Unit 2: Combinational Circuits

- Logic circuits for digital systems may be Combinational or Sequential.
- A combinational circuit consists of input variables, logic gates, and output variables.
- Output of a Combinational Circuit at a given instance and for particular inputs depends only on the present inputs provided to the circuit at that particular time and has no relation with the previous outputs of the circuit.
- Block Diagram of Combinational Circuit

2-1. Combinational Circuit Design Steps

- Step 1: Analyse the problem statement to identify the no. of Inputs and Outputs
Step 2: After getting number of I/Ps and O/Ps, Name them as per functionality
- Step 3: Draw the Truth table (O/Ps against all possible combination of I / Ps) as per the required function
- Step 4: Use K-map or any other simplification method to get Optimized equations of all O/Ps in terms of I/Ps
- Implement or Realize the circuit as per equations

2-2. Analysis procedure

To obtain the output Boolean functions from a logic diagram, proceed as follows:

1. Label all gate outputs that are a function of input variables with arbitrary symbols. Determine the Boolean functions for each gate output.
2. Label the gates that are a function of input variables and previously labeled gates with other arbitrary symbols. Find the Boolean functions for these gates.
3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained.
4. By repeated substitution of previously defined functions, obtain the output Boolean functions in terms of input variables.

Example

$$
\begin{aligned}
& \mathrm{F}_{2}=\mathrm{AB}+\mathrm{AC}+\mathrm{BC} ; \mathrm{T}_{1}=\mathrm{A}+\mathrm{B}+\mathrm{C} ; \quad \mathrm{T}_{2}=\mathrm{ABC} ; \mathrm{T}_{3}=\mathrm{F}_{2}{ }^{\prime} \mathrm{T}_{1} ; \\
& \mathrm{F}_{1}=\mathrm{T}_{3}+\mathrm{T}_{2} \\
& \mathrm{~F}_{1}=\mathrm{T}_{3}+\mathrm{T}_{2}=\mathrm{F}_{2}{ }^{\prime} \mathrm{T}_{1}+A B C=\mathrm{A}^{\prime} B C^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}+\mathrm{ABC}
\end{aligned}
$$

Fig. 4-2 Logic Diagram for Analysis Example
Bhoopesh Kumawat, Asst. Prof., JECRC Jaipur

Derive truth table from logic diagram

- We can derive the truth table in Table 4-1 by using the circuit of Fig.4-2.

Table 4-1

Truth Table for the Logic Diagram of Fig. 4-2

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	$\boldsymbol{F}_{\mathbf{2}}$	$\boldsymbol{F}_{\mathbf{2}}$	$\boldsymbol{T}_{\mathbf{1}}$	$\boldsymbol{T}_{\mathbf{2}}$	$\boldsymbol{T}_{\mathbf{3}}$	$\boldsymbol{F}_{\mathbf{1}}$
0	0	0	0	1	0	0	0	0
0	0	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	1
0	1	1	1	0	1	0	0	0
1	0	0	0	1	1	0	1	1
1	0	1	1	0	1	0	0	0
1	1	0	1	0	1	0	0	0
1	1	1	1	0	1	1	0	1

2-3. Design procedure

Table $4-2$ is a Code-Conversion example, first, we can list the relation of the BCD and Excess-3 codes in the truth table.

Input BCD				Output Excess-3 Code			
A	B	C	D	w	\times	y	z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

K-Maps

2. For each symbol of the Excess-3 code, we use 1's to draw the map for simplifying Boolean function.

Fig. 4-3 Maps for BCD to Excess-3 Code Converter
Bhoopesh Kumawat, Asst. Prof., JECRC Jaipur

