Electronics Measurement & Instrumentation 4EC3-06 Unit -1

Dr. Girraj Sharma Associate Professor Department of Electronics & Communication Engineering JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE, JAIPUR

4EC3-06: Electronics Measurement & Instrumentation

03-05-2021

Max. Marks: 150(IA:30, ETE:120)

End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	THEORY OF ERRORS - Accuracy & precision, Repeatability, Limits of errors, Systematic & random errors, Modeling of errors, Probable error & standard deviation, Gaussian error analysis, Combination of errors.	8
3	ELECTRONIC INSTRUMENTS - Electronic Voltmeter, Electronic Multimeters, Digital Voltmeter, and Component Measuring Instruments: Q meter, Vector Impedance meter, RF Power & Voltage Measurements, Introduction to shielding & grounding.	8
4	OSCILLOSCOPES – CRT Construction, Basic CRO circuits, CRO Probes, Techniques of Measurement of frequency, Phase Angle and Time Delay, Multibeam, multi trace, storage & sampling Oscilloscopes.	7
5	SIGNAL GENERATION AND SIGNAL ANALYSIS - Sine wave generators, Frequency synthesized signal generators, Sweep frequency generators. Signal Analysis - Measurement Technique, Wave Analyzers, and Frequency - selective wave analyser, Heterodyne wave analyser, Harmonic distortion analyser, and Spectrum analyser.	8
6	TRANSDUCERS - Classification, Selection Criteria, Characteristics, Construction, Working Principles and Application of following Transducers:- RTD, Thermocouples, Thermistors, LVDT, Strain Gauges, Bourdon Tubes, Seismic Accelerometers, Tachogenerators, Load Cell, Piezoelectric Transducers, Ultrasonic Flow Meters.	8
	Total	40

Dr. Girrai sharma assoc prof ECE IECRC

COs

- 1. Describe the use of various electrical/electronic instruments, their block diagram, applications, and principles of operation, standards errors and units of measurements.
- 2. Develop basic skills in the design of electronic equipment.
- 3. Analyze different electrical/electronic parameters using state of equipment of measuring instruments which is require to all types of industries.
- 4. Identify electronics/ electrical instruments, understanding associated with the instruments.
- 5. Explain use of <u>transducers</u> in different types of field applications

Text Books

1. Kalsi, H.S. "Electronic Instrumentation", Tata McGraw-Hill Publishing Co. Ltd., 2017

A.K. Sawhney "A Course in Electronic and Electrical Measurement and Instrumentation", Dhanpat Rai & Co. (P) Ltd., 2001

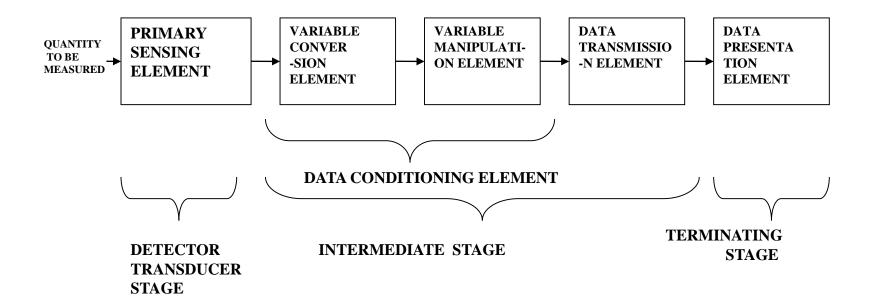
Textbook Reference book

For Digital voltmeters & -> transducers Electronic Measurement by U.A. Bokshi, Technical pub.

INTRODUCTION

- Instrumentation is a technology of measurement which serves sciences, engineering, medicine and etc.
- Measurement is the process of determining the amount, degree or capacity by comparison with the accepted standards of the system units being used.
- Instrument is a device for determining the value or magnitude of a quantity or variable.
- Electronic instrument is based on electrical or electronic principles for its measurement functions.

Importance of Measurement is simply and eloquently expressed in the following statement of famous physicist Lord Kelvin: "I often say that when you can measure what you are speaking about and can express it in numbers, you know something about it; when you cannot express in it numbers your knowledge is of meager and unsatisfactory kind"


Methods of Measurement

- DIRECT METHODS: In these methods, the unknown quantity (called the measurand) is directly compared against a standard.
- **INDIRECT METHOD**: Measurements by direct methods are not always possible, feasible and practicable. In engineering applications measurement systems are used which require need of indirect method for measurement purposes.

- MECHANICAL: These instruments are very reliable for static and stable conditions. But their disadvantage is that they are unable to respond rapidly to measurements of dynamic and transient conditions.
- ELECTRICAL: It is faster than mechanical, indicating the output are rapid than mechanical methods. But it depends on the mechanical movement of the meters. The response is 0.5 to 24 seconds.
- ELECTRONIC: It is more reliable than other system. It uses semiconductor devices and weak signal can also be detected.

- PRIMARY SENSING ELEMENT: The quantity under measurement makes its first contact with the primary sensing element of a measurement system.
- VARIABLE CONVERSION ELEMENT: It converts the output of the primary sensing element into suitable form to preserve the information content of the original signal.
- DATA PRESENTATION ELEMENT: The information about the quantity under measurement has to be conveyed to the personnel handling the instrument or the system for monitoring, control or analysis purpose.

