
 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

1 | P a g e  
  

 
 

 

 

 

 

 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

2 | P a g e  
  

Introduction 

Computer Architecture: 

Computer Architecture deals with giving operational attributes of the computer or Processor to be 

specific. It deals with details like physical memory, ISA (Instruction Set Architecture) of the 

processor, the number of bits used to represent the data types, Input Output mechanism and 

technique for addressing memories. 

 

Computer Organization: 

Computer Organization is realization of what is specified by the computer architecture .It deals 

with how operational attributes are linked together to meet the requirements specified by computer 

architecture. Some organizational attributes are hardware details, control signals, peripherals. 

 

Computer Organization Computer Architecture 

 

Often called microarchitecture (low level) 
Computer architecture (a 

bit higher level) 

Transparent from programmer (ex. a programmer does not 

worry much how addition is implemented in hardware) 

Programmer view (i.e. 

Programmer has to be aware 

of which instruction set 

used) 

Physical components (Circuit design, Adders, Signals, 

Peripherals) 

Logic (Instruction set, 

Addressing modes, Data 

types, Cache optimization) 

 

How to do ? (implementation of the architecture) 
What to do ? (Instruction 

set) 

 

 

 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

3 | P a g e  
  

BASIC TERMINOLOGY 

•Input: Whatever is put into a computer system? 

•Data: Refers to the symbols that represent facts, objects, or ideas. 

•Information: The results of the computer storing data as bits and bytes; the words, umbers, sounds, 

and graphics. 

•Output: Consists of the processing results produced by a computer. 

•Processing: Manipulation of the data in many ways. 

•Memory: Area of the computer that temporarily holds data waiting to be processed, stored, or 

output. 

•Storage: Area of the computer that holds data on a permanent basis when it is not immediately 

needed for processing. 

•Assembly language program (ALP) –Programs are written using mnemonics 

•Mnemonic –Instruction will be in the form of English like form 

•Assembler –is a software which converts ALP to MLL (Machine Level Language) 

•HLL (High Level Language) –Programs are written using English like statements 

•Compiler -Convert HLL to MLL, does this job by reading source program at once 

•Interpreter –Converts HLL to MLL, does this job statement by statement 

•System software –Program routines which aid the user in the execution of programs eg: 

Assemblers, Compilers 

•Operating system –Collection of routines responsible for controlling and coordinating all the 

activities in a computer system 

 

 

 

 

 

 

 

 

 

 

 

 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

4 | P a g e  
  

Architecture and function of general computer system 

Functional Unit 

A computer consists of five functionally independent main parts input, memory, arithmetic 

logic unit (ALU), output unit and control unit. 

 

 
 

Functional units of computer 

 

 

Input device accepts the coded information as source program i.e. high level language. 

This is either stored in the memory or immediately used by the processor to perform the desired 

operations. The program stored in the memory determines the processing steps. Basically the 

computer converts one source program to an object program. 

i.e. into machine language. 

 

Finally the results are sent to the outside world through output device. All of these actions 

are coordinated by the control unit. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

5 | P a g e  
  

 

 

 

 

Input unit: - 

The source program/high level language program/coded information/simply data is fed to 

a computer through input devices keyboard is a most common type. Whenever a key is pressed, 

one corresponding word or number is translated into its equivalent binary code over a cable & 

fed either to memory or processor. 

 

Joysticks, trackballs, mouse, scanners etc are other input devices. 

 

 

Memory unit: - 

Its function into store programs and data. It is basically to two types 

1. Primary memory 

2. Secondary memory 

 

Word: 

In computer architecture, a word is a unit of data of a defined bit length that can be addressed and 

moved between storage and the computer processor. Usually, the defined bit length of a word is 

equivalent to the width of the computer's data bus so that a word can be moved in a single operation 

from storage to a processor register. For any computer architecture with an eight-bit byte, the word 

http://searchstorage.techtarget.com/definition/storage
http://searchcio-midmarket.techtarget.com/definition/processor
http://whatis.techtarget.com/definition/register
http://searchstorage.techtarget.com/definition/byte


 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

6 | P a g e  
  

will be some multiple of eight bits. In IBM's evolutionary System/360 architecture, a word is 32 

bits, or four contiguous eight-bit bytes. In Intel's PC processor architecture, a word is 16 bits, or 

two contiguous eight-bit bytes. A word can contain a computer instruction, a storage address, or 

application data that is to be manipulated (for example, added to the data in another word space). 

 

The number of bits in each word is known as word length. Word length refers to the number 

of bits processed by the CPU in one go. With modern general purpose computers, word size can be 

16 bits to 64 bits. 

 

The time required to access one word is called the memory access time. The small, fast, 

RAM units are called caches. They are tightly coupled with the processor and are often contained 

on the same IC chip to achieve high performance. 

 

 
 

 

1. Primary memory: - Is the one exclusively associated with the processor and operates at the 

electronics speeds programs must be stored in this memory while they are being executed. The 

memory contains a large number of semiconductors storage cells. Each capable of storing one bit 

of information. These are processed in a group of fixed site called word. 

To provide easy access to a word in memory, a distinct address is associated with each 

word location. Addresses are numbers that identify memory location. 

http://searchcio-midmarket.techtarget.com/definition/instruction


 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

7 | P a g e  
  

 

Number of bits in each word is called word length of the computer. Programs must reside 

in the memory during execution. Instructions and data can be written into the memory or read out 

under the control of processor. Memory in which any location can be reached in a short and fixed 

amount of time after specifying its address is called random- access memory (RAM). 

 

The time required to access one word in called memory access time. Memory which is only 

readable by the user and contents of which can’t be altered is called read only memory (ROM) it 

contains operating system. 

Caches are the small fast RAM units, which are coupled with the processor and are often 

contained on the same IC chip to achieve high performance. Although primary storage is essential 

it tends to be expensive. 

2 Secondary memory: - Is used where large amounts of data & programs have to be stored, 

particularly information that is accessed infrequently. 

Examples: - Magnetic disks & tapes, optical disks (ie CD-ROM’s), floppies etc., 

 

Arithmetic logic unit (ALU):- 

Most of the computer operators are executed in ALU of the processor like addition, 

subtraction, division, multiplication, etc. the operands are brought into the ALU from memory and 

stored in high speed storage elements called register. Then according to the instructions the 

operation is performed in the required sequence. 

The control and the ALU are may times faster than other devices connected to a computer 

system. This enables a single processor to control a number of external devices such as key boards, 

displays, magnetic and optical disks, sensors and other mechanical controllers. 

Output unit:- 

These actually are the counterparts of input unit. Its basic function is to send the processed 

results to the outside world. 

Examples:- Printer, speakers, monitor etc. 

 

Control unit:- 

It effectively is the nerve center that sends signals to other units and senses their states. The 

actual timing signals that govern the transfer of data between input unit, processor, memory and 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

8 | P a g e  
  

output unit are generated by the control unit. 

 

BASIC OPERATIONAL CONCEPTS 

To perform a given task an appropriate program consisting of a list of instructions is stored in the 

memory. Individual instructions are brought from the memory into the processor, which executes 

the specified operations. Data to be stored are also stored in the memory. 

Examples: - Add LOCA, R0 

This instruction adds the operand at memory location LOCA, to operand in register R0 & 

places the sum into register. This instruction requires the performance of several steps, 

1. First the instruction is fetched from the memory into the processor. 

2. The operand at LOCA is fetched and added to the contents of R0 

3. Finally the resulting sum is stored in the register R0 

The preceding add instruction combines a memory access operation with an ALU Operations. 

In some other type of computers, these two types of operations are performed by separate 

instructions for performance reasons. 

Load LOCA, 

R1 Add R1, R0 

Transfers between the memory and the processor are started by sending the address of the 

memory location to be accessed to the memory unit and issuing the appropriate control signals. The 

data are then transferred to or from the memory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fig shows how memory & the processor can be connected. In addition to the ALU & 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

9 | P a g e  
  

the control circuitry, the processor contains a number of registers used for several different 

purposes. 

 

Register: 

It is a special, high-speed storage area within the CPU. All data must be represented in a 

register before it can be processed. For example, if two numbers are to be multiplied, both numbers 

must be in registers, and the result is also placed in a register. (The register can contain the address 

of a memory location where data is stored rather than the actual data itself.) 

 

 

The number of registers that a CPU has and the size of each (number of bits) help determine 

the power and speed of a CPU. For example a 32-bit CPU is one in which each register is 32 bits 

wide. Therefore, each CPU instruction can manipulate   32   bits   of data. In high-level 

languages, the compiler is responsible for translating high-level operations into low-level 

operations that access registers. 

Instruction Format: 

 

Computer instructions are the basic components of a machine language program. They are also 

known as macro operations, since each one is comprised of sequences of micro operations. 

Each instruction initiates a sequence of micro operations that fetch operands from registers or 

memory, possibly perform arithmetic, logic, or shift operations, and store results in registers or 

memory. 

Instructions are encoded as   binary instruction codes. Each instruction   code   contains   of a 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

10 | P a g e  
  

operation code, or opcode, which designates the overall purpose of the instruction (e.g. add, 

subtract, move, input, etc.). The number of bits allocated for the opcode determined how many 

different instructions the architecture supports. 

In addition to the opcode, many instructions also contain one or more operands, which indicate 

where in registers or memory the data required for the operation is located. For example, and add 

instruction requires two operands, and a not instruction requires one. 

15   12 11          6 5         0 

+-----------------------------------+ 

| Opcode | Operand | Operand | 

+-----------------------------------+ 

 

 

The opcode and operands are most often encoded as unsigned binary numbers in order to minimize 

the number of bits used to store them. For example, a 4-bit opcode encoded as a binary number 

could represent up to 16 different operations. 

The control unit is responsible for decoding the opcode and operand bits in the instruction register, 

and then generating the control signals necessary to drive all other hardware in the CPU to perform 

the sequence of micro operations that comprise the instruction. 

 

 

INSTRUCTION CYCLE: 

 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

11 | P a g e  
  

 

 
 

 

 

The instruction register (IR):- Holds the instructions that are currently being executed. Its output 

is available for the control circuits which generates the timing signals that control the various 

processing elements in one execution of instruction. 

 

The program counter PC:- 

This is another specialized register that keeps track of execution of a program. It 

contains the memory address of the next instruction to be fetched and executed. 

 

Besides IR and PC, there are n-general purpose registers R0 through Rn-1. 

 

 

The other two registers which facilitate communication with memory are: - 

1. MAR – (Memory Address Register):- It holds the address of the location to be 

accessed. 

2. MDR – (Memory Data Register):- It contains the data to be written into or read out of 

the address location. 

 

Operating steps are 

1. Programs reside in the memory & usually get these through the I/P unit. 

2. Execution of the program starts when the PC is set to point at the first instruction of the 

program. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

12 | P a g e  
  

3. Contents of PC are transferred to MAR and a Read Control Signal is sent to the 

memory.After the time required to access the memory elapses, the address word is read out 

of the memory and loaded into the MDR. 

4. Now contents of MDR are transferred to the IR & now the instruction is ready to be 

decoded and executed. 

5. If the instruction involves an operation by the ALU, it is necessary to obtain the required 

operands. 

6. An operand in the memory is fetched by sending its address to MAR & Initiating a read 

cycle. 

7. When the operand has been read from the memory to the MDR, it is transferred from 

MDR to the ALU. 

8. After one or two such repeated cycles, the ALU can perform the desired operation. 

9. If the result of this operation is to be stored in the memory, the result is sent to MDR. 

10. Address of location where the result is stored  is sent to MAR  & a write cycle is initiated. 

11. The contents of PC are incremented so that PC points to the next instruction that is to be 

executed. 

 

Normal execution of a program may be preempted (temporarily interrupted) if some 

devices require urgent servicing, to do this one device raises an Interrupt signal. An interrupt is a 

request signal from an I/O device for service by the processor. The processor provides the 

requested service by executing an appropriate interrupt service routine. 

 

The Diversion may change the internal stage of the processor its state must be saved in the 

memory location before interruption. When the interrupt-routine service is completed the state of 

the processor is restored so that the interrupted program may continue 

 

 

 

THE VON NEUMANN ARCHITECTURE 

 

 

The task of entering and altering programs for the ENIAC was extremely tedious. The 

programming process can be easy if the program could be represented in a form suitable for storing 

in memory alongside the data. Then, a computer could get its instructions by reading them from 

memory, and a program could be set or altered by setting the values of a portion of memory. This 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

13 | P a g e  
  

idea is known a the stored-program concept. The first publication of the idea 

was in a 1945 proposal by von Neumann for a new computer, the EDVAC (Electronic Discrete 

Variable Computer). 