Circuit implementation

$$
\begin{aligned}
& \mathrm{z}=\mathrm{D}^{\prime} ; \quad \mathrm{y}=\mathrm{CD}+\mathrm{C}^{\prime} \mathrm{D}^{\prime}=\mathrm{CD}+(\mathrm{C}+\mathrm{D})^{\prime} \\
& \mathrm{x}=\mathrm{B}^{\prime} \mathrm{C}+\mathrm{B}^{\prime} \mathrm{D}+\mathrm{BC}^{\prime} \mathrm{D}^{\prime}=\mathrm{B}^{\prime}(\mathrm{C}+\mathrm{D})+\mathrm{B}(\mathrm{C}+\mathrm{D})^{\prime} \\
& \mathrm{w}=\mathrm{A}+\mathrm{BC}+\mathrm{BD}=\mathrm{A}+\mathrm{B}(\mathrm{C}+\mathrm{D})
\end{aligned}
$$

Fig. 4-4 Logic Diagram for BCD to Excess-3 Code Converter

2-4. Binary Adder-Subtractor

- A combinational circuit that performs the addition of two bits is called a Half Adder.
- The truth table for the half adder is listed below:

Table 4-3 Half Adder			
x	y	C	s
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$
\begin{aligned}
& S=x^{\prime} y+x y^{\prime}=x \oplus y \\
& C=x y
\end{aligned}
$$

Implementation of Half-Adder

(a) $\begin{aligned} S & =x y^{\prime}+x^{\prime} y \\ C & =x y\end{aligned}$
(b) $S=x \oplus y$ $C=x y$

Fig. 4-5 Implementation of Half-Adder

Full-Adder

- One that performs the addition of three bits(two significant bits and a previous carry) is a Full Adder.

Table 4-4 Fuill Adder $\boldsymbol{x}$$\quad \boldsymbol{y}$
0

Simplified Expressions

Fig. 4-6 Maps for Full Adder

$$
\begin{aligned}
& S=x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}+x y z \\
& C=x y+x z+y z
\end{aligned}
$$

Full adder implemented in SOP

Fig. 4-7 Implementation of Full Adder in Sum of Products

Another implementation

- Full-adder can also implemented with two half adders and one OR gate

$$
\begin{aligned}
& S=z \oplus(x \oplus y)=z^{\prime}\left(x y^{\prime}+x^{\prime} y\right)+z\left(x y^{\prime}+x^{\prime} y\right)^{\prime} \\
& =x y^{\prime} z^{\prime}+x^{\prime} y z^{\prime}+x y z+x^{\prime} y^{\prime} z \\
& C=z\left(x y^{\prime}+x^{\prime} y\right)+x y=x y^{\prime} z+x^{\prime} y z+x y
\end{aligned}
$$

Fig. 4-8 Implementation of Full Adder with Two Half Adders and an OR Gate
full Subtractor usinp two Half Subtractors

2-5 Binary Parallel Adder

- This is also called Ripple Carry Adder ,because of the construction with full adders are connected in cascade.

Subscript i:	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
Input carry	0	1	1	0	C_{i}
Augend	1	0	1	1	A_{i}
Addend	0	0	1	1	B_{i}
Sum	1	1	1	0	S_{i}
Output carry	0	0	1	1	C_{i+1}

Carry Propagation

- Fig.4-9 causes a unstable factor on carry bit, and produces a longest propagation delay.
- The signal from C_{i} to the output carry C_{i+1}, propagates through an AND and OR gates, so, for an n-bit RCA, there are $2 n$ gate levels for the carry to propagate from input to output.
- Because the propagation delay will affect the output signals on different time, so the signals are given enough time to get the precise and stable outputs.
- The most widely used technique employs the principle of carry look-ahead

Fig. 4-10 Full Adder with P and G Shown

Boolean functions

$$
\begin{array}{ll}
P_{i}=A_{i} \oplus B_{i} & \text { steady state value } \\
G_{i}=A_{i} B_{i} & \text { steady state value } \\
\text { Output sum and carry } \\
S_{i}=P_{i} \oplus C_{i} & \\
C_{i+1}=G_{i}+P_{i} C_{i} & \\
G_{i} \text { : carry generate } & P_{i} \text { : carry propagate } \\
C_{0}=\text { input carry } \\
C_{1}=G_{0}+P_{0} C_{0} \\
C_{2}=G_{1}+P_{1} C_{1}=G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{0} \\
C_{3}=G_{2}+P_{2} C_{2}=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{0}
\end{array}
$$

Logic diagram of carry look-ahead generator

- C_{3} is propagated at the same time as C_{2} and C_{1}.