Functional Elements of an Instrumentation System

intrumentation System. fenctional elements To Separated. of an mv/uv Amplifial Toonsduces Quantity Data pontosi x100 variable variable Drimary Data tobe Conversion manupulation elemer semire neasured element element element element Date Londitioning Visual physical display change in quantity to convertes device ヤ electrical numerical swithe volue only quantity ferom G. gmmeter to preserve voltmenter original T.V. nature C.R-T printer. - amplification - attenuation - integration - following chopping clipping

PERFORMANCE CHARACTERISTICS

• Performance Characteristics - Characteristics that shows the performance of an instrument.

Eg: accuracy, precision, resolution, sensitivity.

- Allow users to select the most suitable instrument for a specific measuring jobs.
- Two basic characteristics :
 - 1. Static measuring a constant process condition.
 - 2. Dynamic measuring a varying process condition.

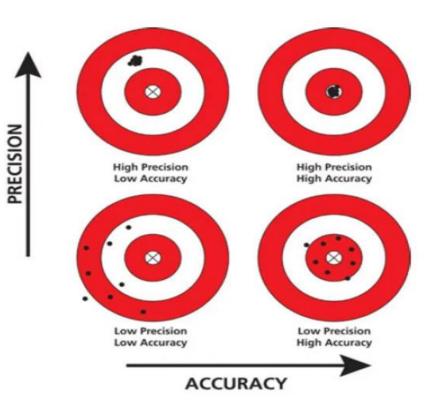
Static Characteristics

The set of criteria defined for the instruments, which are used to measure the quantities which are slowly varying with time is called 'static characteristics'.

Accuracy :- The accuracy of a measurement indicates the nearness value to the actual value of quantity. It can be expressed by different ways.

- the accuracy is expressed in terms of the percentage. Example... 0.3% of the actual value.

Precision :- It is the measure the degree to which successive measurement differ from each other. By this we can get fixed value of variable.


Error :- It is the algebraic difference between the actual value and measured value. It involved the comparison of unknown quantity with an standard quantity.

There are different types of error. Gross error, systematic error, random error, schematic error.

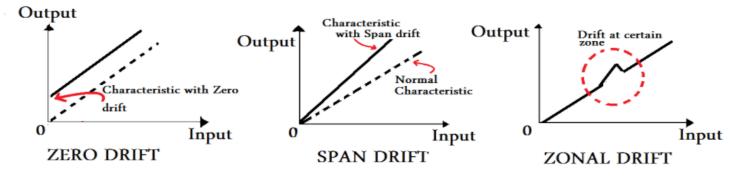
Difference between accuracy and precision

Accuracy is the degree of closeness to true value. Precision is the degree to which an instrument or process will repeat the same value. In other words, accuracy is the degree of veracity while precision is the degree of reproducibility.

- If a measurement is accurate, it means that it agrees closely with the accepted standard for that measurement. For example, if we estimate a project's size to x and the actual size of the finished project is equal to or very close to x, then it is accurate, but it might not be precise.
- A measurement that is precise means that it agrees with other measures of the same thing.

Repeatability :- It is defined as the variation of the scale readings. It is random in nature. Repeatability is measure of closeness with which a given input can be measure over and over again.

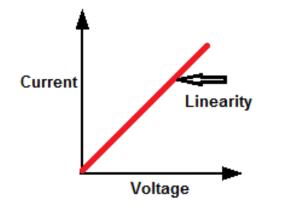
Reproducibility :- It is defined as the degree of closeness by which a given value can be repeatedly measured.


Drift :- Drift is defined as the gradual shift in the induction over a period of time where the input variable does not change.

Its divided in three parts, zero drift, span drift, zonal drift.

Zero Drift: The zero drift is defined as the deviation in the measured variable starts right from zero in the output with time.

Span Drift: If there is a proportionate change in its indication right along the upward scale the drift is termed span drift or sensitivity drift.


Zonal Drift: In case if the drift occurs only a certain portion of the span of an instrument. It is called zonal drift.

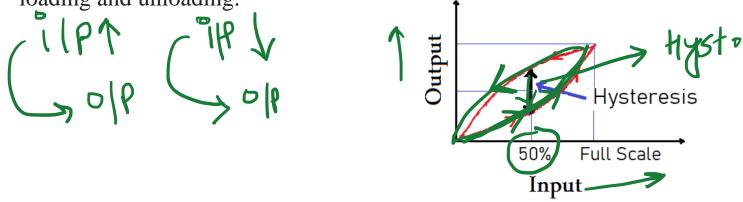
Sensitivity :- it is the ratio of Change in output of an instruments to the change input.

The sensitivity of an instruments should be as high as possible.

Linearity :- Accuracy and linearity is closely related to each other. it is defined as the ability of an instruments to reproduce its input linearly.

Dead Zone :- It is the largest change in input quantity for which there is no output.

Dead time :- It is the time before which instruments starts to responds after the input has been changed.


Threshold :- If the instrument input is increased very gradually from zero there will be some minimum value below which no output change can be detected. This minimum value defines the threshold of the instrument.

Resolution :- If we measure some value and if we do some minor change in that measured value, and if instruments responds, that smallest increment in the input value which can be detected by the instrument is known as resolution.

Stability :- It is the ability of an instrument to retain its performance throughout is specified operating life. $R = IOKn + IO_{l_{D}}$

Tolerance:- The maximum allowable error in the measurement is specified in terms of some value which is called tolerance.

Hysteresis: Hysteresis is a phenomenon that illustrates the different output effects when loading and unloading.