 

In 1946, von Neumann and his colleagues began the design of a new stored-program 

computer, referred to as the IAS computer, at the Princeton Institute for Advanced Studies. The 

IAS computer, although not completed until 1952, is the prototype of all subsequent general-

purpose computers. 

 

 

 

 

It consists of 

 A main memory, which stores both data and instruction 

 An arithmetic and logic unit (ALU) capable of operating on binary data 

 A control unit, which interprets the instructions in memory and causes them to be 

executed 

 Input and output (I/O) equipment operated by the control unit 

 

 

 

 

 

 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

14 | P a g e  
  

BUS STRUCTURES: 

 

 

Bus structure and multiple bus structures are types of bus or computing. A bus is basically a 

subsystem which transfers data between the components of Computer components either within a 

computer or between two computers. It connects peripheral devices at the same time. 

 

 

- A multiple Bus Structure has multiple inter connected service integration buses and for each bus 

the other buses are its foreign buses. A Single bus structure is very simple and consists of a single 

server. 

 

- A bus cannot span multiple cells. And each cell can have more than one buses. - Published 

messages are printed on it. There is no messaging engine on Single bus structure 

I) In single bus structure all units are connected in the same bus than connecting different buses 

as multiple bus structure. 

II) Multiple bus structure's performance is better than single bus structure. Iii)single bus 

structure's cost is cheap than multiple bus structure. 

 

Group of lines that serve as connecting path for several devices is called a bus (one bit per line). 

Individual parts must communicate over a communication line or path for exchanging data, 

address and control information as shown in the diagram below. Printer example – processor to 

printer. A common approach is to use the concept of buffer registers to hold the content during the 

transfer. 

 

 

 

Buffer registers hold the data during the data transfer temporarily. Ex: printing 

 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

15 | P a g e  
  

 

Types of Buses: 

1. Data Bus: 

Data bus is the most common type of bus. It is used to transfer data between different components 

of computer. The number of lines in data bus affects the speed of data transfer between different 

components. The data bus consists of 8, 16, 32, or 64 lines. A 64-line data bus can transfer 64 bits 

of data at one time. 

The data bus lines are bi-directional. It means that: 

CPU can read data from memory using these lines CPU can write data to memory locations using 

these lines 

 

2. Address Bus: 

Many components are connected to one another through buses. Each component is assigned a 

unique ID. This ID is called the address of that component. It a component wants to communicate 

with another component, it uses address bus to specify the address of that component. The address 

bus is a unidirectional bus. It can carry information only in one direction. It carries address of 

memory location from microprocessor to the main memory. 

 

3. Control Bus: 

Control bus is used to transmit different commands or control signals from one component to 

another component. Suppose CPU wants to read data from main memory. It will use control is also 

used to transmit control signals like ASKS (Acknowledgement signals). A control signal contains 

the following: 

1 Timing information: It specifies the time for which a device can use data and address bus. 

2 Command   Signal:   It    specifies    the    type    of    operation    to    be    performed. Suppose 

that CPU gives a command to the main memory to write data. The memory sends 

acknowledgement signal to CPU after writing the data successfully. CPU receives the signal and 

then moves to perform some other action. 

SOFTWARE 

If a user wants to enter and run an application program, he/she needs a System Software. System 

Software is a collection of programs that are executed as needed to perform functions such as: 

 

• Receiving and interpreting user commands 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

16 | P a g e  
  

• Entering and editing application programs and storing then as files in secondary storage 

devices 

• Running standard application programs such as word processors, spread sheets, games etc… 

Operating system - is key system software component which helps the user to exploit the below 

underlying hardware with the programs.Types of software 

A layer structure showing where Operating System is located on generally used software systems 

on desktops 

 

PERFORMANCE 

The most important measure of the performance of a computer is how quickly it can 

execute programs. The speed with which a computer executes program is affected by the design of 

its hardware. For best performance, it is necessary to design the compiles, the machine instruction 

set, and the hardware in a coordinated way. 

 

The total time required to execute the program is elapsed time is a measure of the 

performance of the entire computer system. It is affected by the speed of the processor, the disk 

and the printer. The time needed to execute a instruction is called the processor time. 

 

Just as the elapsed time for the execution of a program depends on all units in a computer 

system, the processor time depends on the hardware involved in the execution of individual 

machine instructions. This hardware comprises the processor and the memory which are usually 

connected by the bus as shown in the fig c. 

 

The pertinent parts of the fig. c are repeated in fig. d which includes the cache memory as 

part of the processor unit. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

17 | P a g e  
  

Let us examine the flow of program instructions and data between the memory and the 

processor. At the start of execution, all program instructions and the required data are stored in the 

main memory. As the execution proceeds, instructions are fetched one by one over the bus into the 

processor, and a copy is placed in the cache later if the same instruction or data item is needed a 

second time, it is read directly from the cache. 

 

The processor and relatively small cache memory can be fabricated on a single IC chip. 

The internal speed of performing the basic steps of instruction processing on chip is very high and 

is considerably faster than the speed at which the instruction and data can be fetched from the main 

memory. A program will be executed faster if the movement of instructions and data between the 

main memory and the processor is minimized, which is achieved by using the cache. 

 

For example:- Suppose a number of instructions are executed repeatedly over a short period of 

time as happens in a program loop. If these instructions are available in the cache, they can be 

fetched quickly during the period of repeated use. The same applies to the data that are used 

repeatedly. 

Processor clock: - 

Processor circuits are controlled by a timing signal called clock. The clock designer the 

regular time intervals called clock cycles. To execute a machine instruction the processor divides 

the action to be performed into a sequence of basic steps that each step can be completed in one 

clock cycle. The length P of one clock cycle is an important parameter that affects the processor 

performance. 

Processor used in today’s personal computer and work station have a clock rates that range 

from a few hundred million to over a billion cycles per second. 

 

Basic performance equation 

We now focus our attention on the processor time component of the total elapsed time. Let 

‘T’ be the processor time required to execute a program that has been prepared in some high-level 

language. The compiler generates a machine language object program thatcorresponds to the 

source program. Assume that complete execution of the program requires the execution of N 

machine cycle language instructions. The number N is the actual number of instruction execution 

and is not necessarily equal to the number of machine cycle instructions in the object program. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

18 | P a g e  
  

Some instruction may be executed more than once, which in the case for instructions inside a 

program loop others may not be executed all, depending on the input data used. 

 

Suppose that the average number of basic steps needed to execute one machine cycle 

instruction is S, where each basic step is completed in one clock cycle. If clock rate is ‘R’ 

cycles per second, the program execution time is given by 

T=N*S/R 

this is often referred to as the basic performance equation. 

 

We must emphasize that N, S & R are not independent parameters changing one may 

affect another. Introducing a new feature in the design of a processor will lead to improved 

performance only if the overall result is to reduce the value of T. 

 

Pipelining and super scalar operation: - 

We assume that instructions are executed one after the other. Hence the value of S is the 

total number of basic steps, or clock cycles, required to execute one instruction. A substantial 

improvement in performance can be achieved by overlapping the execution of successive 

instructions using a technique called pipelining. 

 

Consider Add R1 R2 R3 

This adds the contents of R1 & R2 and places the sum into R3. 

 

 

The contents of R1 & R2 are first transferred to the inputs of ALU. After the addition 

operation is performed, the sum is transferred to R3. The processor can read the next instruction 

from the memory, while the addition operation is being performed. Then of that instruction also 

uses, the ALU, its operand can be transferred to the ALU inputs at the same time that the add 

instructions is being transferred to R3. 

 

In the ideal case if all instructions are overlapped to the maximum degree possible the 

execution proceeds at the rate of one instruction completed in each clock cycle. 

Individual instructions still require several clock cycles to complete. But for the purpose of 

computing T, effective value of S is 1. 

A higher degree of concurrency can be achieved if multiple instructions pipelines are 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

19 | P a g e  
  

implemented in the processor. This means that multiple functional units are used creating parallel 

paths through which different instructions can be executed in parallel with such an arrangement, it 

becomes possible to start the execution of several instructions in every clock cycle. This mode of 

operation is called superscalar execution. If it can be sustained for a long time during program 

execution the effective value of S can be reduced to less than one. But the parallel execution must 

preserve logical correctness of programs that is the results produced must be same as those 

produced by the serial execution of program instructions. Now days many processors are designed 

in this manner. 

 

Clock rate 

These are two possibilities for increasing the clock rate ‘R’. 

1. Improving the IC technology makes logical circuit faster, which reduces the time of 

execution of basic steps. This allows the clock period P, to be reduced and the clock rate R 

to be increased. 

2. Reducing the amount of processing done in one basic step also makes it possible to reduce 

the clock period P. however if the actions that have to be performed by an instructions 

remain the same, the number of basic steps needed may increase. 

Increase in the value ‘R’ that are entirely caused by improvements in IC technology affects 

all aspects of the processor’s operation equally with the exception of the time it takes to access the 

main memory. In the presence of cache the percentage of accesses to the main memory is small. 

Hence much of the performance gain excepted from the use of faster technology can be realized. 

 

 

 

 

 

 

 

 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

20 | P a g e  
  

CISC Vs RISC 

 

Instruction set CISC & RISC:- 

Simple instructions require a small number of basic steps to execute. Complex instructions 

involve a large number of steps. For a processor that has only simple instruction a large number of 

instructions may be needed to perform a given programming task. This could lead to a large value 

of ‘N’ and a small value of ‘S’ on the other hand if individual instructions perform more complex 

operations, a fewer instructions will be needed, leadingto a lower value of N and a larger value 

of S. It is not obvious if one choice is better than the other.But complex instructions combined 

with pipelining (effective value of S ¿ 1) would achieve one best performance. However, it is much 

easier to implement efficient pipelining in processors with simple instruction sets.RISC and CISC 

are computing systems developed for computers. Instruction set or instruction set architecture is the 

structure of the computer that provides commands to the computer to guide the computer for 

processing data manipulation. Instruction set consists of instructions, addressing modes, native data 

types, registers, interrupt, exception handling and memory architecture. Instruction set can be 

emulated in software by using an interpreter or built into hardware of the processor. Instruction Set 

Architecture can be considered as a boundary between the software and hardware. Classification of 

microcontrollers and microprocessors can be done based on the RISC and CISC instruction set 

architecture. 

Comparison between RISC and CISC: 

 

 
RISC CISC 

 

Acronym 
It stands for ‘Reduced 

Instruction Set Computer’. 

It stands for ‘Complex 

Instruction Set Computer’. 

 

Definition 

The RISC processors have a 

smaller set of instructions with few 

addressing nodes. 

The CISC processors have a larger 

set of instructions with many 

addressing nodes. 

 

Memory unit 

It has no memory unit and uses a 

separate hardware to implement 

instructions. 

It has a 

implement 

instructions. 

memory unit to 

complex 

 

Program 
It has a hard-wired unit of 

programming. 

It has a micro-programming unit. 

Design It is a complex complier design. It is an easy complier design. 

https://www.elprocus.com/microcontrollers-types-and-applications/
https://www.elprocus.com/microcontrollers-types-and-applications/


 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

21 | P a g e  
  

 

Calculations 
The calculations are faster and 

precise. 

The calculations are slow and 

precise. 

 

Decoding 
Decoding 

simple. 

of instructions is Decoding of instructions is 

complex. 

Time Execution time is very less. Execution time is very high. 

External 

memory 

It does not require external 

memory for calculations. 

It requires external memory 

for calculations. 

 

Pipelining 
Pipelining does function 

correctly. 

Pipelining does not function 

correctly. 

 

Stalling 
Stalling is mostly reduced in 

processors. 

 

The processors often stall. 

 

Code 

expansion 

Code expansion can be a 

problem. 

Code expansion is not a 

problem. 

Disc space The space is saved. The space is wasted. 

 

 

Applications 

Used in high end applications such 

as video processing, 

telecommunications and image 

processing. 

 

Used in low end applications such 

as security systems, home 

automations, etc. 

 

 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

22 | P a g e  
  

 

 
 

 

 

 

1.8 Performance measurements 

The performance measure is the time taken by the computer to execute a given bench mark. 

Initially some attempts were made to create artificial programs that could be used as bench mark 

programs. But synthetic programs do not properly predict the performance obtained when real 

application programs are run. 

 

A non-profit organization called SPEC- system performance Evaluation Corporation 

selects and publishes bench marks. 

 

The program selected range from game playing, compiler, and data base applications to 

numerically intensive programs in astrophysics and quantum chemistry. In each case, the program 

is compiled under test, and the running time on a real computer is measured. The same program is 

also compiled and run on one computer selected as reference. 