Fig. 4-11 Logic Diagram of Carry Lookahead Generator

4-bit adder with carry look ahead

- Delay time of n-bit CLAA $=$ XOR + (AND + OR $)+$ XOR

Fig. 4-12 4-Bit Adder with Carry Lookahead

Binary subtractor

$\mathrm{M}=1$ Subtractor

$\mathrm{M}=\mathrm{o}$ Adder

Fig. 4-13 4-Bit Adder Subtractor

2-6 Decimal adder

BCD adder can't exceed 9 on each input digit. Maximum value of addition of two BCD digits is 19 and K is the carry.

Table 4-5
Derivation of BCD Adder

Binary Sum					BCD Sum					Decimal
\boldsymbol{K}	Z_{8}	Z_{4}	z_{2}	z_{1}	C	S_{8}	S_{4}	S_{2}	S_{1}	
0	0	0	0	0	0	0	0	0	0	o
0	0	0	0	1	0	O	0	O	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	o	1	1	0	0	0	1	1	3
0	0	1	0	o	0	0	1	O	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	O	0	o	0	1	o	0	0	8
0	1	0	0	1	0	1	0	0	1	9
0	1	o	1	0	1	o	o	o	0	10
0	1	0	1	1	1	0	o	0	1	11
0	1	1	o	0	1	0	0	1	0	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	o	1	0	1	o	0	14
0	1	1	1	1	1	0	1	0	1	15
1	o	o	0	-	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	o	0	0	18
1	0	0	1	1	1	1	0	0	1	19

Rules of BCD adder

- When the binary sum is greater than 1001 (9), we obtain a nonrepresentation.
- The addition of binary 6 (ollo) to the binary sum representation and also produces an output carry as required.
- To distinguish them from binary 1000 and 1001 , which also have a 1 in position Z_{8}, we specify further that either Z_{4} or Z_{2} must have a 1 .

$$
C=K+Z_{8} Z_{4}+Z_{8} Z_{2}
$$

$k z_{8} \begin{aligned} & z_{4} z_{2} z_{1} \\ & 000001,011,010 \quad 110,111101100\end{aligned}$ 00 0 01
11
10

		1	1	1	1	1	1
x							
1	1	1	1	x	x	x	x

$$
c=k+z_{8} z_{2}+z_{8} z_{4}
$$

when $c=1$ i.e. Sumvalue is exceedim the limit (g)
to get back the value into limit of BCD, we have add 0110

Implementation of BCD adder

- A decimal parallel adder that adds n decimal digits needs n BCD adder stages.
- The output carry from one stage must be connected to the input carry of the next higher-order stage.

Fig. 4-14 Block Diagram of a BCD Adder

2-7. Binary multiplier

- Usually there are more bits in the partial products and it is necessary to use full adders to produce the sum of the partial products.

Fig. 4-15 2-Bit by 2-Bit Binary Multiplier
Bhoopesh Kumawat, Asst. Prof., JECRC Jaipur

4-bit by 3-bit binary multiplier

- For
bits and bits, we need ($\mathrm{J} \times \mathrm{K}$)
gates and ($\mathrm{J}-1$) K-bit
to produce a product of $\mathrm{J}+\mathrm{K}$ bits.

K=4 and J=3, we need 12 AND gates and two 4-bit adders.