Dynamic Characteristics of Measurement System

The set of criteria defined for the instruments, which changes rapidly with time, is called 'dynamic characteristics'. $i k \rightarrow I \rightarrow o \rho$

Speed of response :- When we change the input value then how much rapidly we get the change in output value by instrument is known as speed of response. By this we get to know how fast or slow the system is.

Measuring lag:- It is the retardation or delay in the response of a measurement system. The measuring lags are of two types:

1) **Retardation type:-** In this case the response of the measurement system begins immediately after the change in measured quantity has occurred.

2) Time delay lag:- In this case the response of the measurement system begins after a dead time when input is applied.
Fidelity: It is defined as the degree to which a measurement system indicates changes in the measured quantity without any dynamic error.

Dynamic error:- It is the difference between the true value of the quantity changing with time & the value indicated by the measurement system if no static error is assumed. It is also called measurement error.

Types of static error

- 1) Gross error/human error
- 2) Systematic Error
- 3) Random Error

20KR-40

1) Gross Error

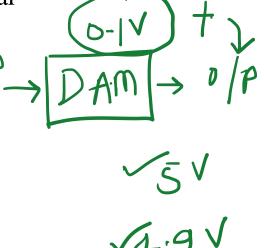
- Cause by human mistakes in reading/using instruments
- May also occur due to incorrect adjustment of the instrument and the computational mistakes
- Cannot be treated mathematically
- Cannot eliminate but can minimize
- Eg: Improper use of an instrument.
- This error can be minimized by taking proper care in reading and recording from measurement parameter.
- In general, indicating instruments change ambient conditions to some extent when connected into a complete circuit.
- Therefore, several readings (at three readings) must be taken to minimize the effect of ambient condition changes.

2) Systematic Error

- Due to shortcomings of the instrument (such as defective or worn parts, ageing or effects of the environment on the instrument)
- In general, systematic errors can be subdivided into

(i) Instrumental error
(ii) Environmental error
(iii) Observational error

(i) Instrumental error


- Inherent while measuring instrument because of their mechanical structure (eg: in a D'Arsonval meter, friction in the bearings of various moving component, irregular spring tension, stretching of spring, etc)
- Error can be avoid by:

(a) selecting a suitable instrument for the particular measurement application

(b) apply correction factor by determining

instrumental error

(c) calibrate the instrument against standard

 $T = 2\pi \begin{bmatrix} L \\ q \end{bmatrix}$

(ii) Environmental error

• due to external condition effecting the

measurement including surrounding area condition

such as change in temperature, humidity,

barometer pressure, etc

• to avoid the error :-

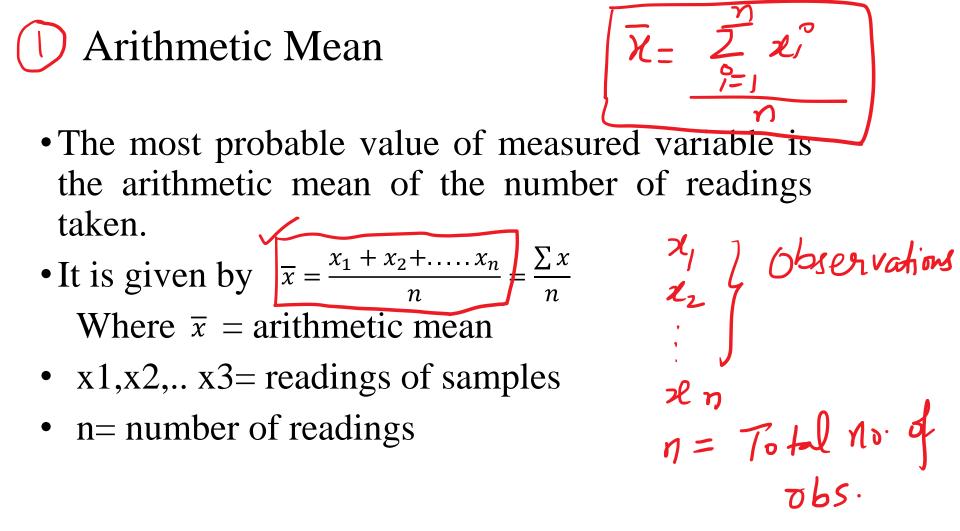
(a) use air conditioner

(b) sealing certain component in the instruments

(c) use magnetic shield

(iii) Observational error

- introduce by the observer
- most common : parallax error and estimation error (while reading the scale)


Eg: an observer who tend to hold his head too far to the left while reading the position of the needle on the scale.

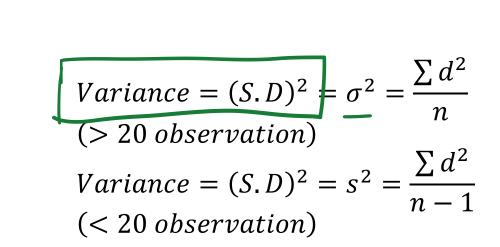
3) (Random error)


- due to unknown causes, occur when all systematic error has accounted
- accumulation of small effect, require at high degree of accuracy
- can be avoid by
 - (a) increasing number of reading
 - (b) use statistical means to obtain best approximation of true value

