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7EE5-11: WIND AND SOLAR ENERGY SYSTEM 

 

1.Introduction: Objective, scope and outcome of the course. 

Objective: 

• To give sufficient knowledge about the promising new and renewable sources of 

energy  

• To equip students in working with projects and to take up research work in 

connected areas. 

Scope: 

• India’s population is increasing rapidly and is expected to be the world’s most 

populous country by 2020. India is currently facing huge energy demand. 

Although its energy production has expanded over the years, its population is also 

increasing at an alarming rate. India has the 5th largest power generation 

portfolio. As the country is facing a huge energy crisis, there is a high need to tap 

the potential renewable energy resources. 

Outcome : 

CO 1: define basic properties of different renewable sources of energy and 

technologies for their utilisation. 

CO 2: describe main elements of technical systems designed for utilisation of 

renewable sources of energy and explain the correlation between different 

operational parameters 

CO 3: select engineering approach to problem solving when implementing the 

projects on renewable sources 

 

2. Physics of Wind Power 

The following historical overview divides the utilisation of the natural resource wind into the 

generation of mechanical power and the production of electricity (The historical development 

of wind turbine technology is documented in many publications, for instance see Ancona, 1989; 

Gipe, 1995; Heymann, 1995; Hill, 1994;Johnson, 1985; Kealey, 1987; Koeppl, 1982; Putnam, 

1948; Righter, 1996; Shepherd,1990, 1994). 

Mechanical power generation The earliest windmills recorded were vertical axis mills. These 

windmills can be described as simple drag devices. They have been used in the Afghan 

highlands to grind grain since the seventh century BC.The first details about horizontal axis 

windmills are found in historical documents from Persia, Tibet and China at about 1000 AD. 

This windmill type has a horizontal shaft and blades (or sails) revolving in the vertical plane. 
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From Persia and the Middle East, the horizontal axis windmill spread across the Mediterranean 

countries and Central Europe. The first horizontal axis windmill appeared in England around 

1150, in France in 1180, in Flanders in 1190, in Germany in 1222 and in Denmark in 1259. 

This fast development was most likely influenced by the Crusaders, taking the knowledge 

about windmills from Persia to many places in Europe. In Europe, windmill performance was 

constantly improved between the twelfth and nineteenth centuries. By the end of the nineteenth 

century, the typical European windmill used a rotor of 25 meters in diameter, and the stocks 

reached up to 30 meters. Windmills were used not only for grinding grain but also for pumping 

water to drain lakes and marshes. By 1800 about 20 000 modern European windmills were in 

operation in France alone, and in the Netherlands 90 % of the power used in the industry was 

based on wind energy. Industrialisation then led to a gradual decline in windmills, but in 1904 

wind energy still provided 11 % of the Dutch industrial energy and Germany had more than 18 

000 installed units. 

When the European windmills slowly started to disappear, windmills were introduced by 

settlers in North America. Small windmills for pumping water to livestock became very 

popular. These windmills, also known as American Windmills, operated fully self- regulated, 

which means they could be left unattended. The self-regulating mechanism pointed the rotor 

windward during high-speed winds. The European style windmills usually had to be turned out 

of the wind or the sailing blades had to be rolled up during extreme wind speeds, to avoid 

damage to the windmill. The popularity of windmills in the USA reached its peak between 

1920 and 1930, with about 600 000 units installed. Various types of American Windmills are 

still used for agricultural purposes all over the world. 

Table 1. Historical wind turbines 

 

 

Indian and Global statistics. 

The following section will provide a brief overview of the wind energy status around the world 

at the end of the twentieth century. Furthermore, it will present major wind energy support 
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schemes. The overview is divided into grid-connected wind power generation and stand-alone 

systems. 

Table 2. Operational wind power capacity worldwide. 

 

Europe. 

Between the end of 1995 and the end of 2003, around 76 % of all new grid-connected 

wind turbines worldwide were installed in Europe. 

Table3. Operational wind power capacity in Europe 
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North America. 

After the wind power boom in California during the mid-1980s, development slowed 

down significantly in North America. In the middle of the 1990s the dismantling of old 

wind farms sometimes exceeded the installations of new wind turbines, which led to a 

reduction in installed capacity. 

Table 4. Operational wind power capacity in North America 

 

Table 5. Operational wind power capacity in the USA at end of 2003 
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South and Central America 

Despite large wind energy resources in many regions of South and Central America, the 

development of wind energy has been very slow (Table 2.9) because of the lack of a sufficient 

wind energy policy as well as low electricity prices. Many wind projects in South America 

have been financially supported by international aid programmes. Argentina, however, 

introduced a new policy at the end of 1998 that offers financial 

support to wind energy generation, but with little success. In Brazil, some regional 

governments and utilities have started to offer higher feed-in tariffs for wind power. The typical 

size of existing wind turbines is around 300 kW. Larger wind turbines are difficult to install 

because of infrastructural limitations for larger equipment (e.g. cranes). Offshore wind projects 

are not planned, but further small to medium-size (< 100 MW) projects are under development 

onshore, particularly in Brazil. 

Table 6. Operational wind power capacity in South and Central America at end of 2003 

 

Asia and Pacific 

India achieved an impressive growth in wind turbine installation in the middle of the 1990s, 

the ‘Indian Boom’. In 1992/93, the Indian government started to offer special incentives for 

renewable energy investments (e.g. a minimum purchase rate was guaranteed, and a 100 % tax 

depreciation was allowed in the first year of the project).Furthermore, a ‘power banking’ 

system was introduced that allows electricity producers to ‘bank’ their power with the utility 

and avoid being cut off during times of load shedding. Power can be banked for up to one year. 

In addition, some Indian States have 

Table 7. Operational wind power capacity in Asia and Pacific at end of 2003 
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introduced further incentives (e.g. investment subsidies). This policy led to a fast development 

of new installations between 1993 and 1997. Then the development slowed down as a result of 

uncertainties regarding the future of the incentives but picked up again in the new millennium 

after a more stable policy towards wind power was provided. 