Fig. 4-16 4-Bit by 3-Bit Binary Multiplier

2-8. Magnitude comparator

- The equality relation of each pair of bits can be expressed logically with an exclusive-NOR function as:
$A=A_{3} A_{2} A_{1} A_{0}$
$\mathrm{B}=\mathrm{B}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$
$\mathrm{x}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}} \mathrm{B}_{\mathrm{i}}+\mathrm{A}_{\mathrm{i}}{ }^{\prime} \mathrm{B}_{\mathrm{i}}{ }^{\prime}$
for $\mathrm{i}=0,1,2,3$
$(\mathrm{A}=\mathrm{B})=\mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}$

Magnitude comparator

- We
megentudes of pairs or Mis. If equal, we compare the next lower significant pair of digits until a pair of unequal digits is reached.
- If the corresponding digit of A is 1 and that of B is 0 , we conclude that $\mathrm{A}>\mathrm{B}$.
$(\mathrm{A}>\mathrm{B})=$
$\mathrm{A}_{3} \mathrm{~B}_{3}^{\prime}+\mathrm{x}_{3} \mathrm{~A}_{2} \mathrm{~B}_{2}^{\prime}+\mathrm{X}_{3} \mathrm{X}_{2} \mathrm{~A}_{1} \mathrm{~B}_{1}^{\prime}+\mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{~A}_{0} \mathrm{~B}^{\prime}{ }_{0}$
$(\mathrm{A}<\mathrm{B})=$
$\mathrm{A}_{3}^{\prime} \mathrm{B}_{3}+\mathrm{X}_{3} \mathrm{~A}_{2}^{\prime} \mathrm{B}_{2}+\mathrm{X}_{3} \mathrm{X}_{2} \mathrm{~A}_{1}^{\prime} \mathrm{B}_{1}+\mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{~A}^{\prime}{ }_{0} \mathrm{~B}_{0}$

Fig. 4-17 4-Bit Magnitude Comparator

2-9. Decoders

- The decoder is called n-to-m-line decoder, where
- The decoder is also used in conjunction with other code converters such as a BCD-to-seven segment decoder.
- 3-to-8 line decoder: For each possible input combination, there are seven outputs that are equal to o and only one that is equal to 1.

Implementation and truth table

Table 4-6
 Truth Table of a 3-to-8-Line Decoder

Inputs			Outputs							
\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\boldsymbol{D}_{\mathbf{0}}$	$\boldsymbol{D}_{\mathbf{1}}$	$\boldsymbol{D}_{\mathbf{2}}$	$\boldsymbol{D}_{\mathbf{3}}$	$\boldsymbol{D}_{\mathbf{4}}$	$\boldsymbol{D}_{\mathbf{5}}$	$\boldsymbol{D}_{\mathbf{6}}$	$\boldsymbol{D}_{\mathbf{7}}$
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Fig. 4-18 3-to-8-Line Decoder

Decoder with enable input

, it becomes more economical to generate the decoder minterms in their

- As indicated by the truth table , only one output can be equal to 0 at any given time, all other outputs are equal to 1 .

Fig. 4-19 2-to-4-Line Decoder with Enable Input

3-to-8 decoder with enable input

 i.e. a 4-to-16 decoder

Fig. 4-20 4×16 Decoder Constructed with Two 3×8 Decoders

Implementation of any Function
 with a Decoder

- Example: Full-Adder
- In form of minterms,

Sum $S(x, y, z)=\sum(1,2,4,7) \quad$ and $\quad C(x, y, z)=\sum(3,5,6,7)$

Fig. 4-21 Implementation of a Full Adder with a Decoder

2-10. Encoders

- An Encoder is the Inverse operation of a Decoder.
- We can derive the Boolean functions by table 4-7

$$
\begin{aligned}
& \mathrm{z}=\mathrm{D}_{1}+\mathrm{D}_{3}+\mathrm{D}_{5}+\mathrm{D}_{7} \\
& \mathrm{y}=\mathrm{D}_{2}+\mathrm{D}_{3}+\mathrm{D}_{6}+\mathrm{D}_{7} \\
& \mathrm{x}=\mathrm{D}_{4}+\mathrm{D}_{5}+\mathrm{D}_{6}+\mathrm{D}_{7}
\end{aligned}
$$

Table 4-7

Truth Table of Octal-to-Binary Encoder

Inputs										
D_{0}	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	Outputs		
1	0	0	0	0	0	0	0	x	y	
0	1	0	0	0	0	0	0	z	0	
0	0	1	0	0	0	0	0	0	0	
0	0	0	1	0	0	0	0	0	1	
0	0	0	0	1	0	0	0	0	1	
0	0	0	0	0	1	0	0	1	0	
0	0	0	0	0	0	1	0	1	0	
0	0	0	0	0	0	0	1	1	1	
0										

