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STSBILITY OF THE SYSTEM

4.1 Stability Criteria

The Routh-Hurwitz stability criterion is a necessary and sufficient criterion to prove the stability of an LTIsystem.Necessary Conditions that are necessary must be satisfied for a system to be stable, but conditions that satisfy these conditions might not all be stable. Necessary conditions may return "false positives", but will never return "false negatives". Sufficient Sufficient conditions are conditions that if met show the system to be definatively stable. Sufficient conditions may not be necessary, and they may return false negatives. The Routh-Hurtwitz criteria is both necessary and sufficient: A system must pass the RH test, and once it passes the test, it is definately stable.

4.2 Routh-Hurwitz Criteria

The Routh-Hurwitz criteria is comprised of three separate tests that must be satisfied. If any test fails, the system is not stable. Also, if any single test fails, any further tests need not be performed. For this reason, the tests are arranged in order from the easiest to determine to the hardest to determine. Routh Hurwitz test is performed on the denominator of the transfer function, the characteristic equation.

For instance, in a closed-loop transfer function with G(s) in the forward path, and H(s) in the feedback loop, we have:






If we simplify this equation, we will have an equation with a numerator N(s), and a denominator D(s):





4.3 Routh-Hurwitz Tests

Here are the three tests of the Routh-Hurwitz Criteria. For convenience, we will use N as the order of the

polynomial (the value of the highest exponent of s in D(s)). The equation D(s) can be represented generally as follows:
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Rule 1:All the coefficients ai must be present (non-zero)

Rule 2:All the coefficients ai must be positive

Rule 3:If Rule 1 and Rule 2 are both satisfied, then form a Routh array from the coefficients ai. There is one pole in the right-hand s-plane for ever sign change of the members in the first column of the Routh array (any sign changes, therefore, mean the system is unstable).We will explain the Routh array below.

4.4 The Routh Array

The Routh array is formed by taking all the coefficients ai of D(s), and staggering them in array form. The final columns for each row should contain zeros:






Therefore, if N is odd, the top row will be all the odd coefficients. If N is even, the top row will be all the even

coefficients. We can fill in the remainder of the Routh Array as follows










Now, we can define all our b, c, and other coefficients, until we reach row s0. To fill them in, we use the following formulae:








And








For each row that we are computing, we call the left-most element in the row directly above it the pivot

element.For instance, in row b, the pivot element is [image: ] and in row c, the pivot element is [image: ]and so on and so forth until we reach the bottom of the array.

To obtain any element, we take the determinant of of the following matrix, and divide by the pivot element:
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Where:

k is the left-most element two rows above the current row. l is the pivot element.

m is the element two rows up, and one column to the left of the current element. n is the element one row up, and one column to the left of the current element.

In terms of k l m n, our equation is:






Example: Calculating [image: ]

To calculate the value CN-3, we must determine the values for k l m and n: k is the left-most element two rows up: aN-1

l the pivot element, is the left-most element one row up: bN-1

m is the element from one-column to the right, and up two rows: aN-5 n is the element one column right, and one row up: bN-5

Plugging this into our equation gives us the formula for CN-3:








Example: Stable Third Order System

We are given a system with the following characteristic equation:




Using the first two requirements, we see that all the coefficients are non-zero, and all of the coefficientsare positive. We will proceed then to construct the Routh-Array:
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And we can calculate out all the coefficients:















And filling these values into our Routh Array, we can determine whether the system is stable:








From this array, we can clearly see that all of the signs of the first column are positive, there are no sign changes, and therefore there are no poles of the characteristic equation in the RHP.

4.5 Special cases:

1.1 The properties of the table do not change when all the coefficients of a row are multiplied by the same positive number. 

1.2 If the first-column term becomes zero, replace 0 by ξ and continue. 

· If the signs above and below a ξ re the same, then there is a pair of (complex) imaginary roots. 

· If there is a sign change, then there are roots with positive real parts. 

Examples:
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3. If all coefficients in a line become 0, then A(s) has roots of equal magnitude radially opposed on the real or imaginary axis. Such roots can be obtained from the roots of the auxiliary polynomial.