 

The ‘SPEC’ rating is computed as follows. 

SPEC rating = Running time on the reference computer/ Running time on the computer under test 

 

 

 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

23 | P a g e  
  

 

Data Types 
 

Data Representation: 
Registers are made up of flip-flops and flip-flops are two-state devices that can store only 1’s and 
0’s. 
 

There are many methods or techniques which can be used to convert numbers from one base 
to another. We'll demonstrate here the following − 
Decimal to Other Base System 
Other Base System to Decimal 
Other Base System to Non-Decimal 
Shortcut method − Binary to Octal 
Shortcut method − Octal to Binary 
Shortcut method − Binary to Hexadecimal 
Shortcut method − Hexadecimal to Binary Decimal to Other Base System 
Steps 
Step 1 − Divide the decimal number to be converted by the value of the new base. 
Step 2 − Get the remainder from Step 1 as the rightmost digit (least significant digit) of new base 
number. 
Step 3 − Divide the quotient of the previous divide by the new base. 
Step 4 − Record the remainder from Step 3 as the next digit (to the left) of the new base 
number. 
Repeat Steps 3 and 4, getting remainders from right to left, until the quotient becomes zero in 
Step 3. 
The last remainder thus obtained will be the Most Significant Digit (MSD) of the new base number. 
Example − 
Decimal Number: 2910 
Calculating Binary Equivalent − 
 

Step Operation Result Remainder 

Step 1 29 / 2 14 1 

Step 2 14 / 2 7 0 
Step 3 7 / 2 3 1 
Step 4 3 / 2 1 1 
Step 5 1 / 2 0 1 

As mentioned in Steps 2 and 4, the remainders have to be arranged in the reverse order so that 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

24 | P a g e  
  

the first remainder becomes the Least Significant Digit (LSD) and the last remainder becomes the 
Most Significant Digit (MSD). 
Decimal Number − 2910 = Binary Number − 111012. Other Base Systemto Decimal System 
Steps 
Step 1 − Determine the column (positional) value of each digit (this depends on the position of 
the digit and the base of the number system). 
Step 2 − Multiply the obtained column values (in Step 1) by the digits in the corresponding 
columns. 
Step 3 − Sum the products calculated in Step 2. The total is the equivalent value in decimal. 

Step Binary Number Decimal Number 
Step 1 111012 ((1 × 24) + (1 × 23) + (1 × 22) + (0 × 21) + (1 × 20))10 
Step 2 111012 (16 + 8 + 4 + 0 + 1)10 
Step 3 111012 2910 

Example 
Binary Number − 111012 Calculating Decimal Equivalent − 
Binary Number − 111012 = Decimal Number − 2910 Other Base System to Non-Decimal System 
Steps 
Step 1 − Convert the original number to a decimal number (base 10). 
Step 2 − Convert the decimal number so obtained to the new base number. Example 
Octal Number − 258 
Calculating Binary Equivalent − Step 1 − Convert to Decimal 

Step Octal Number Decimal Number 

Step 1 258 ((2 × 81) + (5 × 80))10 

Step 2 258 (16 + 5 )10 

Step 3 258 2110 

Octal Number − 258 = Decimal Number − 2110 

Step 2 − Convert Decimal to Binary 

Step Operation Result Remainder 

Step 1 21 / 2 10 1 

Step 2 10 / 2 5 0 

Step 3 5 / 2 2 1 

Step 4 2 / 2 1 0 

Step 5 1 / 2 0 1 

Decimal Number − 2110 = Binary Number − 101012 

Octal Number − 258 = Binary Number − 101012 

Shortcut method - Binary to Octal 

Steps 

 Step 1 − Divide the binary digits into groups of three (starting from the right). 

 Step 2 − Convert each group of three binary digits to one octal digit. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

25 | P a g e  
  

Example 

Binary Number − 101012 

Calculating Octal Equivalent − 

Step Binary Number Octal Number 

Step 1 101012 010 101 

Step 2 101012 28 58 

Step 3 101012 258 

Binary Number − 101012 = Octal Number − 258 

Shortcut method - Octal to Binary 

Steps 

 Step 1 − Convert each octal digit to a 3 digit binary number (the octal digits may be 

treated as decimal for this conversion). 

 Step 2 − Combine all the resulting binary groups (of 3 digits each) into a single binary 

number. 

Example Octal Number − 258 

Calculating Binary Equivalent − 

 

Step Octal Number Binary Number 

Step 1 258 210 510 

Step 2 258 0102 1012 

Step 3 258 0101012 

Octal Number − 258 = Binary Number − 101012 

Shortcut method - Binary to Hexadecimal 

Steps 

 Step 1 − Divide the binary digits into groups of four (starting from the right). 

 Step 2 − Convert each group of four binary digits to one hexadecimal symbol. 

Example Binary Number − 101012 

Calculating hexadecimal Equivalent − 

Step Binary Number Hexadecimal Number 

Step 1 101012 0001 0101 

Step 2 101012 110 510 

Step 3 101012 1516 

   



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

26 | P a g e  
  

 

Binary Number − 101012 = Hexadecimal Number − 1516 

Shortcut method - Hexadecimal to Binary 

Steps 

 Step 1 − Convert each hexadecimal digit to a 4 digit binary number (the hexadecimal 

digits may be treated as decimal for this conversion). 

 Step 2 − Combine all the resulting binary groups (of 4 digits each) into a single binary 

number. 

Example 

Hexadecimal Number − 1516 

Calculating Binary Equivalent − 

Step Hexadecimal Number Binary Number 

Step 1 1516 110 510 

Step 2 1516 00012 01012 

Step 3 1516 000101012 

Hexadecimal Number − 1516 = Binary Number − 101012 

 

Binary Coded Decimal (BCD) code 

In this code each decimal digit is represented by a 4-bit binary number. BCD is a way to express 

each of the decimal digits with a binary code. In the BCD, with four bits we can represent sixteen 

numbers (0000 to 1111). But in BCD code only first ten of these are used (0000 to 1001). The 

remaining six code combinations i.e. 1010 to 1111 are invalid in BCD. 

 

Advantages of BCD Codes 

 It is very similar to decimal system. 

 We need to remember binary equivalent of decimal numbers 0 to 9 only. 

Disadvantages of BCD Codes 

 The addition and subtraction of BCD have different rules. 

 The BCD arithmetic is little more complicated. 

 BCD needs more number of bits than binary to represent the decimal number. So BCD is 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

27 | P a g e  
  

less efficient than binary. 

Alphanumeric codes 

A binary digit or bit can represent only two symbols as it has only two states '0' or '1'. But this is 

not enough for communication between two computers because there we need many more 

symbols for communication. These symbols are required to represent 26 alphabets with capital and 

small letters, numbers from 0 to 9, punctuation marks and other symbols. 

 

The alphanumeric codes are the codes that represent numbers and alphabetic characters. 

Mostly such codes also represent other characters such as symbol and various instructions 

necessary for conveying information. An alphanumeric code should at least represent 10 digits and 

26 letters of alphabet i.e. total 36 items. The following three alphanumeric codes are very 

commonly used for the data representation. 

 American Standard Code for Information Interchange (ASCII). 

 Extended Binary Coded Decimal Interchange Code (EBCDIC). 

 Five bit Baudot Code. 

ASCII code is a 7-bit code whereas EBCDIC is an 8-bit code. ASCII code is more commonly used 

worldwide while EBCDIC is used primarily in large IBM computers. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

28 | P a g e  
  

 

Computer Arithmetic-Multiplication, Division 
Complements are used in the digital computers in order to simplify the subtraction operation and 
for the logical manipulations. For each radix-r system (radix r represents base of number system) 
there are two types of complements. 
S.N. Complement Description 
1 Radix Complement The radix complement is referred to as the r's complement 
2 Diminished Radix Complement The diminished radix complement is referred to as the 
(r-1)'s complement 
  
 

Binary system complements 

As the binary system has base r = 2. So the two types of complements for the binary system are 2's 

complement and 1's complement. 

 

1's complement 

The 1's complement of a number is found by changing all 1's to 0's and all 0's to 1's. This is called as 

taking complement or 1's complement. Example of 1's Complement is as follows. 

 
2's complement 

The 2's complement of binary number is obtained by adding 1 to the Least Significant Bit (LSB) of 

1's complement of the number. 

2's complement = 1's complement + 1 Example of 2's Complement is as follows.

 
 

Binary Arithmetic 
Binary arithmetic is essential part of all the digital computers and many other digital system. 
Binary Addition 
It is a key for binary subtraction, multiplication, division. There are four rules of binary 
addition. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

29 | P a g e  
  

 
 
In fourth case, a binary addition is creating a sum of (1 + 1 = 10) i.e. 0 is written in the given 
column and a carry of 1 over to the next column. 
 
Example − Addition 

 
Binary Subtraction 
Subtraction and Borrow, these two words will be used very frequently for the binary 
subtraction. There are four rules of binary subtraction. 

 
 
Example − Subtraction 

 

 

Binary Multiplication 

 

Binary multiplication is similar to decimal multiplication. It is simpler than decimal multiplication 

because only 0s and 1s are involved. There are four rules of binary multiplication. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

30 | P a g e  
  

 

 

Example − Multiplication 

 

Binary Division 

Binary division is similar to decimal division. It is called as the long division procedure. 

Example − Division 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Subtraction by 1’s Complement 

 

In subtraction by 1’s complement we subtract two binary numbers using carried by 1’s 

complement. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

31 | P a g e  
  

The steps to be followed in subtraction by 1’s complement are: 

 

i) To write down 1’s complement of the subtrahend. 

 

ii) To add this with the minuend. 

 

iii) If the result of addition has a carry over then it is dropped and an 1 is added in the last bit. 

 

iv) If there is no carry over, then 1’s complement of the result of addition is obtained to get the 

final result and it is negative. 

 

Evaluate: 

 

(i) 110101 – 100101 

 

Solution: 

 

1’s complement of 10011 is 011010. Hence 

Minued - 1 1 0 1 0 1 

1’s complement of subtrahend - 0 1 1 0 1 0 

Carry over - 1 0 0 1 1 1 1 

 

   1 

0 1 0 0 0 0 

The required difference is 10000 

(ii) 101011 – 111001 

 

Solution: 

 

1’s complement of 111001 is 000110. Hence 

 

Minued - 1 0 1 0 1 1 

 

1’s complement - 0 0 0 1 1 0 

 

1 1 0 0 0 1 

 

 

Hence the difference is – 1 1 1 0 

 

 

(iii) 1011.001 – 110.10 

 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

32 | P a g e  
  

Solution: 

 

1’s complement of 0110.100 is 1001.011 Hence 

 

Minued - 1 0 1 1 . 0 0 1 

 

1’s complement of subtrahend - 1 0 0 1 . 0 1 1 

 

Carry over - 1 0 1 0 0 . 1 0 0 

  1 

 
0 1 0 0 . 1 0 1 
Hence the required difference is 100.101 

 

 

(iv) 10110.01 – 11010.10 

 

Solution: 

 

1’s complement of 11010.10 is 00101.01 

 

1 0 1 1 0 . 0 1 

 

  0 0 1 0 1 . 0 1 

 

1 1 0 1 1 . 1 0 

 

 

Hence the required difference is – 00100.01 i.e. – 100.01 

 

 

 

Subtraction by 2’s Complement 

 

With the help of subtraction by 2’s complement method we can easily subtract two binary 

numbers. 

 

The operation is carried out by means of the following steps: 

 

(i) At first, 2’s complement of the subtrahend is found. 

 

(ii) Then it is added to the minuend. 

 

(iii) If the final carry over of the sum is 1, it is dropped and the result is positive. 

 

(iv) If there is no carry over, the two’s complement of the sum will be the result and it is 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

33 | P a g e  
  

negative. 

 

The following examples on subtraction by 2’s complement will make the procedure clear: 

 

Evaluate: 

 

(i) 110110 - 10110 

 

Solution: 

 

The numbers of bits in the subtrahend is 5 while that of minuend is 6. We make the number of bits 

in the subtrahend equal to that of minuend by taking a `0’ in the sixth place of the subtrahend. 

 

Now, 2’s complement of 010110 is (101101 + 1) i.e.101010. Adding this with the minuend. 

1 1 0 1 1 0 Minuend 

 

1 0 1 0 1 0 2’s complement of subtrahend 

Carry over 1 1 0 0 0 0 0 Result of addition 

 

 

After dropping the carry over we get the result of subtraction to be 100000. 