Priority encoder

- If two inplits are active simultaneously, the produces an undefined combination. We can establish an input priority to ensure that only one input is encoded.
in the octal-to-binary encoder is that an output with all o's is generated when all the inputs are o; the output is the same as when D_{o} is equal to 1.
- The discrepancy tables on Table 4-7 and Table 4-8 can to indicate that at least one input is equal to 1.

Priority encoder

Table 4.8
Truth Table of a Priority Encoder

Inputs				Outputs		
D_{0}	D_{1}	D_{2}	D_{3}	x	y	V
0	0	0	0	χ	χ	0
1	0	0	0	0	,	1
χ	1	0	0	0	1	1
χ	χ	1	0	1	0	1
X	χ	χ	1	1	1	1

in output columns represent don't-care conditions
in the input columns are useful for representing a truth table in condensed form.
Instead of listing all 16 minterms of four variables.

4-input Priority Encoder

Fig. 4-22 Maps for a Priority Encoder

$$
\begin{aligned}
& x=D_{2}+D_{3} \\
& y=D_{3}+D_{1} D_{2}^{\prime} \\
& V=D_{0}+D_{1}+D_{2}+D_{3}
\end{aligned}
$$

Fig. 4-23 4-Input Priority Encoder

2-11. Multiplexers

$$
\begin{array}{ll|l}
\mathrm{S}=\mathrm{o}, \mathrm{Y}=\mathrm{I}_{0} \\
\mathrm{~S}=1, \mathrm{Y}=\mathrm{I}_{1}
\end{array} \quad \rightarrow \begin{array}{c|c}
\mathrm{S} & \mathrm{Y} \\
\hline 0 & \mathrm{I}_{0} \\
1 & \mathrm{I}_{1}
\end{array} \quad \mathrm{Y}=\mathrm{SI}_{0}+\mathrm{SI}_{1}
$$

(a) Logic diagram
(b) Block diagram

Fig. 4-24 2-to-1-Line Multiplexer

4-to-1 Line Multiplexer

Quadruple 2-to-1 Line Multiplexer

- Multiplexer circuits can be combined with common selection inputs to provide multiple-bit selection logic. Compare with Fig 4-24.

Fig. 4-26 Quadruple 2-to-1-Line Multiplexer
Bhoopesh Kumawat, Asst. Prof., JECRC Jaipur

Boolean function implementation

Implementation Types

- Type-o: MUX size will be M x 1 with and
(with inputs from I_{o} to I_{M} having the value same as output
i.e. o or 1 as per the function definition).
- Type-1:
will be Mxı with
and
(with Inputs from I_{o} to I_{M} having the values as per the Implementation Table.
- Type-2:
will be $\mathrm{M} \times 1$ with $\mathrm{V}=2 \mathrm{input}$ and
(with Inputs from I_{o} to I_{M} having the values as per the solution obtained for each I using K-map.
- Type-3 and ... : With the same above specified logic.

Function Implementation through MUXs

Exampe: $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(1,3,4,11,12,13,14,15)$

A	B	C	D	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0

1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Type-0 Implementation

Typeo Implementation
Mux Size $\rightarrow 2^{4} \times 1$ i.e. 16×1
with select lines - 4

Imputs $\rightarrow I_{0}$ to I_{15}

Type-1 Implementation
Type-1 Implamentation

$$
\begin{aligned}
& \text { mux size } \rightarrow 2^{4-1} \times 1 \\
& \text { i.e. } 8 \times 1
\end{aligned}
$$

with select lines -3
Any 3-variables will be
comnected to thase selectlinas
Rennaining 1 variable will
Iuputs will be be used to apply in I/Ps. Io to I_{7} with the use of Iuplementation-Table