The wind energy development in China is predominately driven by international aid 

programmes, despite some government programmes to promote wind energy (e.g. the ‘Ride-

the-Wind’ programme of the State Planning Commission). In Japan, the development has been 

dominated by demonstration projects testing different wind turbine technologies. At the end of 

the 1990s the first commercial wind energy projects started operation on the islands of 

Hokkaido as well as Okinawa. Interest in wind power is constantly growing in Japan. Also, at 

the end of the 1990s, the first wind energy projects materialised in New Zealand and Australia. 

The main driver for wind energy development in Australia is a green certification scheme. 

In China and India, the typical wind turbine size is around 300–600 kW; however, some 

megawatt turbines have also been installed. In Australia, Japan and New Zealand, the 1–1.5 

MW range is predominantly used (for installed capacity in countries in Asia and the Pacific, 

see Table) 

Middle East and Africa 

Wind energy development in Africa is very slow (see also Table). Most projects require 

financial support from international aid organisations, as there is only limited regional support. 

Projects are planned in Egypt, where the government agency for the New and Renewable 

Energy Authority (NREA) would like to build a 600 MW project near the city of Zafarana. 

Further projects are planned in Morocco as well as in Jordan (25 MW). The typical wind turbine 

size used in this region is around 300 kW, but there are plans to use 500–600 kW turbines in 

future projects. 

Table 8. Operational wind power capacity in Middle East and Africa at end of 2003 
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Overview of stand-alone generation 

Stand-alone systems are generally used to power remote houses or remote technical 

applications (e.g. for telecommunication systems). The wind turbines used for these purposes 

can vary from between a few watts and 50 kW. For village or rural electrification systems of 

up to 300 kW, wind turbines are used in combination with a diesel generator and sometimes a 

battery system. 

 

Wind physics 

The power of an air mass that flows at speed V through an area A can be calculated as follows 

 

The power in the wind is proportional to the air density 𝜌, the intercepting area A (e.g. the area 

of the wind turbine rotor) and the velocity V to the third power. The air density is a function of 

air pressure and air temperature, which both are functions of the height above see level: 
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The power in the wind is the total available energy per unit of time. The power in the wind is 

converted into the mechanical–rotational energy of the wind turbine rotor, which results in a 

reduced speed in the air mass. The power in the wind cannot be extracted completely by a wind 

turbine, as the air mass would be stopped completely in the intercepting rotor area. This would 

cause a ‘congestion’ of the cross-sectional area for the following air masses. The theoretical 

optimum for utilising the power in the wind by reducing its velocity was first discovered by 

Betz, in 1926. According to Betz, the theoretical maximum power that can be extracted from 

the wind is 

 

Hence, even if power extraction without any losses were possible, only 59 % of the wind power 

could be utilised by a wind turbine (Gasch and Twele, 2002) 

Betz limit. 
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Tip speed ratio. 
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stall and pitch control 

Type A: fixed speed 

This configuration denotes the fixed-speed wind turbine with an asynchronous squirrel cage 

induction generator (SCIG) directly connected to the grid via a transformer (see Figure 4.1). 

Since the SCIG always draws reactive power from the grid, this configuration uses a capacitor 

bank for reactive power compensation. A smoother grid connection is achieved by using a soft-

starter. Regardless of the power control principle in a fixed-speed wind turbine, the wind 

fluctuations are converted into mechanical fluctuations and consequently into electrical power 

fluctuations. In the case of a weak grid, these can yield voltage fluctuations at the point of 

connection. Because of these voltage fluctuations, the fixed-speed wind turbine draws varying 

amounts of reactive power from the utility grid (unless there is a capacitor bank), which 

increases both the voltage fluctuations and the line losses. Thus the main drawbacks of this 

concept are that it does not support any speed control, it requires a stiff grid and its mechanical 

construction must be able to tolerate high mechanical stress. 

All three versions (Type A0, Type A1 and Type A2) of the fixed-speed wind turbine Type A 

are used in the wind turbine industry, and they can be characterised as follows. 
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Wind turbine concepts 
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Type A0: stall control 

This is the conventional concept applied by many Danish wind turbine manufacturers during 

the 1980s and 1990s (i.e. an upwind stall-regulated three-bladed wind turbine concept). It has 

been very popular because of its relatively low price, its simplicity and its robustness. Stall-

controlled wind turbines cannot carry out assisted start-ups, which implies that the power of 

the turbine cannot be controlled during the connection sequence. 

Type A1: pitch control 

These have also been present on the market. The main advantages of a Type A1 turbine are 

that it facilitates power controllability, controlled start-up and emergency stopping. Its major 

drawback is that, at high wind speeds, even small variations in wind speed result in large 

variations in output power. The pitch mechanism is not fast enough to avoid such power 

fluctuations. By pitching the blade, slow variations in the wind can be compensated, but this is 

not possible in the case of gusts. 

Type A2: active stall control 

These have recently become popular. This configuration basically maintains all the power 

quality characteristics of the stall-regulated system. The improvements lie in a better utilisation 

of the overall system, as a result the use of active stall control. The flexible coupling of the 

blades to the hub also facilitates emergency stopping and start-ups. One drawback is the higher 

price arising from the pitching mechanism and its controller. As illustrated in Figure and Table, 

the variable speed concept is used by all three configurations, Type B, Type C and Type D. 

Owing to power limitation considerations, the variable speed concept is used in practice today 

only together with a fast-pitch mechanism. Variable speed stall or variable speed active stall-

controlled wind turbines are not included here as potentially they lack the capability for a fast 

reduction of power. If the wind turbine is running at maximum speed and there is a strong gust, 

the aerodynamic torque can get critically high and may result in a runaway situation. Therefore, 

as illustrated in Table 4.1, Type B0, Type B2, Type C0, Type C2, Type D0 and Type D2 are 

not used in today’s wind turbine industry. 

 

Wind speed statistics probability distributions 

The behavior of wind velocity at a given site can be specified as a probability distribution 
function, f(V).  The quantity f(V)dV represents the fraction of the wind speeds that lie within a 
range, dV, about the given velocity, V.  These notes discuss the basics ideas of probability 
distribution functions with specific application to wind velocity and energy distributions.1 

Probability distribution functions 

A probability distribution function (pdf) for a random variable x is written as f(x).  The best 
known pdf is the normal distribution. 
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This distribution has two 

parameters  and .  Sketches of 
this distribution for different values 
of these parameters are shown in 
the figure to the right.  The 
distribution is seen to be symmetric 

about the value of  and the width 

of the distribution increases as  
increases. 

