future instructions before executing present instruction.

ARM has CPI (Clock Per Insttuction) of one cycle.

6. Pipelining –
Processing of instructions is done in parallel using pipelines. Instructions are broken down

and decoded in one pipeline stage. The pipeline advances one step at a time to increase

throughput (rate of processing).

7. Large number of registers –
Large number of registers are used in ARM processor to prevent large amount of memory

interactions. Registers contain data and addresses. These act as local memory store for all

operations.

 ARM Architecture.

 The ARM architecture processor is an advanced reduced instruction set computing [RISC]

machine and it’s a 32bit reduced instruction set computer (RISC) microcontroller. It was

introduced by the Acron computer organization in 1987. This ARM is a family of

https://www.geeksforgeeks.org/advantages-and-disadvantages-of-arm-processor/

microcontroller developed by makers like ST Microelectronics,Motorola, and so on. The ARM

architecture comes with totally different versions like ARMv1, ARMv2, etc., and, each one has

its own advantage and disadvantages.

The ARM processor conjointly has other components like the Program status register, which

contains the processor flags (Z, S, V and C). The modes bits conjointly exist within the program

standing register, in addition to the interrupt and quick interrupt disable bits; Some special

registers: Some registers are used like the instruction, memory data read and write registers

and memory address register.

Priority encoder: The encoder is used in the multiple load and store instruction to point

which register within the register file to be loaded or kept .

Arithmetic Logic Unit (ALU)

The ALU has two 32-bits inputs. The primary comes from the register file, whereas the other

comes from the shifter. Status registers flags modified by the ALU outputs. The V-bit output

goes to the V flag as well as the Count goes to the C flag. Whereas the foremost significant bit

really represents the S flag, the ALU output operation is done by NORed to get the Z

flag. The ALU has a 4-bit function bus that permits up to 16 opcode to be implemented.

Booth Multiplier Factor

The multiplier factor has 3 32-bit inputs and the inputs return from the register file. The multiplier

output is barely 32-Least Significant Bits of the merchandise. The entity representation of the

multiplier factor is shown in the above block diagram. The multiplication starts whenever the

beginning 04 input goes active. Fin of the output goes high when finishing.

Booth Algorithm

Booth algorithm is a noteworthy multiplication algorithmic rule for 2’s complement numbers. This

treats positive and negative numbers uniformly. Moreover, the runs of 0’s or 1’s within the

multiplier factor are skipped over without any addition or subtraction being performed, thereby

creating possible quicker multiplication. The figure shows the simulation results for the

multiplier test bench. It’s clear that the multiplication finishes only in16 clock cycle.

Barrel Shifter

The barrel shifter features a 32-bit input to be shifted. This input is coming back from the

register file or it might be immediate data. The shifter has different control inputs coming back

from the instruction register. The Shift field within the instruction controls the operation of the

barrel shifter. This field indicates the kind of shift to be performed (logical left or right,

arithmetic right or rotate right). The quantity by which the register ought to be shifted is

contained in an immediate field within the instruction or it might be the lower 6 bits of a register

within the register file.

Control Unit

For any microprocessor, control unit is the heart of the whole process and it is responsible for

the system operation,so the control unit design is the most important part within the whole

design. The control unit is sometimes a pure combinational circuit design. Here, the control unit

is implemented by easy state machine. The processor timing is additionally included within the

control unit. Signals from the control unit are connected to each component within the processor

to supervise its operation.