Example:
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Fourier series
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Beyond syllabus
A time domain signal, x(t), is assessed by the behaviour of its magnitude over an infinite time interval. As time tends to infinity, the absolute value of the signal magnitude can either: (a) continuously decrease and/or increase (or stay constant) but remain within a bounded range (b) continuously increase to very large values without any bound Figures 10.21 and 10.22 show examples of bounded exponential signals and bounded sinusoidal signals. We can see that the magnitude of an exponential function, eat, with a < 0, will decrease to zero as time tends to infinity. The magnitude of a unit step function is finite since its value is 1, even when time tends to infinity. We call these types of signals bounded.
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A(s) has two radially opposed root pairs (+1.-1) and
(+5).-5]) which can be obtained from the roots of p(s).

One sign change indicates A(s) has one root with
positive real part.

Note:
Afs) = (s+1) (s-1)(s+55)(s-51)(s+2)
p(s) =2(s"-1) (5 +25)
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1. Harmonic Analysis
1y harmonic analysis is meant the process of determining the magnitude. order and phase of

ihe several harmonics present in a complex. penodic wave.

Far carrying oul this analysis, the following methods are available which are all based on
Fourier thearem

(1) Analtical Method-the standard Fourier Analysis

(1) Graphical Method- () by Superposition Method (Wedgemore” Method) (b) Twenty four
Ordinate Method

i) Electronic Method-by wsing 4 special instrument called “harmonic analyser

We will cansider the first and third methods only.
202, Periodic Funetions

A function /(1) s said 10 be periodic i £(1+7T1= £(1) for all values of 1 where T is some
positive number. This s the interval between (wo successive repetitions and is called the period
O£ (1), A sine wave having a period of 7= 2n/ 1 4 common example ol periodic function
213, Trigonometric Fourier Series

Suppase fhat 4 given function f (1) satisfies the following conditions (known as Dirichlet
conditions)

1/ (1) is periodic having a period of 7

27410 is single-valued everywhere.

31 case it is discontinuou, f (1) has i finite number of discontinutics in any

£ has a finite number of maxima and minima in any one period

The function f(1) may represent cither i voltage or current waveform. According (o Fou
theoren, this function / () may be represented in the trigonometric form by the infinite serics

ane perind

SU1 =ty a1 CONOE+ dy €05 204+, 6053030 +..o+, COSOE

Iy i ol -+ by Sin 206+ by sin 3y b+, sinaogr
]

Futiing w6 =0, we can write the ahove equation & under

[10) =i 0o 0y o 20+ con 305+ i by i 20+ s, i
=t S e b W

Since (g = 2547, Eq (1) above can be written as

f 2mn 2
S (O )

fit

4
where (0 is the fundamental angulr frequency. 7 the period and a,._and h, are constants which
depend on (1. The process of determining the values of the consants i, and b, is called
Fourier Analysis. Also. o, = 227 = 21, where f, i the fundarmental frequency
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1 is seen from the above Fourier Series that the periodic function consists of smusards)

companents of frequency 0. o)y, 260, nw, - This representatian of the function An) s in the
frequency domain, The first companent , with zero frequency is called the de component. The
sifte and cosine terms represent the harmonics. The number 5 represents the order of the
harmonics.

When 7 = 1. the component {u; cosw, + by sinw, ) is cailed the first harmonic or the fun-
damental component of the waveform

When 7 = 2, the component (a cos 261/ +by sin 261,) i called the second harmanic of the
waveform. :

The st harmonic of the waveform is represented by  (a, cosnug + b, sinnwgr). 1 s @
frequency oF nw, i o times the frequency of the fundamental component

21.4. Alternate Forms of Trigonometric Fourier Series
Eq. (1) given above can be written as

FU00= g+ @y OO+ by S+ iy €ON D1+ by 5in 2011+ g, cosn + by Sinnoy )
Let. d, Cosnoyr 4 b, sinnegt = A, cosnoy —, )
= A, Cosnug o, + A, sinnogfsing,

A, cosq, and b, = A, sind, /

b
A, +h and o, =tan” b, Ja, An, n
Simillrly. et 0, cosme, -+ b, sinmg! = A4, sin gt + ¥, )
syt cosW, +4, cosnoying,
As seen from Fig. 211, b, = A, cosy, wid 4, = A4, siny, e
= g+, and w=tan'a, 10, Fig 201