All pdf’s are interpreted as follows: 
the probability that the random 
variable, x, lies in a differential 
range, dx, about a value x* is 
f(x*)dx.  Specific statements about 
the probability that the random 
variable, x, lies in a particular range a ≤ x ≤ b, which is denoted by the expression P(a ≤ x ≤ b) 
is obtained by integrating f(x)dx between the limits of a and b. 

 

b

a

dxxfbxaP )()(  [2] 

Probabilities, P, range from zero (no chance of occurring) to 1 (certain to occur).  Because a 
random variable is certain to lie between its minimum and maximum values,  the probability 
that a pdf lies between its maximum and minimum values, P(xmin ≤ x ≤ xmax), must be 1.  We 
can write this as the following equation.  The fact that this integral of the pdf must be one is 
sometimes called the normalization condition or the normalization integral. 
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x
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Using the geometric definition of the integral as the area under a curve, we see that the area 
under the pdf between xmin and xmax must be 1.  In the normal distributions shown in the figure 

above, the distribution for  = 2 has a lower peak, but a wider area, compared to the distribution 

for  = 1; both distributions have their integral from xmin to xmax equal to 1. 

In addition to the pdf, we define the cumulative distribution, F(b) which is the probability that x 
≤ b.  This is the probability that x lies between xmin and b.  We can use equation [3] to write 
this cumulative distribution as follows. 
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We can use the usual relationship for the difference of two integrals with the same lower limit 
to write the probability that x lies in a certain range in terms of this cumulative distribution. 

 )()()()()()(

minmin

aFbFdxxfdxxfdxxfbxaP

a

x

b

x

b

a

   [5] 

The cumulative normal distribution for 

the same three sets of parameters  

and  used in the previous plot of the 
pdf are shown in the figure at the right.  
From equation [4] we see that at b = 
xmax, the integral for F(b) becomes the 
same as the normalization condition in 
equation [3]; thus we must have F(xmax) 
= 1.  The plots of the cumulative normal 
distribution shown in the figure at the 
left show that F(x) approaches a 
common value of one as x becomes 
large.   

Tables, equations, or software for the 
cumulative distribution are used to find 
the probability that a random variable for a particular distribution lies in a specified range.  The 

Excel spreadsheet has a normal distribution function, NORMDIST(x, , , cumulative).  In this 
function x is the value for which the distribution is desired (e.g. a or b in the equations above), 

 and  are the parameters in the distribution, and the fourth variable is set to true to give the 
cumulative distribution.  (Setting the fourth variable to false gives the pdf; if this variable is 
omitted the cumulative distribution is returned.) 

Thus the calculation in equation [5] would be obtained by the following Excel formula: 

NDIST(b, , , true) – NDIST(a, , , true). 

Mean and variance 

For any pdf the mean, , is defined by the following integral. 
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The variance, 2, is defined as follows. 
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The square root of the variance, , is called the standard deviation.  The parameters in the 

normal distribution are given the symbols  and  because they can be shown to be the mean 
and standard deviation for the normal distribution. 

The derivation in the footnote2 shows that the following formula can be used to compute the 
variance. 

 222
max

min

)(  
x

x

dxxfx  [8] 

Functions of a random variable 

We would like to be able to compute statistical quantities for functions of a random variable, 
g(x).  For example, the energy in the wind flowing into a wind turbine with velocity V and air 

density, ,  equals the mass flow rate of the wind, VA, times the kinetic energy in the wind, 

V2/2.  Here A represents the swept area of the wind turbine = D2/4, where D is the diameter 

of the turbine blades.  Thus the wind energy flowing into the turbine is V3A/2 = V3D2/8.  In 
this example, V is the random variable and the function we would like to examine is the power 

g(V) = V3A/2.  In general, for any pdf, f(x) and any function g(x) we can find the mean value 
of g(x) as follows. 
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Distributions used for wind speed 

Two probability distribution functions are commonly used for wind speed.  The simpler of the 
two is the Rayleigh distribution which has a single parameter c. 

                                                             
2 Start with the definition of the variance and expand the (x – )2 term in the integrand. 
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The next to lasts integral, 
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x
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The Weibull distribution shown below has two parameters k and c.  The Rayleigh distribution 

is actually a special case of the Weibull distribution with k = 2. 

   







 



Ve
c

V

c

k
Vf

k
cV

k

0)( /
1

 [11] 

Setting k = 2 in the 
Weibull distribution 
gives the Rayleigh 
distribution.  For both 
distributions, Vmin = 0 

and Vmax = . 

The plot at the left 
shows the Weibull 
distribution for various 
valuables of the 
parameters k and c.  
The plot shows that as 
the value of c 
increases for a given 
value of k the shape of 
the distribution gets 
wider.  Because of this 
c is called the scale 
parameter; it has 

dimensions of velocity.  
The plot also shows 
that as k increases 
from 2 to 4 for a given 
value of c, the 

maximum in the pdf increases.  Because of this k is called the shape parameter; it is 

dimensionless. 