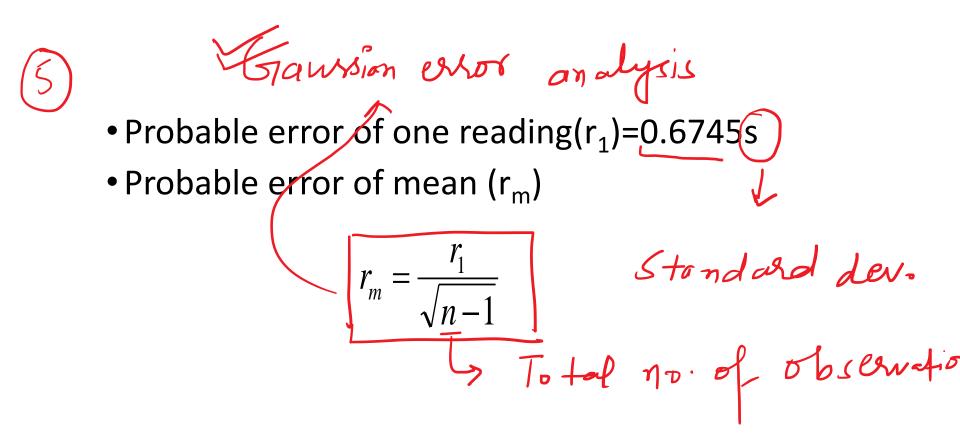
Statistical Analysis of Error

Deviation

 Deviation is departure of the observed reading from the arithmetic mean of the group of readings.



Dr. Girraj sharma, assoc. prof. ECE, JECRC


Standard Deviation

• The standard deviation of an infinite number of data is defined as the square root of the sum of the individual deviations squared divided by the number of readings.

Variance

Probable Error

Problem

Question: The following 10 observation were recorded when measuring a voltage: $\underbrace{Step}_{X=} x_{1} + x_{2} - \frac{1}{\sqrt{D}}$ 41.7,42.0,41.8,42.0,42.1, 41.9,42.0,41.9,42.5,41.8 volts. ID. = 41.7 + 420 4)*•*8 Mean 2. **Standard Deviation** 41.97 volt Probable Error step 2) 41.7-41.97 Range. N=10 7, - 7 $\lambda_{10} = \lambda_{10} - \tilde{\times}$ 0.8 Volt 03-05-2021 42.5-417=

Answer

- Mean=41.97 volt
- S.D=0.22 volt
- Probable error=0.15 volt
- Range=0.8 volt.

Absolute Error/Limiting Error

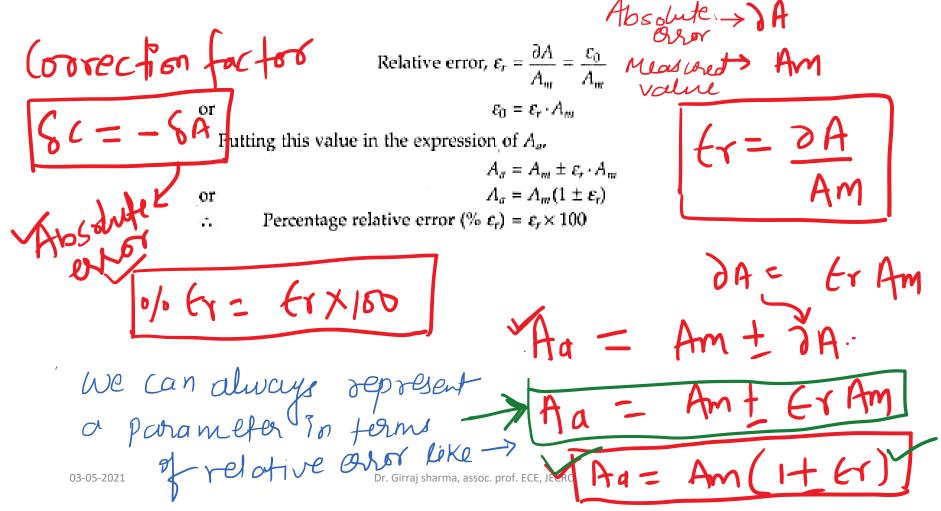
the difference between the true value and the actual value is known as the absolute or limiting error of the system. It is denoted by ε_0 . Mathematically, it is defined as

Denoted by

 $A_a = A_m \pm \partial A$

 $\varepsilon_0 = A_a - A_m$

or (absolute error)∂A or Here,


> A_a = True value of the measuring system A_m = Measured value of the measuring system ∂A = Absolute or limiting error

- DA, 40A = Aa AmWe can always representa parameter in this form if we know liniting en

Relative or Fractional Error

denoted by J

The relative or fractional error is defined as the ratio of the absolute or limiting error (∂A) to the measured or actual value (A_m) of the system. It is denoted by ε_r . Mathematically, it is defined as

At = 127.43 V, Am = 127.50 V SA= Am-At PROBLEM 2.4 A meter reads 127.50 V and the true value of the voltage is 127.43 V. Determine (a) static error and (b) the static correction for this measurement. Solution: Static error is $\delta A = A_m - A_l = 127.50 - 127.43 = +0.07$ volt and static correction is $\delta C = -\delta A = -0.07$ volt PROBLEM 2.5 A thermometer reads 95.45°C and the static correction given in the correction curve is -0.08°C. Determine the true value of the temperature. Solution: True value of the temperature is given by $A_1 = A_m + \delta C = 95.45 - 0.08 = 95.37^{\circ}C$ **PROBLEM 2.6** A voltage has a true value of 1.50 volts. An analog indicating instrument 76cwith a scale range of 0 - 2.50 volts shows a voltage of 1.46 volts. What are the values of absolute error and correction? Express the error as a fraction of the true value and the 9(...)full scale deflection. Solution: Absolute error $\delta A = A_m - A_l = 1.46 - 1.50 = -0.04 \text{ V}$ 0.08 Absolute correction $\delta C = \delta A = +0.04$ volt Relative error $\varepsilon r = \delta A / A_t = (-0.04 / 1.50) \times 100 = -2.67\%$ -0.04 × 03-05-2021 Dr. Girraj sharma, assoc. prof. ECE, JECRC