The two ungles 6, und v,
Hence. the Fourier series given in Art, 21.2 may be put in the

are complernentary angles

lowing two altermate forms

Jir= Ay 3 A, costunt

o fwmar S dsimey)

215, Certain Useful Integral Caleulus Theorems
“The Fourier coefficients o constunts ay.cy.as .., and by, by.....b, can be evaluated by inte
gration process for which purpose the following thearems will be used

i J["snio

cosnbf}" =~ (1= =0

b n

i [ innod=Lieosmoi=-Lio-01=0
o u B

(1-cos 20030 = 110~ in 200"
375

A
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Fourier Series 4

o [rwneessssa =L et

sin (=840

1o i
— o costmnh cosim-m® =0

mn m-n b

i [ cosmt= L[ costm s 16+ cosin - o

|
SN+ a8+ ——sin(m—me| = 0...forn
i m-n 3

i
Rl ——

|
sintn - sintn+mfl =0 forn 2 m

where m and 1 are any positive integers

216, Evaluation of Fourier Constants
Lt s now evaluate the consunis a,. o, and b, by using the above integral calculus theo-

(i1 Value of a,
Far this purpose we will integrate both sides of the series given below over one period fe

for 6= 0106 = 25

osnfl

10)= g +a, cos +ay cos 0450,

+ sty sin 0+ b, skl

[ rouo [ il [ oo

e v,

e[ snarosn [ anos. on [ o

= 04004040 +0+...40 = 2y

[ 0o -

)
=L [ routo o=
wh n

= mean value of £(8) betweert the imits 0 10 3 1. over one eyele or period.

(netare

Also, ay

S
1 we take the periodic function as /(1) and integte over period T (which corresponds to 27 .

we get uy =

Ve LT
/un/,—;JM;ml I'[‘ Fde

7h
where 7, can have any value
(i Value of 4,

For finding the value of a,, multiply both sides of the Fourier Series by cos 6 and integrae

between the limits 6 =010/ 2
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= 00 o 50404020, 0 =1,

[(®)c0sn0d0

mh
= 2 x average value of f10) cos 5 over one cycle of the fundamental
L L
Atso, 4= L[ pioncosnt=2x [ riencosne
x Il
16 we ke periodic function us /(1) then different expressions for a, are as under.

:;j ftreos f’nlr

Giving different numerical values 10 1, we get

2 x average af f(8) cos § over one c

x average value of f(8) cos 29 over one cycle etc.
(i) Value of b
For finding its value. multiply both sides of the Fourier Series of Eq. (1) by sin 4 and
integrate between limits 8= 0t08 =27

J"M @i = [ sinto o [ cososinitr

cosnOsin o

265in b6+ m,j

AL [ s, [t

= 04040540400, i o=,

" in’ 1040 = b,

[ reinado=b,xx

£(@)sinnid®

)
2md

wh
=2 x average value of f(8) sin n over one cycle of the fundamental.

b= 2 x average value of f(8)sin8 over one eycle

b, =2 x average value of f(B)5in20 over one cycle
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Hence. for Fourier analysis of s periodic funciion. the following procedune should he adopted
(i) Find the term a, by intcgrating both sides of the cquation represening the periodic func-
tion hetween limits 0110 2r or (110 T or — 772 10 T72 or £ 10 (7, + ),
| 1 \

= ““""’:}IJ.:“”‘l':lljw/“"”:/J,

mh

fondr

= average value of the functian over one eyele
iy Find the value of a, hy multiplying hoth sides of the expression for Fourier series by
cos n6 and then integrating it between limits 0 (o 2x or 010 7 o0~ 7720 T2 or 1, 10 (1, + T

1 |
Fi@conhdo=2x -1
e anh

Since 1 = 172, we have

[0 st

21" fircommngin 21" fincmnngi =21 i

x average value of [(0)cosnd over one cyele of the fundamental
Nalues of . a. a, etc. can be found from above by putting n