 

 

(ii) 10110 – 11010 

 

Solution: 

 

2’s complement of 11010 is (00101 + 1) i.e. 00110. Hence 

Minued - 1 0 1 1 0 

2’s complement of subtrahend - 0 0 1 1 0  

Result of addition - 1 1 1 0 0 

 

 

As there is no carry over, the result of subtraction is negative and is obtained by writing the 2’s 

complement of 11100 i.e.(00011 + 1) or 00100. 

 

Hence the difference is – 100. 

 

 

(iii) 1010.11 – 1001.01 

 

Solution: 

 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

34 | P a g e  
  

2’s complement of 1001.01 is 0110.11. Hence 

 

Minued - 1 0 1 0 . 1 1 

 

2’s complement of subtrahend - 0 1 1 0 . 1 1 

 

Carry over 1 0 0 0 1 . 1 0 
After dropping the carry over we get the result of subtraction as 1.10. 
 

 

(iv) 10100.01 – 11011.10 

 

Solution: 

 

2’s complement of 11011.10 is 00100.10. Hence 

Minued - 1 0 1 0 0 . 0 1 

2’s complement of subtrahend - 0 1 1 0 0 . 1 0  

Result of addition - 1 1 0 0 0 . 1 1 

As there is no carry over the result of subtraction is negative and is obtained by writing the 2’s 

complement of 11000.11. 

Hence the required result is – 00111.01. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

35 | P a g e  
  

Error  Detection &  Correction 

Error is a condition when the output information does not match with the input information. During 

transmission, digital signals suffer from noise that can introduce errors in the binary bits travelling 

from one system to other. That means a 0 bit may change to 1 or a 1 bit may change to 0. 

 

 

Error-Detectingcodes 

Whenever a message is transmitted, it may get scrambled by noise or data may get corrupted. To 

avoid this, we use error-detecting codes which are additional data added to a given digital message 

to help us detect if an error occurred during transmission of the message. A simple example of 

error-detecting code is parity check. 

 

Error-Correctingcodes 

Along with error-detecting code, we can also pass some data to figure out the original message 

from the corrupt message that we received. This type of code is called an error- correcting code. 

Error-correcting codes also deploy the same strategy as error-detecting codes but additionally, 

such codes also detect the exact location of the corrupt bit. 

In error-correcting codes, parity check has a simple way to detect errors along with a sophisticated 

mechanism to determine the corrupt bit location. Once the corrupt bit is located, its value is 

reverted (from 0 to 1 or 1 to 0) to get the original message. 

 

Howto Detectand Correct Errors? 

To detect and correct the errors, additional bits are added to the data bits at the time of 

transmission. 

 The additional bits are called parity bits. They allow detection or correction of the errors. 

 The data bits along with the parity bits form a code word. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

36 | P a g e  
  

Parity Checking of Error Detection 

It is the simplest technique for detecting and correcting errors. The MSB of an 8-bits word is used 

as the parity bit and the remaining 7 bits are used as data or message bits. The parity of 8-bits 

transmitted word can be either even parity or odd parity. 

 

Even parity -- Even parity means the number of 1's in the given word including the parity bit 

should be even (2,4,6, ). 

Odd parity -- Odd parity means the number of 1's in the given word including the parity bit 

should be odd (1,3,5, ). 

 

Useof Parity Bit 

The parity bit can be set to 0 and 1 depending on the type of the parity required. 

 For even parity, this bit is set to 1 or 0 such that the no. of "1 bits" in the entire word is 

even. Shown in fig. (a). 

 For odd parity, this bit is set to 1 or 0 such that the no. of "1 bits" in the entire word is odd. 

Shown in fig. (b). 

 
 

 

How Does Error Detection Take Place? 

Parity checking at the receiver can detect the presence of an error if the parity of the receiver signal 

is different from the expected parity. That means, if it is known that the parity of the transmitted 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

37 | P a g e  
  

signal is always going to be "even" and if the received signal has an odd parity, then the receiver 

can conclude that the received signal is not correct. If an error is detected, 

then the receiver will ignore the received byte and request for retransmission of the same byte to 

the transmitter. 

 

 

 

Instruction Codes 

Computer instructions are the basic components of a machine language program. They are also 

known as macro operations, since each one is comprised of sequences of micro operations. Each 

instruction initiates a sequence of micro operations that fetch operands from registers or memory, 

possibly perform arithmetic, logic, or shift operations, and store results in registers or memory. 

 

Instructions are encoded as binary instruction codes. Each instruction code contains of a 

operation code, or opcode, which designates the overall purpose of the instruction (e.g. add, 

subtract, move, input, etc.). The number of bits allocated for the opcode determined how many 

different instructions the architecture supports. 

 

In addition to the opcode, many instructions also contain one or more operands, which 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

38 | P a g e  
  

indicate where in registers or memory the data required for the operation is located. For example, 

and add instruction requires two operands, and a not instruction requires one. 

15 12 11 6 5 0 

+-----------------------------------+ 

| Opcode | Operand | Operand | 

+-----------------------------------+ 

 

 

The opcode and operands are most often encoded as unsigned binary numbers in order to minimize 

the number of bits used to store them. For example, a 4-bit opcode encoded as a binary number 

could represent up to 16 different operations. 

 

The control unit is responsible for decoding the opcode and operand bits in the instruction 

register, and then generating the control signals necessary to drive all other hardware in the 

CPU to perform the sequence of microoperations that comprise the instruction. 

 

Basic Computer Instruction Format: 

The Basic Computer has a 16-bit instruction code similar to the examples described above. It 

supports direct and indirect addressing modes. 

How many bits are required to specify the addressing mode? 

15 14 12 11 0 

+------------------+ 

| I | OP | ADDRESS | 

+------------------+ 

I = 0: direct 

I = 1: indirect 

 

 

Computer Instructions 

All Basic Computer instruction codes are 16 bits wide. There are 3 instruction code formats: 

Memory-reference instructions take a single memory address as an operand, and have the 

format: 

15 14 12 11 0 

+-------------------+ 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

39 | P a g e  
  

| I | OP | Address | 

+-------------------+ 

 

 

If I = 0, the instruction uses direct addressing. If I = 1, addressing in indirect. How many 

memory-reference instructions can exist? 

 

Register-reference instructions operate solely on the AC register, and have the following format: 

15 14 12 11 0 

+------------------+ 

| 0 | 111 | OP | 

+------------------+ 

 

 

How many register-reference instructions can exist? How many memory- reference 

instructions can coexist with register-reference instructions? 

 

Input/output instructions have the following format: 15 14 12 

11 0 

+------------------+ 

| 1 | 111 | OP | 

+------------------+ 

 

 

How many I/O instructions can exist? How many memory-reference 

instructions can coexist with register-reference and I/O instructions? 

 

Timing and Control 

All sequential circuits in the Basic Computer CPU are driven by a master clock, with the exception 

of the INPR register. At each clock pulse, the control unit sends control signals to control inputs of 

the bus, the registers, and the ALU. 

 

Control unit design and implementation can be done by two general methods: 

 A hardwired control unit is designed from scratch using traditional digital logic design 

techniques to produce a minimal, optimized circuit. In other words, the control unit is like 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

40 | P a g e  
  

an ASIC (application-specific integrated circuit). 

 A micro-programmed control unit is built from some sort of ROM. The desired control 

signals are simply stored in the ROM, and retrieved in sequence to drive the micro 

operations needed by a particular instruction. 

 

Micro programmed control: 

Micro programmed control is a control mechanism to generate control signals by using a memory 

called   control   storage   (CS),   which   contains   the   control signals. Although micro 

programmed control seems to be advantageous to CISC machines, since CISC requires systematic 

development of sophisticated control signals, there is no intrinsic difference between these 2 

control mechanisms. 

 

Hard-wired control: 

Hardwired control is a control mechanism to generate control signals by using appropriate finite 

state machine (FSM). The pair of "microinstruction-register" and "control storage address register" 

can be regarded as a "state register" for the hardwired control. Note that the control storage can be 

regarded as a kind of combinational logic circuit. We can assign any 0, 1 values to each output 

corresponding to each address, which can be regarded as the input for a combinational logic 

circuit. This is a truth table. 

 

 

 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

41 | P a g e  
  

 
 

Instruction Cycle 

In this chapter, we examine the sequences of micro operations that the Basic Computer goes 

through for each instruction. Here, you should begin to understand how the required control signals 

for each state of the CPU are determined, and how they are generated by the control unit. 

The CPU performs a sequence of micro operations for each instruction. The sequence for each 

instruction of the Basic Computer can be refined into 4 abstract phases: 

1. Fetch instruction 

2. Decode 

3. Fetch operand 

4. Execute 

Program execution can be represented as a top-down design: 

1. Program execution 

a. Instruction 1 

i. Fetch instruction 

ii. Decode 

iii. Fetch operand 

iv. Execute 

b. Instruction 2 

i. Fetch instruction 

ii. Decode 

iii. Fetch operand 

iv. Execute 

c. Instruction 3 ... 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

42 | P a g e  
  

Program execution begins with: 

PC ← address of first instruction, SC ← 0 

After this, the SC is incremented at each clock cycle until an instruction is completed, and then it is 

cleared to begin the next instruction. This process repeats until a HLT instruction is executed, or 

until the power is shut off. 

 

Instruction Fetch and Decode 

The instruction fetch and decode phases are the same for all instructions, so the control functions 

and micro operations will be independent of the instruction code. Everything that happens in this 

phase is driven entirely by timing variables T0, T1 and T2. Hence, all control inputs in the CPU 

during fetch and decode are functions of these three variables alone. 

T0: AR ← PC 

T1: IR ← M[AR], PC ← PC + 1 

T2: D0-7 ← decoded IR(12-14), AR ← IR(0-11), I ← IR(15) 

For every timing cycle, we assume SC ← SC + 1 unless it is stated that SC ← 0. 

The operation D0-7 ← decoded IR(12-14) is not a register transfer like most of our micro 

operations, but is actually an inevitable consequence of loading a value into the IR register. Since 

the IR outputs 12-14 are directly connected to a decoder, the outputs of that decoder will change as 

soon as the new values of IR(12-14) propagate through the decoder. 

 

Note that incrementing the PC at time T1 assumes that the next instruction is at the next 

address. This may not be the case if the current instruction is a branch instruction. However, 

performing the increment here will save time if the next instruction immediately follows, and will 

do no harm if it doesn't. The incremented PC value is simply overwritten by branch instructions. 

 

In hardware development, unlike serial software development, it is often advantageous to 

perform work that may not be necessary. Since we can perform multiple micro operations at the 

same time, we might was well do everything that might be useful at the earliest possible time. 

Likewise, loading AR with the 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

43 | P a g e  
  

address field from IR at T2 is only useful if the instruction is a memory-reference instruction. We 

won't know this until T3, but there is no reason to wait since there is no harm in loading AR 

immediately. 

 

Input-Output and Interrupt 

Hardware Summary 

The Basic Computer I/O consists of a simple terminal with a keyboard and a printer/monitor. 

The keyboard is connected serially (1 data wire) to the INPR register. INPR is a shift register 

capable of shifting in external data from the keyboard one bit at a time. INPR outputs are connected 

in parallel to the ALU. 

Shift enable 

| 

v 

+-----------+ 1 +-------+ 

| Keyboard |---/-->| INPR <|--- serial I/O clock 

+-----------+ +-------+ 

| 

/ 8 

| | | 

v v v 

+---------------+ 

| ALU | 

+---------------+ 

| 

/ 16 

| 

v 

+---------------+ 

| AC <|--- CPU master clock 

+---------------+ 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

44 | P a g e  
  

How many CPU clock cycles are needed to transfer a character from the keyboard to the INPR 

register? (tricky) 

Are the clock pulses provided by the CPU master clock? 

RS232, USB, Firewire are serial interfaces with their own clock independent of the CPU. ( USB 

speed is independent of processor speed. ) 

 RS232: 115,200 kbps (some faster) 

 USB: 11 mbps 

 USB2: 480 mbps 

 FW400: 400 mbps 

 FW800: 800 mbps 

 USB3: 4.8 gbps 

OUTR inputs are connected to the bus in parallel, and the output is connected serially to the 

terminal. OUTR is another shift register, and the printer/monitor receives an end-bit during each 

clock pulse. 

 

I/O Operations 

Since input and output devices are not under the full control of the CPU (I/O events are 

asynchronous), the CPU must somehow be told when an input device has new input ready to send, 

and an output device is ready to receive more output. The FGI flip- flop is set to 1 after a new 

character is shifted into INPR. This is done by the I/O interface, not by the control unit. This is an 

example of an asynchronous input event (not synchronized with or controlled by the CPU). 