Ex. A resistance R of 600 Ω is known to have possible absolute error as $\pm 60 \Omega$. Express the value of resistor in relative error. R = 600 ± 60 Ω

Relative error= $\pm 60/600 = \pm 0.1 = \pm 10 \%$

Thus $R = 600 \pm 10\% \Omega$

Percentages are usually employed to express errors in resistances and electrical quantities. The terms *Accuracy* & *Tolerance* are also used. A resistor with \pm 10% error is said to be accurate to \pm 10% or having tolerance of \pm 10%.

Erz SA R= 600+601 R = 600 Relation

Combination of two quantities with Limiting Error

Combination of two quantities with Limiting Error

AA → Relative error, DA → limiting/Absolute A error

Note: -> In case of addition & Bubtraction the absorber Limiting error is added in the resultant > In case of multiplication & division the relative error is added in the resultant

Combination of two quantities with Limiting Error

Sum of two quantities

Let A be the final result of sum of the two quantities a_1 and a_2 , then

$$A = a_1 + a_2$$

So the relative increment of the function will be,

$$\frac{dA}{A} = \frac{d(a_1 + a_2)}{A}$$
$$= \frac{da_1}{A} + \frac{da_2}{A}$$

Now, making the result in terms of relative increment of the component quantities,

$$\frac{dA}{A} = \frac{a_1}{A}\frac{da_1}{a_1} + \frac{a_2}{A}\frac{da_2}{a_2}$$

$$\frac{\partial A}{A} = \pm \left[\frac{a_1}{A} \frac{\partial a_1}{a_1} + \frac{a_2}{A} \frac{\partial a_2}{a_2} \right]$$

Difference of two quantities

Let A be the final result of difference of the two quantities a_1 and a_2 , then

 $A = a_1 - a_2$

So the relative increment of the function will be,

$$\frac{dA}{A} = \frac{d(a_1 - a_2)}{A}$$
$$= \frac{da_1}{A} - \frac{da_2}{A}$$

Now, making the result in terms of relative increment of the component quantities,

$$\frac{dA}{A} = \frac{a_1}{A}\frac{da_1}{a_1} - \frac{a_2}{A}\frac{da_2}{a_2}$$

$$\frac{\partial A}{A} = \pm \left[\frac{a_1}{A} \frac{\partial a_1}{a_1} + \frac{a_2}{A} \frac{\partial a_2}{a_2} \right]$$

Product of two quantities

Let again,

$$A = a_1 \cdot a_2$$

By taking log of the expression,

$$\log A = \log a_1 + \log a_2$$

By differentiating the given expression with respect to A,

$$\frac{1}{A} = \left[\frac{1}{a_1}\frac{da_1}{dA} + \frac{1}{a_2}\frac{da_2}{A}\right]$$
$$\frac{dA}{A} = \left[\frac{da_1}{a_1} + \frac{da_2}{a_2}\right]$$

or

$$\frac{\partial A}{A} = \pm \left[\frac{\partial a_1}{a_1} + \frac{\partial a_2}{a_2} \right]$$

Division of two quantities

Let again,

$$A = \frac{a_1}{a_2}$$

By taking log of the expression,

$$\log A = \log a_1 - \log a_2$$

By differentiating the given expression with respect to A,

 $\frac{1}{A} = \left[\frac{1}{a_1}\frac{da_1}{dA} - \frac{1}{a_2}\frac{da_2}{A}\right]$ $\frac{dA}{A} = \left[\frac{da_1}{a_1} - \frac{da_2}{a_2}\right]$

or

$$\frac{\partial A}{A} = \pm \left[\frac{\partial a_1}{a_1} + \frac{\partial a_2}{a_2} \right] \qquad \dots (2.18)$$

Quantities are Power of a Factor

Let the expression be,

$$A = a_1^x$$

Taking log of the expression

$$\log A = x \log a_1$$

Now differentiating the expression with respect to A,

$$\frac{1}{A} = x \cdot \frac{1}{a_1} \frac{da_1}{dA}$$
$$\frac{dA}{A} = x \cdot \frac{da_1}{a_1}$$

 $\begin{array}{rcl} A = & q^2 & & \eta \rightarrow \partial A \\ = & \alpha \cdot \alpha & & \alpha \rightarrow \partial \alpha \end{array}$

h side 'A

 $A \pm \partial A = (a \pm \partial a)(a \pm \partial a)$

 $a^2 \pm$

 $A \pm \partial A = a^2 \pm 2\sqrt{3}a$

divide

R

or

Hence, relative limiting error for A will be

$$\frac{\partial A}{A} = \pm x \cdot \frac{\partial a_1}{a_1}$$

Quantities are composite Factor

Let the expression be,

 $A = a_1^x \cdot a_2^x$

Taking log of the expression

 $\operatorname{Log} A = x \log a_1 + y \log a_2$

Now differentiating the expression with respect to A,

$$\frac{1}{A} = x \frac{1}{a_1} \frac{da_1}{dA} + y \frac{1}{a_2} \frac{da_2}{dA}$$
$$\frac{dA}{A} = x \frac{da_1}{a_1} + y \frac{da_2}{a_2}$$

or,

Hence, relative limiting error for A will be

$$\frac{\partial A}{A} = \pm \left[x \frac{\partial a_1}{a_1} + y \frac{\partial a_2}{a_2} \right]$$

Numerical Problems and Solution

$$\frac{1}{1. equor} = \frac{Abc}{True value} \times 100 = \frac{R_m - R_t}{R_t} \times 100$$
53

PROBLEM 2.15 A resistor of value 4.7 k Ω is read as 4.65 k Ω in a measurement.