123

(i) Similarly. find the value of 6, by muliplying both sides of Fourier series by sin 10 and

sraung it between the limits 0 10 2 or 0110 7 0r - 77210 772 or 110 (1 + T)
| 1
b= F@)sing =2
* 2w

s

J@1sinndd

ree i lj, i "
(rysinnen e = (rysin et dr
o = | o

. IJ' Fiysin nongd

r

2mn
T

average value of £ (8) sin 18 of £ (1) sin

1081} Sin noyt over une cycle
of the fundamental
Villues of by by. b, etc. can be found from abave by putting

217, Different Types of Functions! Symm
A non-sinusoidal wave can

23

ries

he following types of symmetry:

The function / (1 i said (0 possess even symmetry it (1) = / (- 11.
10 means hat as we travel equal amounts in fime (@ the left and right of the origin (ie. along
the + X-axis and -X-axis). we find the function to have the some value. For example m Fig. 21.2 (a1
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poarsts A and B are equidistant from poant €8 Here the two funcuon values are equal and posinve
Al pomis C and 2, the tawo values of the functon are again equal, though m:;mwc Such o tunl.-
tion is sy mmu:ru, with respect to the verticul axis, Examples of even fupction are £, ens 1, wint S
(2 4+ F + 1 oand @ constant A because the replacement of F by (— 1y does not change the value of
any of these funcuans. For example, cos(y = cosi—ow )

fit) fin

(al (&)

(5]

This type of symmetry can be easily recognised grophically because mirmor symmeiry exists
ahout the verical or f{¢) axis, The function shown in Fig. 212 has even symmetry because when
fodded along vertical axis, the portions of the graph of the function for positive and negative tme
fir exactiy. one on 1op of the other,

The efiect of the even symmetry on Fourier series 1s that the constant b = 0 f.e. the wave has
no sine terms, In general, & b b b= 0 The Founer series of an even function contmins only
a constant term and cosine terms Le.

S =+ Zn‘i COSIWGT =y + zu i.m.—r

el

The value of @ may be found be integraning over any half-period. »
T opR 4 pfra2

o= i cos Bl = 7_[ P beos e oy
< "

L Odd Symumetry

A funetion £ 00 s said to possess odd symmetry i f=r1=—[{n)

It means that as we avel an equal amount in ume o the left or nght from the origin. we
find the function to be the same except lor o reversal in sign, For example, in Fig. 213 the two
pomts A and # are equidistont from point € The two function values o A and B are equal in
magnilude bul opposite in sign. In other words, if we replace | by (~ ). we oblained the negative
of the given function. The X-axis divides an odd function into two halves with equal areas above

und helow the X-axis. Hence, o, = (0.

" . . r “
Exumples of odd functions are: 1 sin o £ o8 5O 4 0° + M and o +17)
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A sine funcuon s an odd funciion because sin (=t = — sin it

fith ]

T

H

]

]
R i il
T A = ) -
|
t
v
I
|

{m) by el

A odd Function his symumetry abowt the origin rather than about the A7) axis which was the
case for an even fumction. The effect of pdd symmetry on a Fourier series 15 that it contains no
constanl ferm or consme term. [ means that o = 0 und a = 0 Le @l yd = (1. The Fourier
SETIES EXPUnsion contiing only sine terms,

fir= zbﬂ sim e, f
w=|

" b may be found by integrating over any half-penod.

3 rx 4 gz
b, = :J FOf S0 @ = £ hsin sk s
T T <0
3. Half-wave Symmmetry or Mirror-Symumetry or Rotational Symmetry
A function ! (r Is said o possess half-wave  symmetry i

(i) =—flr=T 7 Nar— fit)= f(eT /2y,

It means thar the funcoon remains the same if B is shified © the left or dghn by half o penod
and then Mipped over (Lo muluplied by — 1) m respect o the f-axis o bortaomial axis. 1 is called
mirror synmmietry because 1he negative portion of the wave is the mirror image of the positive
pornon of the wave displaced horfronially o distance 772

In other words, a4 waveform possesses. hall symmetry only when we invert ils negative hull-
cycle and get an exact duplicate of s positive hulf-cyciz, For example, In Fig. 21.4 () if we invent
the negative hall-cyele, we ger the dashed ASC hall-cvele which is exact duplicate of the positive
hulf-cycle. Sume is the case with the waveforms of Fig. 214 (b) and Fig. 21.4 (c)L In case
fin

Bl
-y
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of deoube. it is helptul o shilt the invened half-cycle by o bali-pernod o the lefn and see i1 10 super—
umposes the positive holf-cycle. If o does so, there exists balf-wiave symumetny otherwise notd. It is
seen that the waveformm of Fag. 214 () does not possess hall-wave symmetry. [ ois so becouse
when 1ts negatnve half-cycle is inverted and shifted by half o perniod 1o the left it does not superim-
pose the positive half-cyvcle.