 

The FGI flip-flop must be cleared after transferring the INPR to AC. This must be done as a 

micro operation controlled by the CU, so we must include it in the CU design. The FGO flip-flop is 

set to 1 by the I/O interface after the terminal has finished displaying the last character sent. It must 

be cleared by the CPU after transferring a character into OUTR. Since the keyboard controller only 

sets FGI and the CPU only clears it, a JK flip-flop is convenient: 

+-------+ 

Keyboard controller --->| J Q | --------- > 

| | | 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

45 | P a g e  
  

+--------\-----\ | | 

) or >----->|> FGI | 

+--------/-----/ | | 

| | | 

CPU-------------------->| K | 

+------- 

How do we control the CK input on the FGI flip-flop? (Assume leading-edge triggering.) 

There are two common methods for detecting when I/O devices are ready, namely software 

polling and interrupts. These two methods are discussed in the following sections. 

Stack Organization 

Stack is the storage method of the items in which the last item included is the first one to be   

removed/taken   from   the   stack.   Generally   a   stack   in   the   computer   is a memory unit 

with an address register and the register holding the address of the stack is known as the Stack 

Pointer (SP). A stack performs Insertion and Deletion operation, were the operation of inserting an 

item is known as Push and operation of deleting an item is known as Pop. Both Push and Pop 

operation results in incrementing and decrementing the stack pointer respectively. 

 

Register Stack 

Register or memory words can be organized to form a stack. The stack pointer is a register 

that holds the memory address of the top of the stack. When an item need to be deleted from the 

stack, item on the top of the stack is deleted and the stack pointer is decremented. Similarly, when 

an item needs to be added, the stack pointer is incremented and writing the word at the position 

indicated by the stack pointer. There are two 1 bit   register;   FULL   and   EMTY   that   are   

used   for   describing   the stack overflow and underflow conditions. Following micro-operations 

are performed during inserting and deleting an item in/from the stack. 

 

Insert: 

SP <- SP + 1 // Increment the stack pointer to point the next higher address// 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

46 | P a g e  
  

M[SP] <- DR // Write the item on the top of the stack// 

If (SP = 0) then (Full <- 1) // Check overflow condition // EMTY 

<- 0 // Mark that the stack is not empty // 

 

Delete: 

DR <- M[SP] //Read an item from the top of the stack// SP <- 

SP 1 //Decrement the stack pointer // 

If (SP = 0) then (EMTY <- 1) //Check underflow condition // FULL <- 

0 //Mark that the stack is not full // 

 

Get all the resource regarding the homework help and assignment help at Transtutors.com. With 

our team of experts, we are capable of providing homework help and assignment help for all 

levels. With us you can be rest assured the all the content provided for homework help and 

assignment help will be original and plagiarism free. 

 

 

 

Register Stack:- 

A stack can be placed in a portion of a large memory as it can be organized as a collection of a 

finite number of memory words as register. 

 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

47 | P a g e  
  

In a 64- word stack, the stack pointer contains 6 bits because 26 = 64. 

The one bit register FULL is set to 1 when the stack is full, and the one-bit register EMTY is set to 

1 when the stack is empty. DR is the data register that holes the binary data to be written into on 

read out of the stack. Initially, SP is decide to O, EMTY is set to 1, FULL = 0, so that SP points to 

the word at address O and the stack is masked empty and not full. 

PUSH SP ® SP + 1 increment stack pointer M 

[SP] ® DR unit item on top of the Stack 

It (SP = 0) then (FULL ® 1) check it stack is full 

EMTY ® 0 mask the stack not empty. 

POP DR ® [SP] read item trans the top of stack SP 

® SP –1 decrement SP 

It (SP = 0)  then (EMTY ® 1) check it stack is empty 

FULL ® 0 mark the stack not full. 

 

A stack can be placed in a portion of a large memory or it can be organized as a collection 

of a finite number of memory words or registers. Figure X shows the organization of a 64-word 

register stack. The stack pointer register SP contains a binary number whose value is equal to the 

address of the word that is currently on top of the stack. 

 

Three items are placed in the stack: A, B, and C in the order. item C is on the top 

of the stack so that the content of sp is now 3. To remove the top item, the stack is popped by 

reading the memory word at address 3 and decrementing the content of SP. Item B is now on top of 

the stack since SP holds address 2. To insert a new item, the stack is pushed by incrementing SP 

and writing a word in the next higher location in the stack. Note that item C has read out but not 

physically removed. This does not matter because when the stack is pushed, a new item is written 

in its place. 

 

In a 64-word stack, the stack pointer contains 6 bits because 26=64. since SP has only six 

bits, it cannot exceed a number greater than 63(111111 in binary). When 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

48 | P a g e  
  

63 is incremented by 1, the result is 0 since 111111 + 1 =1000000 in binary, but SP can 

accommodate only the six least significant bits. Similarly, when 000000 is decremented by 1, the 

result is 111111. The one bit register Full is set to 1 when the stack is full, and the one-bit 

register EMTY is set to 1 when the stack is empty of items. DR is the data register that holds 

the binary data to be written in to or read out of the stack. 

 

Initially, SP is cleared to 0, Emty is set to 1, and Full is cleared to 0, so that SP points to the 

word at address o and the stack is marked empty and not full. if the stack is not full , a new item is 

inserted with a push operation. the push operation is implemented with the following sequence of 

micro-operation. 

SP ←SP + 1 (Increment stack pointer) M(SP) ← 

DR (Write item on top of the stack) 

if (sp=0) then (Full ← 1) (Check if stack is full) Emty 

← 0 ( Marked the stack not empty) 

 

The stack pointer is incremented so that it points to the address of the next-higher word. A memory 

write operation inserts the word from DR into the top of the stack. Note that SP holds the address of 

the top of the stack and that M(SP) denotes the memory word specified by the address presently 

available in SP, the first item stored in the stack is at address 1. The last item is stored at address 0, 

if SP reaches 0, the stack is full of item, so FULLL is set to 1. 

 

This condition is reached if the top item prior to the last push was in location 63 and after 

increment SP, the last item stored in location 0. Once an item is stored in location 0, there are no 

more empty register in the stack. If an item is written in the stack, obviously the stack cannot be 

empty, so EMTY is cleared to 0. 

 

DR← M[SP] Read item from the top of stack SP 

← SP-1 Decrement stack Pointer 

if( SP=0) then (Emty ← 1) Check if stack is empty 

FULL ← 0 Mark the stack not full 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

49 | P a g e  
  

 

 

The top item is read from the stack into DR. The stack pointer is then decremented. if its value 

reaches zero, the stack is empty, so Empty is set to 1. This condition is reached if the item read was 

in location 1. Once this item is read out, SP is decremented and reaches the value 0, which is the 

initial value of SP. Note that if a pop operation reads the item from location 0 and then SP is 

decremented, SP changes to 111111, which is equal to decimal 63. In this configuration, the word 

in address 0 receives the last item in the stack. Note also that an erroneous operation will result if 

the stack is pushed when FULL=1 or popped when EMTY =1. 

Memory Stack :  

A stack can exist as a stand-alone unit as in figure 4 or can be implemented in a random 

access memory attached to CPU. The implementation of a stack in the CPU is done by assigning a 

portion of memory to a stack operation and using a processor register as a stack pointer. Figure 

shows a portion of computer memory partitioned in to three segment program, data and stack. The 

program counter PC points at the address of the next instruction in the program. The address 

register AR points at an array of data. The stack pointer SP points at the top of the stack. The 

three register are connected to a common address bus, and either one can provide an address for 

memory. PC is used during the fetch phase to read an instruction. AR is used during the execute 

phase to read an operand. SP is used to push or POP items into or from the stack. 

 

As show in figure :4 the initial value of SP is 4001 and the stack grows with decreasing 

addresses. Thus the first item stored in the stack is at address 4000, the second item is stored at 

address 3999, and the last address hat can be used for the stack    is    3000.    No    previous    are     

available     for     stack     limit     checks. We assume that the items in the stack communicate 

with a data register DR. A new item is inserted with the push operation as follows. 

 

SP← SP-1 

M[SP] ← DR 

he stack pointer is decremented so that it points at the address of the next word. A Memory write 

operation insertion the word from DR into the top of the stack. A new item is deleted with a pop 

operation as follows. 

DR← M[SP] 

SP←SP + 1 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

50 | P a g e  
  

 

The top item is read from the stack in to DR. The stack pointer is then incremented to point at the 

next item in the stack. Most computers do not provide hardware to check for stack overflow 

(FULL) or underflow (Empty). The stack limit can be checked by using two processor register: one 

to hold upper limit and other hold the lower limit. After the pop or push operation SP is compared 

with lower or upper limit register. 

 

 

 

 

REVERSE POLISH NOTATION 

For example: A x B + C x D is an arithmetical expression written in infix notation, here x (denotes 

multiplication). In this expression A and B are two operands and x is an operator, similarly C and D 

are two operands and x is an operator. In this expression + 

is another operator which is written between (A x B) and (C x D). Because of the precedence 

of the operator multiplication is done first. The order of precedence is as: 

1. Exponentiation have precedence one. 

2. Multiplication and Division has precedence two. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

51 | P a g e  
  

3. Addition and subtraction has precedence three. 

 

 

Reverse polish notation is also known as postfix notation is defined as: In postfix notation 

operator is written after the operands. Examples of postfix notation are AB+ and CD-. Here A and 

B are two operands and the operator is written after these two operands. The conversion from infix 

expression into postfix expression is shown below. 

 Convert the infix notation A x B + C x D + E x F into postfix notation? 

SOLUTION 

A x B + C x D + E x F 

= [ABx] + [CDx] + [EFx] 

= [ABxCDx] + [EFx] 

= [ABxCDxEFx] 

= ABxCDxEFx 

So the postfix notation is ABxCDxEFx. 

 Convert the infix notation {A – B + C x (D x E – F)} / G + H x K into postfix 

notation? 

{A – B + C x (D x E – F)} / G + H x K 

= {A – B + C x ([DEx] – F)} / G + [HKx] 

= {A – B + C x [DExF-]} / [GHKx+] 

= {A – B + [CDExF-x]} / [GHKx+] 

= {[AB-] + [CDExF-x]} / [GHKx+] 

= [AB-CDExF-x+] / [GHKx+] 

= [AB-CDExF-x+GHKx+/] 

= AB-CDExF-x+GHKx+/ 

So the postfix notation is AB-CDExF-x+GHKx+/. 

Now let’s how to evaluate a postfix expression, the algorithm for the evaluation of postfix notation is 

shown below: 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

52 | P a g e  
  

 

ALGORITHM: 

(Evaluation of Postfix notation) This algorithm finds the result of a postfix expression. Step1: 

Insert a symbol (say #) at the right end of the postfix expression. 

Step2: Scan the expression from left to right and follow the Step3 and Step4 for each of the symbol 

encountered. 

Step3: if an element is encountered insert into stack. 

Step4: if an operator (say &) is encountered pop the top element A (say) and next to top element B 

(say) perform the following operation x = B&A. Push x into the top of the stack. 

Step5: if the symbol # is encountered then stop scanning. 

 Evaluate the post fix expression 50 4 3 x 2 – + 7 8 x 4 / -? 

 

 

SOLUTION 

Put symbol # at the right end of the expression: 50 4 3 x 2 – + 7 8 x 4 / – #. 

 

 

 

Postfix expression Symbol 

scanned 

Stack 

50 4 3 x 2 – + 7 8 x 4 / – # _ _ 

4 3 x 2 – + 7 8 x 4 / – # 50 50 

3 x 2 – + 7 8 x 4 / – # 4 50, 4 

x 2 – + 7 8 x 4 / – # 3 50, 4, 3 

2 – + 7 8 x 4 / – # x 50, 12 

– + 7 8 x 4 / – # 2 50, 12, 2 

+ 7 8 x 4 / – # – 50, 10 

7 8 x 4 / – # + 60 

8 x 4 / – # 7 60, 7 

x 4 / – # 8 60, 7, 8 

4 / – # x 60, 56 

/ – # 4 60, 56, 4 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

53 | P a g e  
  

– # / 60, 14 

 

# – 46 

_ # Result = 46 

 

INSTRUCTION FORMATS 

The most common fields found in instruction format are:- 

(1) An operation   code   field   that   specified   the   operation   to   be   performed 

(2) An address field that designates a memory address or a processor registers. 

(3) A mode field that specifies the way the operand or the effective address is determined. 

Computers may have instructions of several different lengths containing varying number of 

addresses. The number of address field in the instruction format of a computer depends on the 

internal organization of its registers. Most computers fall into one of three types of CPU 

organization. 