The following equation for the cumulative Weibull distribution is derived in the appendix. 
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Setting k = 2 in this result gives the cumulative Rayleigh distribution. 
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As shown in the appendix, equations [6] and [8] can be used to compute the mean and 
variance of the Weibull distribution.  Once these results are known we can set k = 2 to get the 
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mean and variance of the Rayleigh distribution.  Those results are shown below.  Some results 

use the gamma function (z), which is discussed in the Appendix. 
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The appendix also gives the following equations for the most probable value of velocity (the 
one that maximizes the pdf). 
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For the Rayleigh distribution the single parameter, c, relates the following three properties: 
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The Rayleigh distribution can be written using Vmp (sometimes using the symbol  for Vmp) or 

the mean velocity, .  Substituting the equations in [17] into equation [11] gives the following 
different forms for the Rayleigh distribution. 
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Computing the Rayleigh distribution c parameter from experimental data 

The usual determination of the mean and standard deviation from experimental data for the 
normal distribution are well known.  The minimum-least-squares-error (MLE) estimate of the 
mean of the normal distribution is the arithmetic mean (the sum of all values divided by the 
number of values).  The formula for the MLE estimate of the variance is also familiar.3  The 
parameter c in the Rayleigh distribution can be evaluated from a set of N data points on wind 
velocity, Vi.  When experimental data are used to determine parameters in probability 
distributions, the computed result is called an estimate of the true parameter.  Here we use 

the symbol ĉ  to indicate that the equation below gives us only an estimate of the true 

distribution parameter, c. 
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To estimate the parameters c and k for a Weibull distribution from experimental data, it is first 

necessary to use an iterative procedure to solve the following equation for the estimator k̂ , 

typically using an initial guess of k̂ = 2. 
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Once the value of k̂  is found, the value of ĉ  is found from the equation below. 
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This equation for ĉ  is seen to be a generalization of equation [19] from k = 2 for the Rayleigh 

distribution to the general k for the Weibull distribution.  (If we substitute k̂ = 2 in this equation 

we get equation [19].)  There is a Matlab function wblfit that can be used to find the estimates 

k̂  and ĉ .  If the wind data are stored in a file called 'C:\Users\All Users\windData.txt', the 

following Matlab commands (following the >> prompt) give the results shown after the ans =; 
the first parameter is c; the second is k. 

>> V=load('C:\ Users\All Users\windData.txt'); 

>> wblfit(V) 

ans = 

    8.8393    1.4352 

It is also possible to use this function to get confidence limits on the estimated parameters.  
See the Matlab help on the wblfit function for directions getting these results. 

Distribution of power in the wind 

As noted earlier, the power in the wind is the product of the mass flow rate entering the wind 

turbine blades, VA, and the kinetic energy per unit mass in the wind, V2/2.  (Using the 
definitions that 1 N = 1 kg·m/s2, 1 J = 1 N·m, and 1 W = 1 J/s, the SI units for this product, 

V3A/2 are (kg/m3)(m/s)3(m2) = kg·m2/s3 = N·m/s = J/s = W.)  The average power in the 
incoming wind is given by the following application of equation [9]. 
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Equations [A-19] and [A-20] give the following results for the mean of the cubed velocity. 
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Note that there is a difference between the cube of the mean velocity and the mean of the 
cubed velocity.  These two values are related by equation [A-21] 
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
  [24] 

The fraction of the total power in the wind between a velocity of zero and a velocity b can be 
obtained by numerical integration of the integral in the following equation from the Appendix. 
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Note that the value of this fraction depends only on k the ratio b/c.  A table giving the values 
of F[0 ≤ P(V) ≤ b] as a function of k and b/c is given at the end of the appendix. 

We can regard the integrand in equation [22] as a distribution function for the distribution of 
power as a function of velocity.  This integrand, multiplied by an arbitrary constant, C, is shown 
below. 
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The constant C is used to make sure that the integral of g(P) over all velocities equals one.  

Integrating equation over all V from V = 0 to V =  gives. 
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From equations [22] and [23] we see that, for the Weibull distribution, 

 
















 



1
3

22
)(

2

1 33

0

3

k

AcVA
dVVfV

A

C
 [28] 

Substituting this result for C into equation [26] gives the final result for the distribution of wind 
power as a function of velocity for the Weibull distribution.  
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Because the rA/2 terms cancel out in this equation we see that the distribution for power is 
really the distribution for V3.  When speaking of power distributions it is common to really refer 
to a distribution V3. 

The distributions of wind power and wind 
frequency are compared in the figure at the 
left for two values of the scale parameter c 
with the shape parameter k = 2 giving a 
Rayleigh distribution.  These plots show 
that almost all of the wind power fraction is 
contained in the higher velocities for each 
shape parameter.  At the point where the 
velocity frequency is a maximum, the 
fraction of the available wind power is quite 
small. 

For the Rayleigh distribution with c = 2, 

 2/

5

48V
)( cVe

c
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Wind turbine performance 

An actual wind turbine is only operated in a range between a minimum velocity, called the cut-
in velocity, and a maximum velocity, called the cut-out velocity.  The power coefficient, cp, is 
defined as the fraction of the wind power that is actually captured.  (This may be defined either 
in terms of the wind turbine power to the generator or the generator output power.)  If the 
potential output power of the wind turbine is more than the maximum input power to the 
generator, the turbine is controlled to produce only the maximum generator power. 

With this turbine operating pattern the average power output from the wind turbine, for a given 
probability distribution of the wind can be found from the modified version of equation [22] 
shown below. 
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 [30] 

In this equation VPmax is the wind velocity at which the maximum power is delivered by the 
wind turbine to the generator.  This is called the rated wind speed.  By the basic definition of 
the wind power, the wind power that is delivered by the turbine when the wind velocity is VPmax 

is cpA(VPmax )3/2.  This gives the following definitions of VPmax, which depends on the definition 

of cp.  In these equations, Pmax is the average output power of the generator and gen is the 
generator efficiency. 
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For a wind turbine whose generator output has a maximum of 1.5 MW and whose cp is based 
on the generator output, VPmax would be computed as follows for power coefficient of 0.45, an 

air density of 1.2 kg/m3, and a rotor diameter of 60 m, which gives an area of (60 m)2/4 = 
2827.4 m2. 
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If the cp were based on the turbine output, the value of VPmax computed above would have to 
be divided by the generator efficiency to the 1/3 power.  For a generator efficiency of 95%, 
this would give a value of vPmax = 12.75 m/s. 