4-Possibilities

1) A as Iuput

Inplementation Table

	I_{0}	I_{1}	I_{2}	I_{3}	I_{4}	I_{5}	I_{6}	I_{7}
\bar{A}	0	(1)	2	(3)	(4)	5	6	7
A	8	9	10	(11)	(12)	(13)	(14)	(15)
	0	\bar{A}	0	1	1	A	A	A

2.) B as Iuput

Inplamentation Table

	I_{0}	I_{1}	I_{2}	I_{3}	I_{4}	I_{5}	I_{6}	I_{7}
\bar{B}	0	(1)	2	(3)	8	9	10	(11)
B	(4)	5	6	7	(12)	(13)	(14)	(15)
	B	\bar{B}	0	\bar{B}	B	B	B	1

Bhoopesh Kumawat, Asst. Prof., JECRC Jaipur
3) C as Iuput Iuplaneutation Table

	I_{0}	I_{1}	I_{2}	I_{3}	I_{4}	I_{5}	I_{6}	I_{7}
\bar{c}	0	(1)	(4)	5	8	9	(12)	(13)
c	2	(3)	6	7	10	(11)	(14)	(15)
	0	1	\bar{c}	0	0	c	1	1

4) D as Input

Iuplementation Table

	I_{0}	I_{1}	I_{2}	I_{3}	I_{4}	I_{5}	I_{5}	I_{7}
D	0	2	(4)	6	8	10	(12)	(14)
D	(1)	(3)	5	7	9	(11)	(13)	(15)
	D	D	\bar{D}	0	0	D	1	1

Bhoopesh Kumawat, Asst. Prof., JECRC Jaipur

Type-2 Implementation
Type-2 Implementation
Mux Size $\rightarrow 2^{4-2} \times 1$
i.e. 4×1
with Seloctlines - 2
2 variables will be used
as Iuputs and renaining 2 -
will be used as Selectlines.
Iuputs will be I_{0} to I_{3}
6-Possibllities
1.) $A, B \rightarrow$ Iuputs
$C, D \rightarrow$ Select lines
6.) $B,\left.D \rightarrow I\right|_{s} \quad A, C \rightarrow S C$
2.) $B, C \rightarrow$ Iuputs
$A, D \rightarrow \quad "$
3.) $C, D \rightarrow$ Iuputs
$A, B \rightarrow \quad \because$
4.) A, C \rightarrow Iuputs
$\begin{array}{ll}B, D \rightarrow & 4 \\ B, C \rightarrow & 4\end{array}$
Bhoopesh Kumawat, Asst. Prof., JECRC Jaipur
4.) A, C \rightarrow Iuputs
$B, D \rightarrow$ Select Lires
4-Combinations w.r.t.

$$
\begin{aligned}
& I_{0} \rightarrow B D=00 \\
& I_{1} \rightarrow B D=01 \\
& I_{2} \rightarrow B D=10 \\
& I_{3} \rightarrow B D=11
\end{aligned}
$$

K-maps
(i) wir.t. $B D=00$

(ii) w.r.t. $B D=01$

(iii) w.r.t. $B D=10$

$$
I_{2}=A+\bar{C}
$$

(iv) w.r.t. $B D=11$

2-12. Demultiplexer

- A decoder with an enable input is referred to as a decoder/demultiplexer.
The truth table of demultiplexer is the same with decoder.

2-13 Three-State Gates

- A multiplexer can be constructed with three-state gates.

Fig. 4-29 Graphic Symbol for a Three-State Buffer

Fig. 4-30 Multiplexers with Three-State Gates

2-14 Parity Generator and Checker
Parity Generator
3-bits

$$
\begin{aligned}
& P_{e}=x \oplus y \oplus z=x \odot y \odot z \\
& P_{0}=x \oplus y \odot z=x \odot y \oplus z
\end{aligned}
$$

Parity Checker
w.r.t. 3 -bits $\longrightarrow 4$-bit checker of Message

$$
\begin{aligned}
& c_{e}=x \oplus y \oplus z \oplus P \\
& c_{0}=x \odot y \odot z \odot P
\end{aligned}
$$

Thank You