(1) Single Accumulator organization ADD X AC ® AC + M [×] 

(2) General Register Organization ADD R1, R2, R3 R ® R2 + R3 

(3) Stack Organization PUSH X 

 

 

Three address Instruction 

Computer with three addresses instruction format can use each address field to specify either 

processor register are memory operand. 

ADD R1, A, B A1 ® M [A] + M [B] 

ADD R2, C, D R2 ® M [C] + M [B] X = (A + B) * (C + A) 

MUL X, R1, R2  M [X] R1 * R2 

The advantage of the three address formats is that it results in short program when evaluating 

arithmetic expression. The disadvantage is that the binary-coded instructions require too many bits 

to specify three addresses. 

 

Two Address Instruction 

Most common in commercial computers. Each address field can specify either a processes register 

on a memory word. 

MOV R1, A R1 ® M [A] 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

54 | P a g e  
  

ADD R1, B R1 ® R1 + M [B] 

MOV R2, C R2 ® M [C] X = (A + B) * ( C + D) 

ADD R2, D R2 ® R2 + M [D] 

MUL R1, R2 R1 ® R1 * R2 

MOV X1 R1 M [X] ® R1 

 

 

One Address instruction 

It used an implied accumulator (AC) register for all data manipulation. For multiplication/division, 

there is a need for a second register. 

LOAD A AC ® M [A] 

ADD B AC ® AC + M [B] 

STORE T M [T] ® AC X = (A +B) × (C + A) 

All operations are done between the AC register and a memory operand. It’s the address of a 

temporary memory location required for storing the intermediate result. 

LOAD C AC ® M (C) 

ADD D AC ® AC + M (D) 

ML T AC ® AC + M (T) 

STORE X M [×]® AC 

 

 

Zero – Address Instruction 

A stack organized computer does not use an address field for the instruction ADD and MUL. The 

PUSH & POP instruction, however, need an address field to specify the operand that 

communicates with the stack (TOS ® top of the stack) 

PUSH A TOS ® A 

PUSH B TOS ® B 

ADD  TOS ® (A + B) 

PUSH C TOS ® C 

PUSH D TOS ® D 

ADD  TOS ® (C + D) 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

55 | P a g e  
  

MUL  TOS ® (C + D) * (A + B) 

POP X M [X] TOS 

 

Addressing Modes 

The operation field of an instruction specifies the operation to be performed. This operation must 

be executed on some data stored in computer register as memory words. The way the operands are 

chosen during program execution is dependent on the addressing mode of the instruction. The 

addressing mode specifies a rule for interpreting or modifying the address field of the instruction 

between the operand is activity referenced. Computer use addressing mode technique for the 

purpose of accommodating one or both of the following provisions. 

(1) To give programming versatility to the uses by providing such facilities as pointer to 

memory, counters for top control, indexing of data, and program relocation. 

(2) To reduce the number of bits in the addressing fields of the instruction. 

 

 

Addressing Modes: The most common addressing techniques are 

• Immediate 

• Direct 

• Indirect 

• Register 

• Register Indirect 

• Displacement 

• Stack 

 

 

All computer architectures provide more than one of these addressing modes. The question 

arises as to how the control unit can determine which addressing mode is being used in a particular 

instruction. Several approaches are used. Often, different opcodes will use different addressing 

modes. Also, one or more bits in the instruction 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

56 | P a g e  
  

format can be used as a mode field. The value of the mode field determines which addressing 

mode is to be used. 

 

What is the interpretation of effective address. In a system without virtual memory, the 

effective address will be either a main memory address or a register. In a virtual memory system, 

the effective address is a virtual address or a register. The actual mapping to a physical address is a 

function of the paging mechanism and is invisible to the programmer. 

Opcode Mode Address 

Immediate Addressing: 

The simplest form of addressing is   immediate   addressing,   in   which   the operand is actually 

present in the instruction: 

OPERAND = A 

This mode can be used to define and use constants or set initial values of variables. The 

advantage of immediate addressing is that no memory reference other than the instruction fetch is 

required to obtain the operand. The disadvantage is that the size of the number is restricted to the 

size of the address field, which, in most instruction sets, is small compared with the world 

length. 

 
 

 

Direct Addressing: 

A very simple form of addressing is direct addressing, in which the address field contains the 

effective address of the operand: 

EA = A 

It requires only one memory reference and no special calculation. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

57 | P a g e  
  

 

Indirect Addressing: 

With direct addressing, the length of the address field is usually less than the word length, 

thus limiting the address range. One solution is to have the address field refer to the address of a 

word in memory, which in turn contains a full-length address of the operand. This is known as 

indirect addressing: 

EA = (A) 

 

 

 

Register Addressing: 

Register addressing is similar to direct addressing. The only difference is that the address 

field   refers   to   a   register   rather   than   a   main   memory   address: EA = R 

The advantages of register addressing are that only a small address field is needed in the 

instruction and no memory reference is required. The disadvantage of register addressing is that the 

address space is very limited. 

 

The exact register location of   the   operand   in   case   of   Register   Addressing Mode is shown 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

58 | P a g e  
  

in the Figure 34.4. Here, 'R' indicates a register where the operand is present. 

Register Indirect Addressing: 

Register indirect addressing is similar to indirect addressing, except that the address field refers 

to a register instead of a memory location. It requires only one memory reference and no special 

calculation. 

EA = (R) 

 

 

Register indirect addressing uses one less memory reference than indirect addressing. Because, 

the first information is available in a register which is nothing but a memory address. From that 

memory location, we use to get the data or information. In general, register access is much more 

faster than the memory access. 

 
 

 

Displacement Addressing: 

A very powerful mode of addressing combines the capabilities of direct addressing and 

register indirect addressing, which is broadly categorized as displacement addressing: 

EA = A + (R) 

Displacement addressing requires that the instruction have two address fields, at least one of 

which is explicit. The value contained in one address field (value = A) is used directly. The other 

address field, or an implicit reference based on opcode, refers to a register whose contents are 

added to A to produce the effective address. 

 

The general format of Displacement Addressing is shown in the Figure 4.6. Three of 

the most common use of displacement addressing are: 

• Relative addressing 

• Base-register addressing 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

59 | P a g e  
  

• Indexing 

 

 

 

Relative Addressing: 

For relative addressing, the implicitly referenced   register   is   the   program counter (PC). That 

is, the current instruction address is added to the address field to produce the EA. Thus, the 

effective address is a displacement relative to the address of the instruction. 

 

Base-Register Addressing: 

The reference register contains a memory address, and the   address   field contains a 

displacement from that address. The register reference may be explicit or implicit. In some 

implementation, a single segment/base register is employed and is used implicitly. In others, the 

programmer may choose a register to hold the base address of a segment, and the instruction must 

reference it explicitly. 

 

Indexing: 

The address field references a main   memory   address,   and   the   reference register contains a 

positive displacement from that address. In this case also the register    reference    is     sometimes     

explicit     and     sometimes     implicit. Generally index register are used for iterative tasks, it is 

typical that there is a need to increment or decrement the index register after each reference to it. 

Because this is such a common operation, some system will automatically do this as part of the 

same instruction cycle. 

This is known as auto-indexing. We may get two types of auto-indexing: -one is auto-incrementing 

and the other one is -auto-decrementing. If certain registers are devoted exclusively to indexing, 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

60 | P a g e  
  

then auto-indexing can be invoked implicitly and automatically. If general purpose register are used, 

the auto index operation may need to be signaled by a bit in the instruction. 

 

Auto-indexing using increment can be depicted as follows: 

EA = A + (R) 

R = (R) + 1 

Auto-indexing using decrement can be depicted as follows: 

EA = A + (R) 

R = (R) - 1 

 

In some machines, both indirect addressing and indexing are provided, and it is possible to employ 

both in the same instruction. There are two possibilities: The indexing is performed either before or 

after the indirection. If indexing is performed after the indirection, it is termed post indexing 

EA = (A) + (R) 

 

First, the contents of the address field are used to access a memory location containing an 

address. This address   is   then   indexed   by   the   register   value. With    pre    indexing,    the    

indexing    is     performed     before     the     indirection: EA = ( A + (R) 

An address is calculated, the calculated address contains not the operand, but the address of the 

operand. 

 

Stack Addressing: 

A stack is a linear array or list of locations. It is sometimes referred to as a pushdown list or last-

in-first-out queue. A stack is a reserved block of locations. Items are appended to the top of the 

stack so that, at any given time, the block is partially filled. Associated with the stack is a pointer 

whose value is the address of the top of the stack. The stack pointer is maintained in a register. 

Thus, references to stack locations      in       memory       are       in       fact       register       indirect       

addresses. The stack mode of addressing is a form of implied addressing. The machine instructions 

need not include a memory reference but implicitly operate on the top of the stack. 

Data Transfer & Manipulation 

Computer provides an extensive set of instructions to give the user the flexibility to carryout 

various computational task. Most computer instruction can be classified into three categories. 

(1) Data transfer instruction 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

61 | P a g e  
  

(2) Data manipulation instruction 

(3) Program control instruction 

Data transfer instruction cause transferred data from one location to another without changing the 

binary instruction content. Data manipulation instructions are those that perform arithmetic logic, 

and shift operations. Program control instructions provide 

decision-making capabilities and change the path taken by the program when executed in the 

computer. 

 

(1) Data Transfer Instruction 

Data transfer instruction move data from one place in the computer to another without changing 

the data content. The most common transfers are between memory and processes registers, between 

processes register & input or output, and between processes register themselves 

(Typical data transfer instruction) 

 

Name Mnemonic 

Load LD 

Store ST 

Move MOV 

Exchange XCH 

Input IN 

Output OUT 

Push PUSH 

Pop POP 

 

(2) Data Manipulation Instruction 

It performs operations on data and provides the computational capabilities for the computer. The 

data manipulation instructions in a typical computer are usually divided into three basic types. 

(a) Arithmetic Instruction 

(b) Logical bit manipulation Instruction 

(c) Shift Instruction. 

 

 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

62 | P a g e  
  

(a) Arithmetic Instruction 

 

Name Mnemonic 

Increment INC 

Decrement DEC 

Add Add 

Subtract Sub 

Multiply MUL 

Divide DIV 

Add with Carry ADDC 

Subtract with Basses SUBB 

Negate (2’s Complement) NEG 

 

(b) Logical & Bit Manipulation Instruction 

 

Name Mnemonic 

Clear CLR 

Complement COM 

AND AND 

OR OR 

Exclusive-Or XOR 

Clear Carry CLRC 

Set Carry SETC 

Complement Carry COMC 

Enable Interrupt ET 

Disable Interrupt OI 

(c) Shift Instruction 

Instructions to shift the content of an operand are quite useful and one often provided in several 

variations. Shifts are operation in which the bits of a word are moved to the left or right. The bit-

shifted in at the and of the word determines the type of shift used. Shift instruction may specify 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

63 | P a g e  
  

either logical shift, arithmetic shifts, or rotate type shifts. 

Name Mnemonic 

Logical Shift right SHR 

Logical Shift left SHL 

Arithmetic shift right SHRA 

Arithmetic shift left SHLA 

Rotate right ROR 

Rotate left ROL 

Rotate right through carry RORC 

Rotate left through carry ROLC 

 

 

 

Introduction about Program Control:- 

A program that enhances an operating system by creating an environment in which you can run 

other programs. Control programs generally provide a graphical interface and enable you to run 

several programs at once in different windows. 

Control programs are also called operating environments. 

 

The program control functions are used when a series of conditional or unconditional jump 

and return instruction are required. These instructions allow the program to execute only certain 

sections of the control logic if a fixed set of logic conditions are met. The most common 

instructions for the program control available in most controllers are described in this section. 

Introduction About status bit register:- 

A status register, flag register, or condition code register is a collection of status flag bits 

for a processor. An example is the FLAGS register of the computer architecture. The flags might 

be part of a larger register, such as a program status word (PSW) register. 

 

The status register is a hardware register which contains information about the state of the 

processor. Individual bits are implicitly or explicitly read and/or written by the machine code 

instructions executing on the processor. The status register in a traditional processor design 

includes at least three central flags: Zero, Carry, and Overflow, which are set or cleared 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

64 | P a g e  
  

automatically as effects of arithmetic and bit manipulation operations. One or more of the flags 

may then be read by a subsequent conditional jump instruction (including conditional calls, returns, 

etc. in some machines) or by some arithmetic, shift/rotate or bitwise operation, typically using the 

carry flag as input in addition to any explicitly given operands. There are also processors where 

other classes of instructions may read or write the fundamental 

zero, carry or overflow flags, such as block-, string- or dedicated input/output instructions, for 

instance. 

 

Some CPU architectures, such as the MIPS and Alpha, do not use a dedicated flag register. 