Substituting the Weibull distribution into the first integral in equation [30] gives. 
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The second integral in equation [30] can be found from the cumulative Weibull distribution 
from equation [12]. 
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Substituting the results of equation [33] and equation [34] into equation [30] gives the following 
equation for the average power of the generator from a wind turbine which has the following 
operating pattern: (1) no operation below a cut-in velocity, Vcut-in, (2) all available power from 
the turbine delivered to the generator between the cut-in velocity and the velocity which 
delivers the maximum power to the generator, VPmax, (3) turbine output power is limited to 
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maximum generator power between VPmax and a cut-out velocity, Vcut-out, and (4) no operation 
above the cut-out velocity. 
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If SI units are used (kg/m3 for density, m2 for area, and m/s for all velocities and the scale 
factor, c) the power will be in watts.  This should be the unit used for Pmax in the calculations.  
Reported results can be appropriately scaled to kW or MW.  The appropriate averaging time 
is one year to account for the annual variations in winds.  In this case the expected value of 
the energy generated is simply the product of the average power times the number of hours 
in a year, 8760 hours in a non-leap year or 8784 hours in a leap year. 

Discrete calculation of wind turbine performance 

The calculation outlined above assumes 

that the wind data are well fitted by a 

Rayleigh or Weibull distribution.  The figure 

at the left shows actual data that are not well 

fitted by a Weibull distribution.  In such 

cases, it is necessary to work with a discrete 

distribution of the data to determine the 

average wind power.  This calculation is 

best described by an example.  The set of 

discrete wind-speed and frequency data 

plotted in the figure to the left are shown in 

the table below.  These data show the 

percent of the wind speed data for given 

velocity range.  For example, the fraction of 

the wind speed data between speeds of 0 

and 1 m/s is 0.028747. 

Percent of Wind-Speed Data Between Lower and Upper Velocity Bounds (V in 

m/s) 

Lower Upper Percent Lower Upper Percent Lower Upper Percent 

0 1 2.8747

% 

10 11 4.3213

% 

20 21 0.8028

% 

1 2 9.8109

% 

11 12 4.1559

% 

21 22 0.5310

% 

2 3 10.307

% 

12 13 4.1527

% 

22 23 0.3928

% 

3 4 9.4960

% 

13 14 3.9050

% 

23 24 0.2427
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4 5 8.0058

% 

14 15 4.0583

% 

24 25 0.1476

% 

5 6 6.0967

% 

15 16 3.4830

% 

25 26 0.1102

% 

6 7 5.1868

% 

16 17 3.0287

% 

26 27 0.0716

% 

7 8 4.6691

% 

17 18 2.1695

% 

27 28 0.0310

% 

8 9 4.6374

% 

18 19 1.6005

% 

28 29 0.0114

% 

9 10 4.3865

% 

19 20 1.2489

% 

29  0.0640

% 

The Weibull distribution shown in the figure above was computed using equations [20] and 

[21] to determine the MLE estimators for k and c.  As such this is a “best fit” between the actual 

data and the Weibull distribution. 

We can define the following variables to use for the calculations with discrete data: the lower 

limit on velocity for each band, Vk, and the fraction of the time that the wind velocity occurs in 

a particular band, fk.  In the example above, k ranges from 0 to 29.  The lowest band, k = 0, is 

bounded by a lower V0 = 0 m/s and V1 = 1 m/s; the value of fk for this band is f1 = 0.028747.  

We say that a given band, called band k, extends from velocity Vk to Vk+1 and has the frequency 

(fraction of time the wind speed in in this velocity range) of fk.  Within this band the probability 

of any intermediate wind speed is considered uniform.  This corresponds to a uniform 

probability distribution function (within one band) which is f = 1/(Vk+1 – Vk).  For such a 

probability distribution, the mean velocity within a band is simply the arithmetic average of the 

band boundaries. 
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The mean of the cube of the velocity within a given band is given by the following equation 

(steps of the integration and final algebra not shown). 
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 [37] 

We still have the basic concepts for wind turbine operation: (1) for the time that the wind speed 
is between the cut-in speed and the rated speed the turbine utilizes all the power available in 
the wind; (2) for the time that the wind speed is between the rated speed and the cut-out speed 
the turbine operates at its maximum power.  For discrete data, we have to use a summation 
over the discrete distribution instead of the integration over the continuous probability 
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distribution function to predict the average operating power.  The total time between a lower 
velocity, Vk = VL and an upper velocity, Vk+1 = VU is given by the following equation.  Note that 
the final band is the one in which VU is the upper limit so the appropriate index for this velocity 
is k = U – 1.  This properly counts all the time in the band whose upper limit is VU.  Since VL is 
the lower limit of the band the proper initial index is k = L 
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The total “power” over the same range of speeds is given by the following sum using 
equation [37] for the mean velocity-cubed in a band: 
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We have to consider the general case where any one of the specified wind speeds, generally 
denoted as Vs, which may be the cut-in, rated, or cut-out speed, lies within a band between Vk 
and Vk+1.  The total fraction of time within this band is fk.  This time fraction for the total band 
can be divided into two parts: (1) the time at or below Vs (between Vk and Vs), and (2) the time 
at or above Vs (between Vs and Vk+1), which are given by the following equations. 
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The power in these two parts of the band can be found by applying equation [37] to the two 
velocity ranges within the band. 
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We can now consider the general case where the cut-in speed lies in the band between VCI 
and VCI+1, the rated wind speed lies in the band between VR and VR+1, and the cut-out wind 
speed lies in the band between VCO-1.  Below the rated wind speed the total power is given by 
the following sum; each term in the sum is the product of time in a band (or sub-band) times 
the power in that band (or sub-band). 
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The power between the rated speed and the cut-out speed is given be the following equation, 
which gives the total time between these two speeds times the cube of the rated speed. 
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Both equations [42] and [43] give the mean of the velocity-cubed.  These values must be 

multiplied by the term Acp/2 to give the power.  Summing the results of these two equations 
gives the average expected power over the typical time period for which the data were 
obtained. 

Derivation of Equations Used in Text 

The main part of this appendix contains derivations of formulas for the Weibull and Rayleigh 
distributions.  All the formal derivations are done for the Weibull distribution.  The results for 
the Rayleigh distribution are then found by setting k = 2 in the Weibull distribution results.  At 
the end of the appendix there is a discussion of the gamma function which is used in the 
derivations.  The final item in this appendix is a table giving the fraction of wind power as a 
function of velocity. 