Rt= 47KN, Rm= 4.65KN 8dh (i) $\partial R = Rm - R_t = 4.65 - 4.7 = -0.05 RL$ (ii) Rel. Other: $E_{T} = \frac{2R}{Rt} = \frac{-0.05}{4.7KN} \times 100\%$ (iii) Accuracy = 100 - |1-expor| = -

PROBLEM 2.15 A resistor of value 4.7 k Ω is read as 4.65 k Ω in a measurement. Calculate (i) absolute error, (ii) % error, and (iii) accuracy. **Solution:** Measured value voltage A_{∞} = 4.65 k Ω True value of resistor, $A = 4.7 \text{ k}\Omega$ (i) Absolute error, $\varepsilon_0 = A_m - A$ = 4.65 - 4.7= $-0.05 \text{ k}\Omega \text{ or } -50 \Omega$ (ii) % error = $\frac{A_m - A}{A} \times 100 = \frac{4.65 - 4.7}{4.7} \times 100$ =-1.064%(iii) Accuracy = 100 - 1% error1% = 100 - 1.064 = 98.936%

PROBLEM 2.16 A moving coil voltmeter has a uniform scale with 100 divisions and gives full-scale reading of 200 V. The instrument can read up to $\frac{1}{5}$ th of a scale division with a fair degree of certainty. Determine the resolution of the instrument in volts.

20 n No. of div. = 100 full scale feading = 200 V Kall keading = 200 = 2 V Res = $\frac{1}{3} \times 18$ call Reading = $\frac{1}{2} \times 2 = 0.4$

PROBLEM 2.16 A moving coil voltmeter has a uniform scale with 100 divisions and gives full-scale reading of 200 V. The instrument can read up to $\frac{1}{5}$ th of a scale division with a fair degree of certainty. Determine the resolution of the instrument in volts. *Solution:* Full-scale reading = 200 V

Number of division of scale = 100

1 scale division =
$$\frac{200}{100} = 2 V$$

Resolution = $\frac{1}{5}$ th of a scale division
= $\frac{2}{5} = 0.4 V$

PROBLEM 2.17 Three registers have the following ratings:

 $R_1 = 200 \ \Omega \pm 5\%, R_2 = 100 \ \Omega \pm 5\%, R_3 = 50 \ \Omega \pm 5\%$

Determine the magnitude of resultant resistance in ohms, if the above resistances are connected in (a) series and (b) parallel.

for succes
$$k_{s} = k_{1} + k_{2} + k_{3}$$
 The metasol
combination $k_{s} = k_{1} + k_{2} + k_{3}$ The metasol
Relative $\Rightarrow \frac{SK}{K} = \frac{R_{\perp}}{R_{s}} \frac{\partial R_{1}}{R_{1}} + \frac{R_{2}}{R_{s}} \frac{\partial R_{2}}{R_{2}} + \frac{R_{3}}{R_{s}} \frac{\partial R_{1}}{R_{1}}$
Solution : (a) for series combination $R = R_{1} + R_{2} + R_{3} = 200 + 100 + 50 = 350\Omega$
 $\Re = \frac{R_{1}}{R} \frac{\delta R_{1}}{R_{1}} + \frac{R_{2}}{R} \frac{\delta R_{2}}{R_{2}} \frac{R_{3}}{R_{3}} \frac{\delta R_{3}}{R_{3}}$ Correct
Please $= \frac{200}{350} \frac{\delta R}{350} \times 0.05 + \frac{50}{350} \times 0.05 = 0.079 = 7.9\%$
 $R = 350\Omega \pm 7.9\%$ Correct
For parallel combination $R = R_{1} + \frac{1}{R_{2}} + \frac{1}{R_{3}} +$

