
1

Year & Semester - B.Tech I year (I Semester)

Subject - Programming for Problem Solving

Presented by - Ms. Abhilasha /Ms. Yogita Punjabi/Mr. Gajendra Sharma

Designation - Asst. Professor

Department - Computer Science (First Year)

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE

1Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

1

VISSION OF INSTITUTE

2

To become a renowned centre of outcome based learning,

and work towards academic, professional, cultural and

social enrichment of the lives of individuals and

communities.

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

1

MISSION OF INSTITUTE

3

❖Focus on evaluation of learning outcomes and motivate students to inculcate

research aptitude by project based learning.

❖Identify, based on informed perception of Indian, regional and global needs,

the areas of focus and provide platform to gain knowledge and solutions.

❖Offer opportunities for interaction between academia and industry.

❖Develop human potential to its fullest extent so that intellectually capable and

imaginatively gifted leaders may emerge.

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

1

Programming for Problem Solving : Course Outcomes

4

Students will be able to:

CO1: Understand concept of low-level and high-level languages, primary and

secondary memory. Represent algorithm through flowchart and pseudo code for

problem solving.

CO2: Represent and convert numbers & alphabets in various notations.

CO3: Analyze and implement decision making statements and looping.

CO4: Apply pointers, memory allocation and data handling through files in ‘C’

Programming Language.

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

1 5

Function

A function is a group of statements that together perform a task. Every C program has

at least one function, which is main().

Function is a block of statements that performs a specific task. Suppose you are

building an application in C language and in one of your program, you need to

perform a same task more than once.

In such case you have two options –

a) Use the same set of statements every time you want to perform the task

b) Create a function to perform that task, and just call it every time you need to

perform that task.

Using option (b) is a good practice and a good programmer always uses functions

while writing codes in C.

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

1 6

Types of Functions

1) Built in function –

puts(), gets(), printf(), scanf() etc –

These are the functions which already have a

definition in header files (.h files like stdio.h), so

we just call them whenever there is a need to use

them.

2) User Defined functions –

The functions that we create in a program are

known as user defined functions.

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

1 7

Why we need functions in C

Functions are used because of following reasons –

a) To improve the readability of code.

b) Improves the reusability of the code, same function can be used in any

program rather than writing the same code from scratch.

c) Debugging of the code would be easier if you use functions, as errors are

easy to be traced.

d) Reduces the size of the code, duplicate set of statements are replaced by

function calls.

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

1 8

Syntax of a function

return_type function_name (argument list)

{

Set of statements – Block of code

}

Example

int add(int,int);

return_type: Return type can be of any data type such as int, double, char, void, short etc.

Don’t worry you will understand these terms better once you go through the examples

below.

function_name: It can be anything, however it is advised to have a meaningful name for

the functions so that it would be easy to understand the purpose of function just by seeing

it’s name.

argument list: Argument list contains variables names along with their data types. These

arguments are kind of inputs for the function. For example – A function which is used to

add two integer variables, will be having two integer argument.

Block of code: Set of C statements, which will be executed whenever a call will be made to

the function.

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

1 9

How to call a function in C?

Example1: Creating a user defined function addition()

#include <stdio.h>

int addition(int num1, int num2)

{

int sum;

sum = num1+num2; /

return sum;

}

int main() {

int var1, var2;

printf("Enter number 1: ");

scanf("%d",&var1);

printf("Enter number 2: ");

scanf("%d",&var2);

int res = addition(var1, var2);

printf ("Output: %d", res);

return 0;

}

Output:

Enter number 1: 100 Enter number 2: 120 Output: 220

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

110

Example2: Creating a void user defined function

that doesn’t return anything.

#include <stdio.h>

void introduction()

{

printf("Hi\n");

printf("My name is Abhilasha\n");

printf("How are you?");

}

int main()

{

introduction();

return 0;

}

Output:

Hi My name is Abhilasha How are you?

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

111

Category of Function

1. NO ARGUMENT NO RETURN VALUES

2. ARGUMENT BUT NO RETURN VALUES

3. NO ARGUMENT WITH RETURN VALUES

4. WITH ARGUMENT WITH RETURN VALUES

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

112

NO ARGUMENT NO RETURN VALUES

➢In this method, We won’t pass any arguments to the function while defining,

declaring, or calling the function.

➢This type of functions in C will not return any value when we call the function

from main() or any sub-function.

➢When we are not expecting any return value, but we need some statements to

print as output. Then, this type of function in C is very useful.

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

113

Example: No Argument No Return Values Addition of

Two number.

#include<stdio.h>

void Addition();

void main()

{

printf("\n \n");

Addition();

}

void Addition()

{

int Sum, a = 10, b = 20;

Sum = a + b;

printf("\n Sum of a = %d and b = %d is = %d", a, b, Sum);

}

Output:

Sum of a=10 and b=20 is 30

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

1

Function with No arguments and with Return value

14

➢In this method, We won’t pass any arguments to the function while defining,

declaring, or calling the function.

➢This type of function will return some value when we call the function from

main() or any sub function.

➢The Data Type of the return value will depend upon the return type of function

declaration.

➢For instance, if the return type is int then return value will be int.