Others do not implicitly set and/or read flags. Such machines either do not pass implicit status 

information between instructions at all, or do they pass it in a explicitly selected general purpose 

register. 

A status register may often have other fields as well, such as more specialized flags, interrupt 

enable bits, and similar types of information. During an interrupt, the status of the thread 

currently executing can be preserved (and later recalled) by storing the current value of the status 

register along with the program counter and other active registers into the machine stack or some 

other reserved area of memory. Common flags:- 

This is a list of the most common CPU status register flags, implemented in almost all modern 

processors. 

 

 

Flag Name Description 

Z Zero flag 
Indicates that the result of arithmetic or logical 

operation (or, sometimes, a load) was zero. 

 

 

 

C 

 

 

 

Carry flag 

Enables numbers larger than a single word to be added/subtracted 

by carrying a binary digit from a less significant word to the least 

significant bit of a more significant word as needed. It is also 

used to extend bit shifts and rotates in a similar manner on 

many 

processors (sometimes done via a dedicated X flag). 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

65 | P a g e  
  

 

 

 

S / N 

 

 

Sign flag 

Negative 

flag 

Indicates that the result of a mathematical operation is negative. 

In some processors, the N and S flags are distinct with different 

meanings and usage: One indicates whether the last result was 

negative whereas the other indicates whether a subtraction or 

addition 

has taken place. 

 

V / O / W 

Overflow 

flag 

Indicates that the signed result of an operation is too 

large to fit in the register width using twos complement 

representation. 

 

 

Introduction About Conditional branch instruction:- 

Conditional branch instruction:- 

Conditional branch instruction is the branch instruction bit and BR instruction is the Program 

control instruction. 

The conditional Branch Instructions are listed as Bellow:- 

 

 

 

Mnemonics Branch Instruction Tested control 

BZ Branch if Zero Z=1 

BNZ Branch if not Zero Z=0 

BC Branch if Carry C=1 

BNC Branch if not Carry C=0 

BP Branch if Plus S=0 

BM Branch if Minus S=1 

BV Branch if Overflow V=1 

BNV Branch if not Overflow V=0 

 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

66 | P a g e  
  

Unsigned Compare(A-B):- 

 

Mnemonics Branch Instruction Tested control 

BHI Branch if Higher A > B 

BHE Branch if Higher or Equal A >= B 

BLO Branch if Lower A < B 

BLE Branch if Lower or Equal A <= B 

BE Branch if Equal A=B 

BNE Branch if not Equal A not = B 

 

Signed Compare(A-B): 

 

Mnemonics Branch Instruction Tested control 

BGT Branch if Greater Than A > B 

BGE Branch if Greater Than or Equal A >= B 

BLT Branch if Less Than A < B 

BLE Branch if Less Than or Equal A <= B 

BE Branch if Equal A=B 

BNE Branch if not Equal A not = B 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

67 | P a g e  
  

 

 

Introduction About program interrupt:- 

When a Process is executed by the CPU and when a user Request for another Process then this will 

create disturbance for the Running Process. This is also called as the Interrupt. 

 

Interrupts can be generated by User, Some Error Conditions and also by Software’s and the 

hardware’s. But CPU will handle all the Interrupts very carefully because when Interrupts are 

generated then the CPU must handle all the Interrupts Very carefully means the CPU will also 

Provide Response to the Various Interrupts those are generated. So that When an interrupt has 

Occurred then the CPU will handle by using the Fetch, decode and Execute Operations. 

 

Interrupts allow the operating system to take notice of an external event, such as a mouse 

click. Software interrupts, better known as exceptions, allow the OS to handle unusual events like 

divide-by-zero errors coming from code execution. 

 

The sequence of events is usually like this: 

Hardware signals an interrupt to the processor 

The processor notices the interrupt and suspends the currently running software The processor 

jumps to the matching interrupt handler function in the OS 

The interrupt handler runs its course and returns from the interrupt 

The processor resumes where it left off in the previously running software 

The most important interrupt for the operating system is the timer tick interrupt. The timer tic 

interrupt allows the OS to periodically regain control from the currently running user process. The 

OS can then decide to schedule another process, return back 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

68 | P a g e  
  

to the same process, do housekeeping, etc. The timer tick interrupt provides the foundation for the 

concept of preemptive multitasking. 

 

TYPES OF INTERRUPTS 

Generally there are three types of Interrupts those are Occurred For Example 

1) Internal Interrupt 

2) External Interrupt. 

3) Software Interrupt. 

 

 

1. Internal Interrupt: 

• When the hardware detects that the program is doing something wrong, it will usually 

generate an interrupt usually generate an interrupt. 

– Arithmetic error - Invalid Instruction 

– Addressing error - Hardware malfunction 

– Page fault – Debugging 

• A Page Fault interrupt is not the result of a program error, but it does require the operating 

system to get control. 

 

The Internal Interrupts are those which are occurred due to Some Problem in the Execution 

For Example When a user performing any Operation which contains any Error and which contains 

any type of Error. So that Internal Interrupts are those which are occurred by the Some 

Operations or by Some Instructions and the Operations those are not Possible but a user is trying 

for that Operation. And The Software Interrupts are those which are made some call to the System 

for Example while we are Processing Some Instructions and when we wants to Execute one more 

Application Programs. 

 

2. External Interrupt: 

• I/O devices tell the CPU that an I/O request has completed by sending an interrupt signal to the 

processor. 

• I/O errors may also generate an interrupt. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

69 | P a g e  
  

• Most computers have a timer which interrupts the CPU every so many interrupts the CPU every 

so many milliseconds. 

 

The External Interrupt occurs when any Input and Output Device request for any Operation and the 

CPU will Execute that instructions first For Example When a Program is executed and when we 

move the Mouse on the Screen then the CPU will handle this External interrupt first and after that 

he will resume with his Operation. 

 

3. Software interrupts: 

These types if interrupts can occur only during the execution of an instruction. They can be used by 

a programmer to cause interrupts if need be. The primary purpose of such interrupts is to switch 

from user mode to supervisor mode. 

 

A software interrupt occurs when the processor executes an INT instruction. Written in the 

program, typically used to invoke a system service. A processor interrupt is caused by an electrical 

signal on a processor pin. Typically used by devices to tell a driver that they require attention. The 

clock tick interrupt is very common; it wakes up the processor from a halt state and allows the 

scheduler to pick other work to perform. 

 

A processor fault like access violation is triggered by the processor itself when it encounters 

a condition that prevents it from executing code. Typically when it tries to read or write from 

unmapped memory or encounters an invalid instruction. 

 

CISC Characteristics 

A computer with large number of instructions is called complex instruction set computer or 

CISC. Complex instruction set computer is mostly used in scientific computing applications 

requiring lots of floating point arithmetic. 

 A large number of instructions - typically from 100 to 250 instructions. 

 Some instructions that perform specialized tasks and are used infrequently. 

 A large variety of addressing modes - typically 5 to 20 different modes. 

 Variable-length instruction formats 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

70 | P a g e  
  

 Instructions that manipulate operands in memory. 

 

 

RISC Characteristics 

A computer with few instructions and simple construction is called reduced instruction set 

computer or RISC. RISC architecture is simple and efficient. The major characteristics of RISC 

architecture are, 

 Relatively few instructions 

 Relatively few addressing modes 

 Memory access limited to load and store instructions 

 All operations are done within the registers of the CPU 

 Fixed-length and easily-decoded instruction format. 

 Single cycle instruction execution 

 Hardwired and micro programmed control 

 

 

Example of RISC & CISC 

Examples of CISC instruction set architectures are PDP-11, VAX, Motorola 68k, and 

your desktop PCs on intel’s x86 architecture based too . 

Examples of RISC families include DEC Alpha, AMD 29k, ARC, Atmel AVR, 

Blackfin, Intel i860 and i960, MIPS, Motorola 88000, PA-RISC, Power (including PowerPC), 

SuperH, SPARC and ARM too. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

71 | P a g e  
  

 

 

Which one is better ? 

We cannot differentiate RISC and CISC technology because both are suitable at its specific 

application. What counts is how fast a chip can execute the instructions it is given and how well it  

runs existing software. Today, both RISC and CISC manufacturers are doing everything to get an 

edge on the competition. 

 

 

Control Memory: 

Control memory is a random access memory(RAM) consisting of addressable storage 

registers. It is primarily used in mini and mainframe computers. It is used as a temporary storage 

for data. Access to control memory data requires less time than to main memory; this speeds up 

CPU operation by reducing the number of memory references for data storage and retrieval. Access 

is performed as part of a control section sequence while the master clock oscillator is running. The 

control memory addresses are divided into two groups: a task mode and an executive (interrupt) 

mode. 

 

Addressing words stored in control memory is via the address select logic for each of the 

register groups. There can be up to five register groups in control memory. These groups select a 

register for fetching data for programmed CPU operation or for maintenance console or equivalent 

display or storage of data via maintenance console or equivalent. During programmed CPU 

operations, these registers are accessed directly by the CPU logic. Data routing circuits are used by 

control memory to interconnect the registers used in control memory. Some of the registers 

contained in a control memory that operate in the task and the executive modes include the 

following: Accumulators Indexes Monitor clock status indicating registers Interrupt data registers 

 

• The control unit in a digital computer initiates sequences of micro operations 

• The complexity of the digital system is derived form the number of sequences that are 

performed 

• When the control signals are generated by hardware, it is hardwired 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

72 | P a g e  
  

• In a bus-oriented system, the control signals that specify micro operations are groups of bits that 

select the paths in multiplexers, decoders, and ALUs. 

• The control unit initiates a series of sequential steps of micro operations 

• The control variables can be represented by a string of 1’s and 0’s called a control word 

• A micro programmed control unit is a control unit whose binary control variables are stored in 

memory 

• A sequence of microinstructions constitutes a micro program 

• The control memory can be a read-only memory 

• Dynamic microprogramming permits a micro program to be loaded and uses a writable 

control memory 

• A computer with a micro programmed control unit will have two separate memories: a main 

memory and a control memory 

• The micro program consists of microinstructions that specify various internal control signals for 

execution of register micro operations 

• These microinstructions generate the micro operations to: 

 fetch the instruction from main memory 

 evaluate the effective address 

 execute the operation 

 return control to the fetch phase for the next instruction 

 

 

• The control memory address register specifies the address of the microinstruction 

• The control data register holds the microinstruction read from memory 

• The microinstruction contains a control word that specifies one or more micro operations for the 

data processor 

• The location for the next  micro instruction may, or may  not be the next  in sequence 

• Some bits of the present micro instruction control the generation of the address of the next micro 

instruction 

• The next address may also be a function of external input conditions 

• While the micro operations are being executed, the next address is computed in the next address 

generator circuit (sequencer) and then transferred into the CAR to read the next micro instructions 

 

• Typical functions of a sequencer are: o incrementing the CAR by one 

 loading into the CAR and address from control memory 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

73 | P a g e  
  

 transferring an external address 

 loading an initial address to start the control operations 

• A clock is applied to the CAR and the control word and next-address information are taken 

directly from the control memory 

• The address value is the input for the ROM and the control work is the output 

• No read signal is required for the ROM as in a RAM 

• The main advantage of the micro programmed control is that once the 

hardware configuration is established, there should be no need for h/w or wiring changes 

• To establish a different control sequence, specify a different set of microinstructions for 

control memory 

 

Addressing Sequencing: 

Each machine instruction is executed through the application of a sequence of 

microinstructions. Clearly, we must be able to sequence these; the collection of microinstructions 

which implements a particular machine instruction is called a routine. 

 

The MCU typically determines the address of the first microinstruction which implements a 

machine instruction based on that instruction's opcode. Upon machine power- up, the CAR should 

contain the address of the first microinstruction to be executed. 

The MCU must be able to execute microinstructions sequentially (e.g., within routines), but must 

also be able to ``branch'' to other microinstructions as required; hence, the need for a sequencer. 

 

The microinstructions executed in sequence can be found sequentially in the CM, or can be 

found by branching to another location within the CM. Sequential retrieval of microinstructions can 

be done by simply incrementing the current CAR contents; branching requires determining the 

desired CW address, and loading that into the CAR. 

 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

74 | P a g e  
  

CAR 

Control Address Register 

control ROM 

control memory (CM); holds CWs 

opcode 

opcode field from machine instruction 

mapping logic 

hardware which maps opcode into microinstruction address 

branch logic 

determines how the next CAR value will be determined from all the various possibilities 

multiplexors 

implements choice of branch logic for next CAR value 

incrementer 

generates CAR + 1 as a possible next CAR value 

SBR 

used to hold return address for subroutine-call branch operations 

 

 

Conditional branches are necessary in the micro program. We must be able to perform some 

sequences of micro-ops only when certain situations or conditions exist (e.g., for conditional 

branching at the machine instruction level); to implement these, we need to be able to conditional 

execute or avoid certain microinstructions within routines. 