$$f_{v} = \frac{Abs}{bve} \frac{eMs}{bve} \frac{Ms}{bve} \frac{Ms}{bve}$$

 Sol. : The magnitude of limiting error instrument is given by

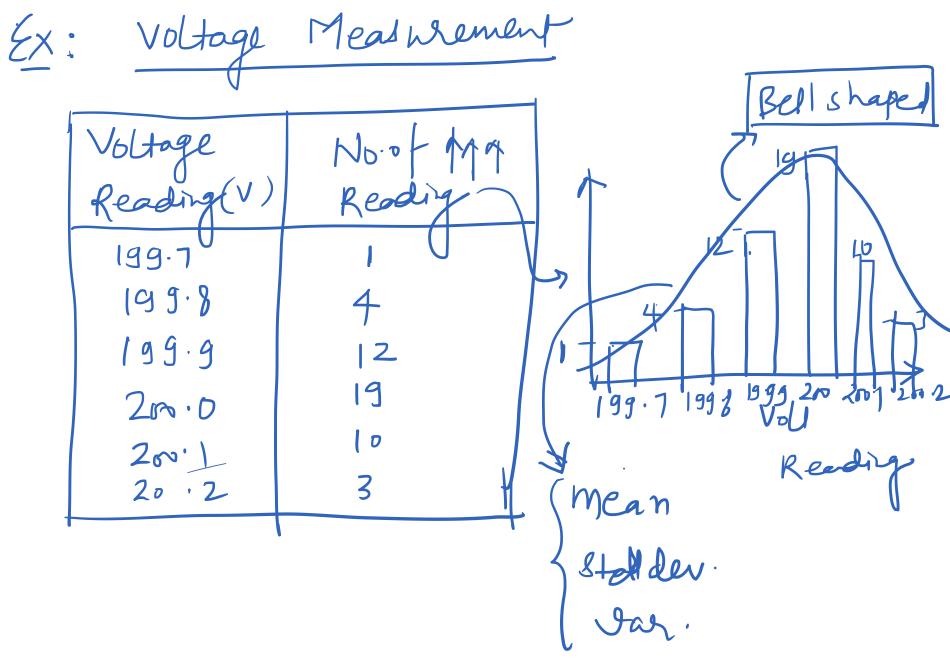
$$S_A = E_r \times A = 0.01 \times 25 = 0.25A$$

The magnitude of current being measured is 10A. The relative error at this current is

$$S_r = \frac{S_A}{A} = \frac{0.25}{10} = 0.025$$

The current being measured in between limits of

$$A = A_m (1 \pm S_r) = 10 (1 \pm 0.025) = 10 \pm 0.25A$$


...

Example 1.15:
$$A = 4$$
 - dial decade box has
decade a of $10 \times 1000 \Omega + (0.1\%)$;
decade b of $10 \times 100 \Omega + 0.1\%$;
decade c of $10 \times 10 \Omega + 0.5\%$;
decade d of $10 \times 1 \Omega + 1.0\%$;
 $T = 4639\Omega$. Find the percentage limiting error) and range of resistance value.
[Raj. Univ. 1994, 2002, 2004]
 $Sv = 10^{10} Rm = 4639 \Omega = 4000 + 6000 + 600 + 30 + 9000 + 10000 + 1000 + 1000 + 1000 + 1000 + 10000 + 1000 + 1000 + 100$

•

Sol.: Decade *a* is set at 4000
$$\Omega$$
 and therefore,
error = $\pm 4000 \times \frac{0.1}{100} = \pm 4 \Omega$
Decade *b* is set at 600 Ω and therefore, 124 ± 000
error = $\pm 600 \times \frac{0.1}{100} = \pm 0.6 \Omega$
error in decade $c = \pm 30 \times \frac{0.5}{100} = \pm 0.15 \Omega$ and 100
error in decade $d = \pm 9 \times \frac{1}{100} = \pm 0.09 \Omega$
Hence total error = $\pm (4 + 0.6 + 0.15 + 0.09) = 4.84\Omega$
Relative limiting error $E_r = \pm \frac{4.84}{4639} = \pm 0.00104$
Percentage limiting error $\% = \pm (0.00104 \times 100) = \pm 0.104\%$
Limiting values of resistance $A_m = 4639 (1 \pm 0.00104) = 4639 \pm 5\Omega$

Gaussian error Analysis what if the no. of Student 1 Gaussian Process-Call In CI J ~ו [sel] rem TISTO Sha No. of 52 D 5.7 5.8 29 [g 5.9 52 16 Dr. Girraj sharma, assoc. prof. ECE, JECRC 03-05-2021

Properties of Goussian Process,-1/4===0 (T) Gaussion process is $\int \int \mu = 0$ about y axis E meen to A constant value h -> Precision index y -3(-28 5x=0 5 25 3r \mathcal{R} $| h = \underline{l} |$ $X = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{2e^2}{2\sigma^2}} \int_{mean}^{\infty}$ Area under he (2) cure (Goursion) t = Stel. der. = c is unity 03-05-2021 = he harman harma

this type of distribution is most prequenty met in practice. Noomal occurance of deviations form ang. value of infinite no. of mathematically - expressed by measurements is gaussion · he exp (-h'xy (x = mag. of dw. from mean 1= no. of readings at any devix prob of occurance of dev. n onto (precision index) Converient eq" y= 1 exp (-2%20 00 0 25 35 +5 Ø curve is symmetrical abt. mean value. Area under the curve is wority. (1) daced (i)hr Tax

Becisim index; if x=0
$$y = \frac{h}{fir}$$

→ may of y despeads on h; larges the value of h sharpen
the curve
→ sharp curve indicates that deviations are more closely
grouped together it also indicates greates precision
→ Alarge value of $h \rightarrow high precision$.
 $y = \frac{h}{fir} e^{-h^2 \pi^2}$ put $\pi = 0$
 $y = \frac{h}{fir} e^{-h^2 \pi^2}$ put $\pi = 0$
 $y = \frac{h}{fir} \sqrt{h} \sqrt{h}$
 $first + h \sqrt{h}$

.