Cumulative Weibull Distribution 

Substituting the Weibull distribution from equation [11] into the definition of the cumulative 
distribution in equation [4] gives the following result for the cumulative Weibull distribution 
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Define a new integration variable, y = (V/c)k.  The limits of the integral V = 0 and V = b become 
y = 0 and y = (b/c)k.  Differentiating the definition of y gives dy = (kVk-1/ck)dV so that dV = 
ck/(kVk-1)dy.  Substituting the definition of y, the new limits and the expression for dV into 
equation [A-1] gives 
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Moments of Weibull distribution 

The computations required for the mean, variance and wind power can be simplified by doing 
a single integration for the moments of the distribution.  The n th moment of any probability 
distribution, f(V) is defined by the equation below. 
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For the Weibull distribution, this moment is given by the following integral; the final 
arrangement of this integral gives a prefactor equal to the exponent (V/c)k. 
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To evaluate this integral we the same integration variable y = (V/c)k that we used in finding the 
cumulative distribution.  Solving this definition for V gives V = cy1/k.  Differentiating this equation 

for V gives dV = (c/k)y1/k-1.  The limits of the integral V = 0 and V =  become y = 0 and y =.  
Substituting the definition of y, the new limits and the expression for dV into the integral in 
equation [A-4] gives a result in the form of a standard integral known as a gamma function, 

(x). 
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 [A-5] 

More information about the gamma function, including values of the function for some 

arguments, a recursion equation that (x+1) = x(x), and the description of Excel and Matlab 

functions to compute (x), is provided later in this appendix. 

With an equation for the general moment, we can find the mean, variance and mean power 
by setting n = 1, 2, and 3, respectively.  Once we have the results for the Weibull distribution, 
we can set k = 2 in those results to obtain the equivalent value for the Rayleigh distribution.  
Our general result is summarized below. 
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Mean of Weibull and Rayleigh distributions 

Substituting the Weibull distribution from equation [11] into the definition of the cumulative 
distribution in equation [6] gives the following result for the mean of the Weibull distribution, 
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From equation [A-6] for the nth moment of a Weibull distribution we can set n = 1 to get the 
mean as value shown below. 
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Setting k = 2 gives the mean value for the Weibull distribution.4 

 
22

3
1

2

1 


















 cccRayleigh  [A-9] 

Variance of Weibull and Rayleigh distributions 

Substituting the Weibull distribution from equation [11] into the definition of the cumulative 
distribution in equation [8] gives the following result for the variance of the Weibull distribution 
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From equation [A-6] for the nth moment of a Weibull distribution we can set n = 2 to get the 
variance as shown below. 
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For the Rayleigh distribution, which is the Weibull distribution with k = 2, we can use the 

known value of (2) = 1 to obtain. 
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Using the expression for the mean of a Rayleigh distribution from equation [A-9] gives 
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Similarly, using the mean of the Weibull distribution from equation [A-8] gives 
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Maximum of Weibull distribution 

The maximum value of a pdf is called the mode or most probable point.  Taking the first 
derivative of the Weibull distribution in equation [11] and setting that derivative to zero gives. 

                                                             
4 Here we use the result that (3/2) = (1/2)(1/2)= and (1/2) = 1/2 to get (3/2) = 1/2/2. 
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We can divide by the factors outside the brackets and rearrange the remaining terms to 
obtain. 
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Solving this equation for V gives the most probable velocity, Vmp. 
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For the Rayleigh distribution, k = 2, the most probable velocity is 
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Wind power integrals 

Equation [22] shows that the mean power in the wind is proportional to the mean of the cube 
of the velocity.  From equation [A-6] for the nth moment of a Weibull distribution we can set n 
= 3 to get this mean for a Weibull distribution. 
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For the Rayleigh distribution we set k = 2 and use the result that (5/2) =31/2/4 to obtain. 
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We can compare this mean of the velocity cubed to the cube of the mean velocity.  Cubing 
both sides of equation [A-9] and dividing the result by equation [A-20] gives the following result 
for a Rayleigh distribution. 
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The fraction of power in the wind between the minimum velocity of zero and a given velocity 
b can be written as follows: 
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The usual substitutions y = (V/c)k, V = cy1/k, dV = (c/k)y1/k-1 can be made here.  The upper 
limit corresponding to V = b is y = (b/c)k.  This gives 
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Substituting equation [A-19] for the mean cubed velocity gives. 
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This integral has no exact form and must be found numerically.  The parameter c and the 
variable v do not occur independently; they only occur in the ratio v/c in the upper limit of the 
integral.  Thus it is possible to compute a table of F[0 ≤ P(V) ≤ P(b)] as a function of b/c for 
specified values of k.  Such a table is given at the end of this appendix. 

Gamma Functions 

The gamma function, (z) is used in various integrals, including probability distribution 
integrals; it is defined by the following equation. 
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We can derive a general recurrence relationship for gamma function values whose argument 
increases by one using integration by parts with u = tz-1 and dv = e-tdt. 
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This recurrence relation is commonly written as follows. 

    zzz  1  [A-27] 

For z = 1 the evaluation of the gamma function is simply the integral of e-z. 
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Using this result and the recurrence relation that (z+1) = z(z) gives (2) = 1(1) = (1)(1) = 

1; (3) = 2(2) = (2)(1) = 2; (4) = 3(3) = (3)(2) = 6.  We see that there is a general relationship 
for positive integers, n. 

    !1 nn  [A-29] 

We will state without proof the following result that can be obtained using contour integration 
for complex variables. 
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Using the recurrence relationship from equation [A-10] gives the following results: 
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Matlab has a function gamma(x) that can be used to compute the gamma function.  The Excel 
spreadsheet has a function GAMMALN(x) than can be used to compute the natural logarithm 

of (x).  Use the worksheet formula “= exp(gammaln(x))” to compute (x) in Excel.  The plot 
of the gamma function shown below was developed in Excel. 
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The plot shows some of the values that we have already computed: (1) = (2) = 1 and (3) 
= 2.  The gamma function is seen to be continuous and positive for positive values of its 
argument, going to infinity as the (positive) argument approaches zero or infinity.  The gamma 
function is discontinuous at negative integer values.  Depending on the direction in which the 

interer value is approached, the value of (x) approaches plus or minus infinity as the integer 
value is approached. 