It may be noted that half-wave symmetrry may be presemt in o waveform which also shows
cither odd 2ymmetry of Svei SVImmelry .

Fowr example, the square wavelform shown in Fig. 2149 (g) possesses even symmetry whereas
the mangular waveform of Fig. 244 (&) has odd symunetny. All cosine and sine waves possess
half-wave syrmmetry  boecznmse

2m 7 2 2r . TR T 2r A 2R
s .ﬂ[l‘f‘—— | rueal'—._ r+n] L ,—lr,--w]—:un[—-_ Ji—n|——enn -
T B8 T / T T\ 2 T /

It is worth noting that the Fourier sernes of any function which possesses half-wave symumc-
try has zero average value and contains only odd harmoores and s given by

5 " o - -
firi= E [ [P _,:" 1+ fr, s "_::"r ]F E Ko, OO s+ o, Sin o = E Lat,, oo e+ Ay sim ey
wr= ] w=| w=l

it e il
4 2 E = ; 4
whone, =F oo ?‘Eﬂ (!i':—j' 1 cos riied0 e moodkd
o A
4 re 2an 3 Da
b= funsin——ar= I 1@ ysim el B eomoundd
T Ja r n<o

A uarter-wave Svommsetry
A owddd o even functon with rotoiionnd synumelry 15 saud 10 POsSsSess QUarter-wiave Syimmatry
Fig. 21.5 ta) pussesses hall-wave symmetry as well as odd symmetry. The wave shown in
Fig. 215 (b)) hoas both half-wove symmetry omd  even symometry.
The mathematical st for QUANREr-Wave SYmmetry 15 as under
Odd guarter-wave il = —fr+ T Diand f{=ry= —§i{r

Even guaricr-wave flij= —f1r+ T 21and firi= f(-r)

gP\/ l I ‘ = ‘ |
a

T T [ -

fath fitnp

Since each quarter cyele s the samie in & way having quarter-wave symmelry, it s suflicient
lo inteprote over one quarter pertod e, from U to T and then multiply the result by 4.

1A or F8) 1 odd and hes quarier-wave symmetry, then A 18 0 and 0 1 {1, Hence, the
Fourier series will contan only odd ane terms

L . | R b
< J0=y hosin—or [(B)= ) b smabl, whereh =~ J{thisinnfidd
J 2 o) Z )

il il
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It may be noted that n the case of odd quarter-w
carried over a quarer eycle.

symmetry, the integration may be

Wi o woad
L - ”oss
ol

{00 1 ) or [18) is even and. additionally. has quarter-wave symmetry. then , is O nd b,
is 0. Hence, the Fourier series will contain only odd cosine tenms

FOE YT T I ypmm— L] rcosbao

In this case _ may be found hy imtegrating over any quarter period.
5 pme
3T jesnsie nodd
"

s
r! fiteos e 1 odd

21, Line or Frequency Spectrum

A plot which shows the amplitude of each frequency companent in a complex waveform is
called the line spectrum or frequency spectrum (Fig. 21.6). The amplifude of each frequency
component is indicated by the length of the
vertical Tine located at the corresponding
frequepicy. Since the spectrum represents
frequencies of the harmonics as discrete fines
of appropriate height. it 1 also called a discrete
spectrum The lines decrease rapidly for waves
having convergent series, Waves with
discontinuties such as the sawtooth and square
waves have spectrs whose amplitudes decrease
slowly because their series have strong high
harmonscs. On the ather hand, the line specira
of waveforms without discontinuties and with
4 smoath appearance have lines which
decrease n height very rapidly.