- most probable value of a gaussion Probable error in distribution = arithmetic mean. Moea = half -> most probable value is connected with sharpness of distribution curve. Schances are even that the one reading I coll have an error no greater than + Br Loriscalled pE. -> half the devi atim e-h2x lie blutr or can be found

avg-deviation for Normal Curve; The avg. value of D= J 124 y dr a function for) $\frac{2h}{J\pi}\int e^{\frac{n}{2}}e^{\frac{n}{2}h} \frac{1}{n} \left[\frac{n}{2} + \frac{1}{2} + \frac{1}{2}$ Can be determine as $f = h = \int \frac{1}{\sqrt{5}} f = 0.4769$ Y: probable error · der · _ 50 h = Precesion index $\overline{D} = \int |z| y dz$ D = Aug. deviotion here $y = \frac{1}{\sqrt{T}} e^{-\frac{1}{2}h}$ deviation di= x, - x, mean value observation

e def nerally Standard deviation: ne $\sigma = \int \frac{Za^2}{a}$ $\sigma = \frac{2h}{JH} \int e^{-h^2 h^2} \frac{1}{n^2} dn$ 0= :1 = :r J2h = J2 x 0.4769 = <u>r</u> 0.6 745 - 0.8 453 D = 0.67450 P.F.F= d In general we can defensive mean square value os Mean Jrydr 2 $f = \frac{h}{F}e^{-1}$

Probable Error of a finite No. of Readings y= 0.8453 D 0.67450 = 8= 0.6745 zpli 2012 ens of Porb' error of mean m= 0.67450 Stand der. of Stid der, of std. der 500

Example 1.18: The following 10 observations were recorded when measuring a voltage: 41.7, 42.0, 41.8, 42.0, 42.1, 41.9, 42.0, 41.9, 42.5 and 41.8. Find (i) the mean (ii) the standard deviation (iii) the probable error of one reading (iv) the probable error of mean and (v) range.

x	d	d ²
41.7	-0.27	0.0729
42.0	+0.03	0.0009
41.8	-0.17	0.0289
42.0	+0.03	0.0009
42.1	+0.13	0.0169
41.9	-0.07	0.0049
42.0	+0.03	0.0049
41.9	-0.07	0.0049
42.5	+0.53	0.2809
41.8	-0.17	0.0289
$\Box x = 419.7$		$\Box d^{2} = 0.441$

Sol.: For the sake of ease in calculations, the observations are tabulated and manipulated as under.

(*i*) Mean length
$$\bar{X} = \frac{419.7}{10} = 41.97$$
 volt

(ii) The value of standard deviation is
$$\sigma = \sqrt{\frac{d^2}{n}} = \sqrt{\frac{0.441}{10}} = 0.21$$
 volt

If the data is considered to be a set of infinite readings. However, the number of observations is only 10 and therefore, the standard deviation is

$$\sigma = \sqrt{\frac{d^2}{n-1}} = \sqrt{\frac{0.441}{(10-1)}} = 0.22$$
 volt

(iii) Probable error of one reading $r_1 = 0.6745$; = 0.15 volt

Example 1.23: In a test temperature is measured 100 times with variations in apparatus and procedures. After applying the corrections, the results are-

Temperature °C	397	398	399	400	401	402	403	404	405
Frequency of occurrence	1	3	12	23	37	16	4	2	2

Calculate (a) arithmetic mean, (b) mean deviation, (c) standard deviation, (d) the probable error of one reading, (e) the standard deviation and the probable error of the mean, (f) the standard deviation of the standard deviation.

2 quare T

Temperature T ^e C	Frequency of occurrence, f	T×f	Deviation d	f×d	d2	f × d2
397	1	39781	$d_{1} = 29$	7-7		A STATE OF A STATE OF A STATE
398	3	398X3	$d_1 = 39$ $d_2 = 39$	8-7		
399	12	299X12	2-57			
400	23	T ,				
401	37		-		/	
402	16	1		/		
403	4	1				
404	2	1				
405	2	1 /				
Total	100	ITF-				
	Z	= <u>Z</u> 7 Zf	Ī-f~			

Temperature T°C	Frequency of occurrence, f	$\mathbf{T} \times \mathbf{f}$	Deviation d	f×d	d2	f × d2
397	1	397	-3.78	-3.78	14.288	14.288
398	3	1194	-2.78	-8.34	7.728	23.185
399	12	4788	-1.78	-21.36	3.168	38.020
400	23	9200	-0.78	+ 17.94	0.608	13.993
401	37	14837	+ 0.22	+ 8.14	0.048	1.708
402	16	6432	+ 1.22	+ 19.52	1.488	23.814
403	4	1612	+ 2.22	+ 8.88	4.928	19.714
404	2	808	+ 3.22	+ 6.44	10.368	20.737
405	2	810	+ 4.22	+ 8.44	17.808	35.618
Total	100	40078		$\frac{\Sigma f \times d }{= 102.8}$		$\frac{\sum fd^2}{= 191.08}$

(a) Mean temperature
$$= \frac{400.78}{100} = 400.780 \text{ °C}$$

(b) Mean deviation $\overline{D} = \frac{102.8}{100} = 1.028 \text{ °C}$
(c) Standard deviation $\sigma = \sqrt{\frac{191.08}{100}} = 1.380 \text{ °C}$
(d) Probable error of one reading $r_1 = 0.6745 \text{ s} = 0.6745 \times 1.38 = 0.93 \text{ °C}$
(e) Probable error of the mean $r_m = \frac{0.93}{\sqrt{100}} = 0.093 \text{ °C}$
Standard deviation of the mean $r_m = \frac{0.93}{\sqrt{100}} = 0.138 \text{ °C}$
(f) Standard deviation of the standard deviation
 $\sigma_s = \frac{\sigma_m}{\sqrt{2}} = \frac{0.138}{\sqrt{2}} = 0.0796 \text{ °C}$

$$\sigma_{\rm s} = \frac{\sigma_m}{\sqrt{2}} = \frac{0.138}{\sqrt{2}} = 0.0796 \ ^{\circ}{\rm C}$$