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

115

Example: No Arguments and with Return Value

Multiplication of Two number

#include<stdio.h>

int Multiplication();

int main()

{

int Multi;

Multi = Multiplication();

printf("\n Multiplication of a and b is = %d \n", Multi);

return 0;

}

int Multiplication()

{

int Multi, a = 20, b = 40;

Multi = a * b;

return Multi;

}

Output

Multiplication of a and b is = 800
Ms. Abhilasha /Ms. Yogita Punjabi/ Mr.

Gajendra Sharma

116

Function with No arguments and with Return value

➢In this method, We won’t pass any arguments to the function while defining,

declaring, or calling the function.

➢This type of function will return some value when we call the function from

main() or any sub function.

➢The Data Type of the return value will depend upon the return type of

function declaration.

➢For instance, if the return type is int then return value will be int.

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr.
Gajendra Sharma

117

Example: No Arguments and with Return Value

Mulitiplication of Two no

#include<stdio.h>

int Multiplication();

int main()

{

int Multi;

Multi = Multiplication();

printf("\n Multiplication of a and b is = %d \n", Multi);

return 0;

}

int Multiplication()

{

int Multi, a = 20, b = 40;

Multi = a * b;

return Multi;

}

Output

Multiplication of a and b is = 800

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

118

C Function with argument and No Return value

➢This method allows us to pass the arguments to the function while calling the

function.

➢But, This type of function will not return any value when we call the function from

main () or any subfunction.

➢If we want to allow the user to pass his data to the function arguments, but we are

not expecting any return value, this type of function is very useful.

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr.
Gajendra Sharma

1

Example: C Function with argument and No Return

value Addition of Two number.

19

#include<stdio.h>

void Addition(int, int);

void main()

{

int a, b;

printf("\n Please Enter two integer values \n");

scanf("%d %d",&a, &b);

Addition(a, b);

}

void Addition(int a, int b)

{

int Sum; Sum = a + b;

printf("\n Additiontion of %d and %d is = %d \n", a, b, Sum);

}

OUTPUT

Please enter two integer value

10

20

Addition of 10 and 20 is 30
Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

120

C Function with argument and Return value

➢This method allows us to pass the arguments to the function while calling the function.

➢This type of function will return some value when we call the function from main () or

any sub function.

➢ Data Type of the return value will depend upon the return type of function

declaration. For instance, if the return type is int then return value will be int.

➢This type of user-defined function is called a fully dynamic function, and it provides

maximum control to the end-user.

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

121

Example :Function with arguments and Return

value Multiplication of Two number.

#include<stdio.h>

int Multiplication(int, int);

int main()

{

int a, b, Multi;

printf("\n Please Enter two integer values \n");

scanf("%d %d",&a, &b);

Multi = Multiplication(a, b);

printf("\n Multiplication of %d and %d is =

%d \n", a, b, Multi);

return 0;

}

int Multiplication(int a, int b)

{

int Multi; Multi = a * b;

return Multi;

}

OUTPUT

Please Enter two integer values 10 ,20

Multiplication of 10 and 20 is=200

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

122

Two ways in which arguments can be passed to a

Function

1. Call by Value

2. Call by Reference

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

123

Function call by value

Function call by value is the default way of calling a function in C

programming.

Actual parameters: The parameters that appear in function calls.

Formal parameters: The parameters that appear in function declarations.

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

1

Example of Function call by Value

24

#include <stdio.h>

int increment(int var)

{

var = var+1; return var;

}

int main()

{

int num1=20;

int num2 = increment(num1);

printf("num1 value is: %d", num1);

printf("\nnum2 value is: %d", num2);

return 0; }

Output:

num1 value is: 20 num2 value is: 21

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

125

Function call by reference

Before we discuss function call by reference, lets understand the terminologies that we

will use while explaining this:

Actual parameters: The parameters that appear in function calls.

Formal parameters: The parameters that appear in function declarations.

For example:

int sum(int a, int b);The a and b parameters are formal parameters.

We are calling the function like this:

int s = sum(10, 20); //Here 10 and 20 are actual parameters.

or

int s = sum(n1, n2); //Here n1 and n2 are actual parameters.

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

126

Function call by reference

#include <stdio.h>

void increment(int *var)

{

*var = *var+1;

}

int main()

{

int num=20;

increment(&num);

printf("Value of num is: %d", num);

return 0;

}

Output:Value of num

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

127

Recursion

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

128

How recursion works?

A function that calls itself is known as a recursive function. And, this technique is

known as recursion.

How recursion works?

void recurse()

{

... recurse();

...

}

int main()

{ .

.. recurse();

...

}

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

129

Example: Sum of Natural Numbers Using

Recursion

#include <stdio.h>

int sum(int n);

int main()

{

int number, result;

printf("Enter a positive integer: ");

scanf("%d", &number);

result = sum(number);

printf("sum = %d", result);

return 0;

}

int sum(int n)

{ if (n != 0)

return n + sum(n-1);

else

return n;

}

Output

Enter a positive integer:3 sum = 6

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

130

Cont...

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

131

Bibliography

Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

https://www.tutorialspoint.com/cprogramming/c_functions.htm

https://www.programiz.com/c-programming/c-functions

Let us C Yashavant Kanetkar, BPB Publication

Programming in ANSI C by E.Balagurusamy, McGrawHill

https://www.tutorialspoint.com/cprogramming/c_functions.htm
https://www.programiz.com/c-programming/c-functions

32Ms. Abhilasha /Ms. Yogita Punjabi/ Mr. Gajendra Sharma