An abridged table of gamma functions is shown on the next page.  This table gives values for 

(x) for 0 < x < 1.  Recall that the general recursion formula for gamma functions in equation 

[A-27] allows us to compute (x+1) = x(x).  We could use the table value for (0.16) and the 

this recursion formula to compute the gamma function for x = 3.16 as follows: (3.16) = 

2.16(2.16) = (2.16)(1.16)(1.16) = (2.16)(1.16)(0.16)(0.16) = (2.16)(1.16)(0.16)(5.81127) = 
2.32971.  This calculation procedure can be used with the gamma-function table below for 
moments of the Weibull distribution which are given in terms of gamma functions. 

Abridged Table of Gamma Functions 

x (x) x (x) x (x) 
0.01 99.4325

9 

0.16 5.8112

7 

0.40 2.218160 

0.02 49.4422

1 

0.18 5.1318

2 

0.45 1.968136 
0.03 32.7850

0 

0.20 4.5908

4 

0.50 1.772454 

0.04 24.4609

6 

0.22 4.1504

8 

0.55 1.616124 

0.05 19.4700

9 

0.24 3.7855

0 

0.60 1.489192 

0.06 16.1457

3 

0.26 3.4784

5 

0.65 1.384795 

0.07 13.7736

0 

0.28 3.2168

5 

0.70 1.298055 

0.08 11.9965

7 

0.30 2.9915

7 

0.75 1.225417 

0.09 10.6162

2 

0.32 2.7957

5 

0.80 1.164230 

0.10 9.51351 0.34 2.6241

6 

0.85 1.112484 

0.11 8.61269 0.36 2.4727

3 

0.90 1.068629 

0.12 7.86325 0.38 2.3382

6 

0.95 1.031453 

0.13 7.23024 For x outside the range (0, 1) you use 

the relationship that (x+1) = x(x) 0.14 6.68869 
 

Table of Cumulative Wind Power Distribution Fractions 

The table of cumulative wind power fractions, shown below, is used to determine the fraction 
of the total power in the wind that is between two wind speeds V1 and V2.  To use this table 
you first compute V1/c and V2/c and find the table entries for these values of V/c at the k value 
for your wind speed distribution.  If F1 and F2 are the cumulative distribution values from the 
table corresponding to V1/c and V2/c (with F2 > F1) then the fraction of the total wind power 
between these two velocities is given by the difference between F2 and F1 multiplied by the 
total power in the wind given by a combination of equations [22] and [23].  

 







  1

3

22
)()()(

33max

min
k

AcVA
dVVfVPVP

V

V


 [A-32] 

The average wind power between V1 and V2 is then given by the following equation. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

36 | P a g e  
 

   







 1

3

2
)(

3

1221
k

Ac
FFVVVP


 [A-33] 

The procedure outlined above for computing gamma functions can be used here. 

Fraction of Wind Power Between V = 0 and Given V 

V/c 
Fraction for Following Values of k 

k = 1.4 k = 1.6 k = 1.8 k = 2 k = 2.2 k = 2.4 

0.00 0 0 0 0 0 0 
0.05 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.10 0.000005 0.000005 0.000004 0.000003 0.000002 0.000002 

0.15 0.000031 0.000030 0.000027 0.000022 0.000018 0.000014 

0.20 0.000108 0.000112 0.000106 0.000094 0.000079 0.000065 

0.25 0.000280 0.000305 0.000303 0.000281 0.000250 0.000215 

0.30 0.000604 0.000687 0.000709 0.000686 0.000634 0.000567 

0.35 0.001151 0.001355 0.001448 0.001448 0.001385 0.001281 

0.40 0.002000 0.002425 0.002668 0.002750 0.002708 0.002579 

0.45 0.003235 0.004025 0.004545 0.004809 0.004861 0.004753 

0.50 0.004948 0.006295 0.007273 0.007877 0.008149 0.008156 

0.55 0.007229 0.009380 0.011060 0.012227 0.012916 0.013200 
0.60 0.010169 0.013427 0.016118 0.018147 0.019530 0.020338 

0.65 0.013856 0.018575 0.022654 0.025925 0.028369 0.030047 

0.70 0.018369 0.024959 0.030868 0.035837 0.039800 0.042794 

0.75 0.023784 0.032697 0.040936 0.048133 0.054158 0.059017 

0.80 0.030166 0.041893 0.053010 0.063024 0.071728 0.079088 

0.85 0.037569 0.052630 0.067210 0.080672 0.092725 0.103285 

0.90 0.046036 0.064971 0.083615 0.101180 0.117277 0.131769 

0.95 0.055600 0.078952 0.102268 0.124585 0.145414 0.164557 

1.00 0.066279 0.094589 0.123163 0.150855 0.177061 0.201517 

1.05 0.078082 0.111870 0.146256 0.179887 0.212033 0.242361 
1.10 0.091003 0.130760 0.171457 0.211508 0.250044 0.286651 

1.15 0.105026 0.151202 0.198636 0.245483 0.290712 0.333812 

1.20 0.120122 0.173115 0.227629 0.281520 0.333573 0.383162 

1.25 0.136255 0.196401 0.258236 0.319279 0.378098 0.433935 

1.30 0.153376 0.220943 0.290233 0.358382 0.423715 0.485322 

1.35 0.171430 0.246610 0.323375 0.398430 0.469830 0.536504 

1.40 0.190353 0.273260 0.357401 0.439009 0.515849 0.586691 

1.45 0.210074 0.300740 0.392043 0.479706 0.561197 0.635151 

1.50 0.230519 0.328893 0.427029 0.520117 0.605340 0.681244 

1.55 0.251609 0.357557 0.462093 0.559861 0.647801 0.724440 
1.60 0.273260 0.386569 0.496975 0.598588 0.688167 0.764331 