“The harmonic content and the line spectrum of 4 wave represent the asic nature of that
wave and never change respectve of the method of analysis. Shifting the zero axis changes the
symimetry of a given wave and gives s trigonometric series a completely different appearance but
the same harmonics always appear in the series and their smplitude remains constant

n 4

i
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Fig, 21,7 shows i smooth wave alongwith s line spectrurm, there are only sine ferms

n s trigonometric series (apart from
219 Procedure for Finding the Fourier Se
s advisable 10 follow the following steps
1. Step No. |
11 the function s defined by 2 set of equations, sketch it approximutely and examine for
syoumeiry
2. Step N
Whatever be the period of the given function. take it & 25 (Ex. 206) and find the Fourier
series i the form

= 0. the harmonic amplitudes are given by b,

of a Given Function

£08)= gy +a, €058+, €03 2+ +a, cosn+ by snB+ by sin 20+ +b, sinnd)
Step No. 3
The vilue of the constans u, can be found in most cuses by inspection. Otherwise i can be

found as under

L s~ L[" o

4. Step No. 4
10 there is a0 symmerry, then o, is found as above whereas the other 1wo fourfer consiants
can be found by the relation

i

Ji8)cos s
o =

[(0)cos b6

i
h=[" roninn-L[" o

Step No. 5
I the function has even symmetry fe. £(8)= /(~8) , then b, = 0 so that the Fourier series
will have 1o sine terms. The series would be given by
1=y + Y0, cosnbd0where.
=

= ! [ @rcosnt =
wh ®

/B)cos b

6. Step No. 6
11 the iven function has odd symmetry ie. /(-0

~/8) then o, = 0 and a, = 0. Her
there would be no costne termms. in the Fourier series which accordingly would be given by

T
1

J(@ysin B

7. Step No. 7
1 the function possesses hatl-wave symmetry e [(8)=~[(@£T) or [(1)=—/(+T/2).

then u, is 0 and the Fourier series contains only odd harmonics, The Fourier series i given by

§01= 3o, oty siniy

f(@1cosnd.n odd. b= [ f®)sinnsdo nodd
B

o

where a,=





image19.jpeg
B. Step No. 8§
I the function has even guarter-wave symmetry then o, = 0 and & = 0. It means the Founer
series will contain no sine terms bui only odd cosme terms. It would be given by

o

— 2 c e
_”ﬂ!=zun wor ik whetea, = —lj fiBicos k== n,r'tﬂlun!&.‘l%: :IJ' P cos et - noodd
T o m-u

Ll

exkd

9, Step No, 9
IT the function has odd guarter-wave symmetry, then a = 0 and a = (0. The Fourier series
will contaun only odd sine terms (bul no cosine terms).
c | p= 2 & e
fil =3 b sinnthwherch, =— [ f(hsinbdi=" [ f(O)snnb =
(] kid 10 £

v n
i

L. Step No. 10

Having found the coefficients, the Fourer series as given in step No. 2 can be writien down,
L1. Step No. 11

The diffesent harmonic amplitudes can be found by combining similar sine and cosing erms

:;lﬁiﬂnnﬂ:ﬁi .on odd

==
e A, = \{”,’_‘ -
where A is the amplitude of the n, harmonie

Wave ferm Appearance Equation

i
A Sine wave A fi1=A = A sin @7

; | e | 2 ; \
. Hall-wave rectified i =A| —+_-sintd —— cos 2ow
n 2 3m !
BINE Wiave
2 2
- cos Aoy — Cons Bty
I15e 35n
2
— —— s Ry
Hin
2A 2
| Full-wave rectified i fin = —n- (1 —icoszux
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Example 2112, Find the Fourier series for the sawiooth waveform shon in Fig. 21.22 a).

Sketch its line spectrum
Solution. Using by the reiation y = mx, the equation of the function becomes £ (1) = 1. 1 o
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Example 217, Determing the Fourier sertes for the square voltage waveform shown in Fig
217 a). Plot its lme spectrum
Solution, This 15 the same question as given in Ex, 21.6 but has been repeated K

iHustrated @ singhtly different technique. As seen from Fig. 21.17(a) T = 2x. hence
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Substituting the value of b , the Fourier series become
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Since wy; =1, the above expression in general terms becomes
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