1.65 0.295387 0.415769 0.531431 0.635986 0.726106 0.800640 

1.70 0.317906 0.445000 0.565233 0.671782 0.761365 0.833217 

1.75 0.340729 0.474112 0.598174 0.705755 0.793773 0.862034 

1.80 0.363773 0.502961 0.630071 0.737728 0.823238 0.887166 

1.85 0.386953 0.531415 0.660764 0.767575 0.849741 0.908779 

1.90 0.410188 0.559351 0.690123 0.795214 0.873330 0.927108 

1.95 0.433400 0.586656 0.718039 0.820610 0.894105 0.942437 

2.00 0.456514 0.613231 0.744433 0.843764 0.912215 0.955080 

2.05 0.479458 0.638988 0.769248 0.864717 0.927840 0.965365 
2.10 0.502166 0.663854 0.792453 0.883537 0.941185 0.973617 

2.15 0.524576 0.687766 0.814037 0.900318 0.952468 0.980147 

2.20 0.546630 0.710674 0.834009 0.915173 0.961913 0.985244 

2.25 0.568276 0.732539 0.852395 0.928230 0.969742 0.989168 

2.30 0.589468 0.753336 0.869238 0.939627 0.976167 0.992147 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

37 | P a g e  
 

Fraction of Wind Power Between V = 0 and Given V 

V/c 
Fraction for Following Values of k 

k = 1.4 k = 1.6 k = 1.8 k = 2 k = 2.2 k = 2.4 

2.35 0.610161 0.773048 0.884592 0.949505 0.981389 0.994378 

2.40 0.630321 0.791669 0.898521 0.958009 0.985592 0.996026 

2.45 0.649913 0.809201 0.911098 0.965281 0.988942 0.997226 

2.50 0.668912 0.825655 0.922402 0.971457 0.991586 0.998089 

2.55 0.687294 0.841048 0.932515 0.976668 0.993653 0.998700 
2.60 0.705043 0.855406 0.941523 0.981036 0.995254 0.999127 

2.65 0.722143 0.868757 0.949511 0.984674 0.996482 0.999422 

2.70 0.738586 0.881135 0.956564 0.987684 0.997415 0.999622 

2.75 0.754365 0.892580 0.962764 0.990159 0.998117 0.999756 

2.80 0.769479 0.903130 0.968193 0.992181 0.998640 0.999845 

2.85 0.783929 0.912830 0.972925 0.993822 0.999027 0.999903 

2.90 0.797719 0.921724 0.977034 0.995146 0.999310 0.999940 

2.95 0.810855 0.929856 0.980586 0.996208 0.999515 0.999963 

3.00 0.823348 0.937274 0.983646 0.997054 0.999662 0.999978 

3.05 0.835208 0.944021 0.986271 0.997724 0.999766 0.999987 
3.10 0.846449 0.950144 0.988514 0.998251 0.999840 0.999993 

3.15 0.857086 0.955686 0.990423 0.998664 0.999892 0.999996 

3.20 0.867136 0.960691 0.992041 0.998985 0.999927 0.999998 

3.25 0.876616 0.965198 0.993409 0.999233 0.999952 0.999999 

3.30 0.885546 0.969249 0.994559 0.999424 0.999968 1.000000 

3.35 0.893944 0.972881 0.995524 0.999570 0.999979 1.000000 

3.40 0.901832 0.976130 0.996330 0.999680 0.999987 1.000000 

3.45 0.909229 0.979030 0.997000 0.999764 0.999992 1.000000 

3.50 0.916156 0.981612 0.997556 0.999826 0.999995 1.000000 

3.55 0.922635 0.983906 0.998016 0.999873 0.999997 1.000000 
3.60 0.928686 0.985940 0.998394 0.999908 0.999998 1.000000 

3.65 0.934330 0.987739 0.998704 0.999933 0.999999 1.000000 

3.70 0.939588 0.989328 0.998958 0.999952 1.000000 1.000000 

3.75 0.944480 0.990728 0.999165 0.999966 1.000000 1.000000 

3.80 0.949025 0.991958 0.999333 0.999976 1.000000 1.000000 

3.85 0.953243 0.993037 0.999468 0.999983 1.000000 1.000000 

3.90 0.957154 0.993983 0.999578 0.999988 1.000000 1.000000 

3.95 0.960774 0.994809 0.999666 0.999992 1.000000 1.000000 

4.00 0.964122 0.995529 0.999736 0.999994 1.000000 1.000000 

4.05 0.967214 0.996156 0.999793 0.999996 1.000000 1.000000 
4.10 0.970067 0.996701 0.999837 0.999997 1.000000 1.000000 

4.15 0.972697 0.997173 0.999873 0.999998 1.000000 1.000000 

4.20 0.975118 0.997582 0.999901 0.999999 1.000000 1.000000 

4.25 0.977344 0.997935 0.999923 0.999999 1.000000 1.000000 

4.30 0.979389 0.998240 0.999941 1.000000 1.000000 1.000000 

4.35 0.981266 0.998502 0.999954 1.000000 1.000000 1.000000 

4.40 0.982986 0.998727 0.999965 1.000000 1.000000 1.000000 

4.45 0.984562 0.998920 0.999973 1.000000 1.000000 1.000000 

4.50 0.986003 0.999085 0.999979 1.000000 1.000000 1.000000 

4.55 0.987321 0.999226 0.999984 1.000000 1.000000 1.000000 
4.60 0.988524 0.999347 0.999988 1.000000 1.000000 1.000000 

4.65 0.989621 0.999449 0.999991 1.000000 1.000000 1.000000 

4.70 0.990621 0.999537 0.999993 1.000000 1.000000 1.000000 

4.75 0.991531 0.999611 0.999995 1.000000 1.000000 1.000000 

4.80 0.992360 0.999673 0.999996 1.000000 1.000000 1.000000 

4.85 0.993112 0.999726 0.999997 1.000000 1.000000 1.000000 

4.90 0.993795 0.999771 0.999998 1.000000 1.000000 1.000000 

4.95 0.994415 0.999809 0.999998 1.000000 1.000000 1.000000 
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Fraction of Wind Power Between V = 0 and Given V 

V/c 
Fraction for Following Values of k 

k = 1.4 k = 1.6 k = 1.8 k = 2 k = 2.2 k = 2.4 

5.00 0.994977 0.999841 0.999999 1.000000 1.000000 1.000000 

 

 