 

Subroutine branches are helpful to have at the micro program level. Many routines contain 

identical sequences of microinstructions; putting them into subroutines allows those routines to be 

shorter, thus saving memory. Mapping of opcodes to microinstruction addresses can be done very 

simply. When the CM is designed, a ``required'' length is determine for the machine instruction 

routines (i.e., the length of the longest one). This is rounded up to the next power of 2, yielding a 

value k such that 2 k microinstructions will be sufficient to implement any routine. 

 

The first instruction of each routine will be located in the CM at multiples of this 

``required'' length. Say this is N. The first routine is at 0; the next, at N; the next, at 2*N; etc. This 

can be accomplished very easily. For instance, with a four-bit opcode and routine length of four 

microinstructions, k is two; generate the microinstruction address by appending two zero bits to the 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

75 | P a g e  
  

opcode: 

 

 

Alternately, the n-bit opcode value can be used as the ``address'' input of a 2n x M ROM; the 

contents of the selected ``word'' in the ROM will be the desired M-bit CAR address for the 

beginning of the routine implementing that instruction. (This technique allows for variable- length 

routines in the CM.) >pp We choose between all the possible ways of generating CAR values by 

feeding them all into a multiplexor bank, and implementing special branch logic which will 

determine how the muxes will pass on the next address to the CAR. 

 

As there are four possible ways of determining the next address, the multiplexor bank is 

made up of N 4x1 muxes, where N is the number of bits in the address of a CW. The branch logic 

is used to determine which of the four possible ``next address'' values is to be passed on to the 

CAR; its two output lines are the select inputs for the muxes. 

 

 

 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

76 | P a g e  
  

Addition and Subtraction 

Four basic computer arithmetic operations are addition, subtraction, division and multiplication. 

The arithmetic operation in the digital computer manipulate data to produce results. It is necessary 

to design arithmetic procedures and circuits to program arithmetic operations using algorithm. The 

algorithm is a solution to any problem and it is stated by a finite number of well-defined procedural 

steps. The algorithms can be developed for the following types of data. 

1. Fixed point binary data in signed magnitude representation 

2. Fixed point binary data in signed 2’s complement representation. 

3. Floating point representation 

4. Binary Coded Decimal (BCD) data 

 

 

Addition and Subtraction with signed magnitude 

Consider two numbers having magnitude A and B. When the signed numbers are added or 

subtracted, there can be 8 different conditions depending on the sign and the operation performed as 

shown in the table below: 

Operation Add magnitude When A > B When A < B When A = B 

(+A) + (+B) +(A + B) -- -- -- 

(+A) + (-B) -- +(A - B) -(B - A) +(A - B) 

(-A) + (+B) -- -(A - B) +(B - A) +(A - B) 

(-A) + (-B) -(A + B) -- -- -- 

(+A) - (+B) -- +(A - B) -(B - A) +(A - B) 

(+A) - (-B) +(A + B) -- -- -- 

(-A) - (+B) -(A + B) -- -- -- 

(-A) - (-B) -- -(A - B) +(B - A) +(A - B) 

From the table, we can derive an algorithm for addition and subtraction as follows: 

Addition (Subtraction) Algorithm: 

 When the signs of A & B are identical, add the two magnitudes and attach the sign of A to the 

result. 

 When the sign of A & B are different, compare the magnitude and subtract the smaller number 

from the large number. Choose the sign of the result to be same as A if A > B, or the complement 

of the sign of A if A < B. If the two numbers are equal, subtract B from A and make the sign of 

the result positive. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

77 | P a g e  
  

Hardware Implementation 

 

fig: Hardware for signed magnitude addition and subtraction 

 

The hardware consists of two registers A and B to store the magnitudes, and two flip- flops 

As and Bs to store the corresponding signs. The results can be stored in the register A and As which 

acts as an accumulator. The subtraction is performed by adding A to the 2’s complement of B. The 

output carry is transferred to the flip-flop E. The overflow may occur during the add operation 

which is stored in the flip-flop A Ë… F. When m = 0, the output of E is transferred to the adder 

without any change along with the input carry of ‘0". 

 

The output of the parallel adder is equal to A + B which is an add operation. When m = 1, 

the content of register B is complemented and transferred to parallel adder along with the input 

carry of 1. Therefore, the output of parallel is equal to A + B’ + 1 = A – B which is a subtract 

operation. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

78 | P a g e  
  

Hardware Algorithm 

 

fig: flowchart for add and subtract operations 

 

 

As and Bs are compared by an exclusive-OR gate. If output=0, signs are identical, if 1 signs are 

different. 

 For Add operation, identical signs dictate addition of magnitudes and for operation identical 

signs dictate addition of magnitudes and for subtraction, different magnitudes dictate 

magnitudes be added. Magnitudes are added with a micro operation EA 

 Two magnitudes are subtracted if signs are different for add operation and identical for subtract 

operation. Magnitudes are subtracted with a micro operation EA = B and number (this number is 

checked again for 0 to make positive 0 [As=0]) in A is correct result. E = 0 indicates A < B, so 

we take 2’s complement of A. 

 

Multiplication 

Hardware Implementation and Algorithm 

Generally, the multiplication of two final point binary number in signed magnitude representation 

is performed by a process of successive shift and ADD operation. The process consists of looking 

at the successive bits of the multiplier (least significant bit first). If the multiplier is 1, then the 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

79 | P a g e  
  

multiplicand is copied down otherwise, 0’s are copied. The numbers 

copied down in successive lines are shifted one position to the left and finally, all the numbers are 

added to get the product. 

But, in digital computers, an adder for the summation (∑) of only two binary numbers are used and 

the partial product is accumulated in register. Similarly, instead of shifting the multiplicand to the 

left, the partial product is shifted to the right. The hardware for the multiplication of signed 

magnitude data is shown in the figure below. 

 

Hardware for multiply operation 

Initially, the multiplier is stored q register and the multiplicand in the B register. A register is used 

to store the partial product and the sequence counter (SC) is set to a number equal to the number of 

bits in the multiplier. The sum of A and B form the partial product and both shifted to the right 

using a statement “Shr EAQ” as shown in the hardware algorithm. The flip flops As, Bs & Qs store 

the sign of A, B & Q respectively. A binary ‘0” inserted into the flip-flop E during the shift right. 

Hardware Algorithm 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

80 | P a g e  
  

flowchart for multiply algorithm 

 

 

Example: Multiply 23 by 19 using multiply algorithm. 

 

multiplicand E A Q SC 

Initially, 0 00000 10011 101(5) 

Iteration1(Qn=1), 

add B 

first partial product 

shrEAQ, 

 

0 

00000 

+10111 

10111 

  

0 01011 11001 100(4) 

Iteration2(Qn=1) 

Add B 

Second partial product 

shrEAQ, 

 

1 

01011 

+10111 

00010 

 

11001 

 

0 10001 01100 011(3) 

Iteration3(Qn=0) 

shrEAQ, 
0 01000 10110 010(2) 

Iteration4(Qn=0) 

shrEAQ, 
0 00100 01011 001(1) 

Iteration5(Qn=1 

Add B 

Fifth partial product 

shrEAQ, 

 

0 

00100 

+10111 

11011 

 

01011 

 

0 01101 10101 000 

FinalProductinAQ 0110110101 

The final product is in register A & Q. therefore, the product is 0110110101. 

 

 

Booth Algorithm 

The algorithm that is used to multiply binary integers in signed 2’s complement form is called  

booth multiplication algorithm. It works on the principle that the string 0’s in the multiplier doesn’t 

need addition but just the shifting and the sting of 1’s from bit weight 2k to 2m can be treated as 

2k+1 – 2m (Example, +14 = 001110 = 23=1 – 21 = 14). The product can be obtained by shifting the 

binary multiplication to the left and subtraction the multiplier shifted left once. 

 

According to booth algorithm, the rule for multiplication of binary integers in signed 2’s 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

81 | P a g e  
  

complement form are: 

 The multiplicand is subtracted from the partial product of the first least significant bit is 1 in a 

string of 1’s in the multiplicand. 

 The multiplicand is added to the partial product if the first least significant bit is 0 (provided 

that there was a previous 1) in a string of 0’s in the multiplier. 

 The partial product doesn’t change when the multiplier bit is identical to the previous 

multiplier bit. 

This algorithm is used for both the positive and negative numbers in signed 2’s complement form. 

The hardware implementation of this algorithm is in figure below: 

 

The flowchart for booth multiplication algorithm is given below: 

 

flowchart for booth multiplication algorithm 

 

Numerical Example: Booth algorithm 

BR=10111(Multiplicand) 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

82 | P a g e  
  

QR=10011(Multiplier) 

Array Multiplier 

The multiplication algorithm first check the bits of the multiplier one at time and form partial 

product. This is a sequential process that requires a sequence of add and shift micro operation. This 

method is complicated and time consuming. The multiplication of 2 binary 

numbers can also be done with one micro operation by using combinational circuit that 

provides the product all at once. 

Example. 

Consider that the multiplicand bits are b1 and b0 and the multiplier bits are a1 and a0. The partial 

product is c3c2c1c0. The multiplication two bits a0 and a1 produces a binary 1 if both the bits are 

1, otherwise it produces a binary 0. This is identical to the AND operation and can be implemented 

with the AND gates as shown in figure. 

2-bit by 2-bit array multiplier 

 

Division Algorithm 

The division of two fixed point signed numbers can be done by a process of successive compare 

shift and subtraction. When it is implemented in digital computers, instead of shifting the divisor to 

the right, the dividend or the partial remainder is shifted to the left. The subtraction can be obtained 

by adding the number A to the 2’s complement of number B. The information about the relative 

magnitudes of the information about the relative magnitudes of numbers can be obtained from the 

end carry, 

Hardware Implementation 

The hardware implementation for the division signed numbers is shown id the figure. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

83 | P a g e  
  

 

Division Algorithm 

The divisor is stored in register B and a double length dividend is stored in register A and Q. the 

dividend is shifted to the left and the divider is subtracted by adding twice complement of the 

value. If E = 1, then A >= B. In this case, a quotient bit 1 is inserted into Qn and the partial 

remainder is shifted to the left to repeat the process. If E = 0, then A > B. In this case, the quotient 

bit Qn remains zero and the value of B is added to restore the partial remainder in A to the previous 

value. The partial remainder is shifted to the left and approaches continues until the sequence 

counter reaches to 0. The registers E, A & Q are shifted to the left with 0 inserted into Qn and the 

previous value of E is lost as shown in the flow chart for division algorithm. 

 

flowchart for division algorithm 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

84 | P a g e  
  

This algorithm can be explained with the help of an example. 

Consider that the divisor is 10001 and the dividend is 01110. 

 

 
 

binary division with digital hardware 

Restoring method 

Method described above is restoring method in which partial remainder is restored by adding the 

divisor to the negative result. Other methods: 

Comparison method: A and B are compared prior to subtraction. Then if A >= B, B is subtracted 

from A. if A < B nothing is done. The partial remainder is then shifted left and numbers are 

compared again. Comparison inspects end carry out of the parallel adder before transferring to E. 

Non-restoring method: In contrast to restoring method, when A -B is negative, B is not added to 

restore A but instead, negative difference is shifted left and then B is added. How is it possible? 

Let’s argue: 

 In flowchart for restoring method, when A < B, we restore A by operation A - B + B. Next time 

in a loop, 

this number is shifted left (multiplied by 2) and B subtracted again, which gives: 2 (A - B + B) – 

B = 2 A - B. 

 In Non-restoring method, we leave A - B as it is. Next time around the loop, the number is 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

85 | P a g e  
  

shifted left and B is added: 2 (A - B) + B = 2 A - B (same as above). 

Divide Overflow 

The division algorithm may produce a quotient overflow called dividend overflow. The overflow 

can occur of the number of bits in the quotient are more than the storage capacity of the register. 

The overflow flip-flop DVF is set to 1 if the overflow occurs. 

The division overflow can occur if the value of the half most significant bits of the dividend is 

equal to or greater than the value of the divisor. Similarly, the overflow can occue=r if the dividend 

is divided by a 0. The overflow may cause an error in the result or sometimes it may stop the 

operation. When the overflow stops the operation of the system, then it is called divide stop. 

 

Arithmetic Operations on Floating-Point Numbers 

The   rules   apply   to    the    single-precision    IEEE    standard    format.    These    rules specify 

only the major steps needed to perform the four operations.   Intermediate results for both 

mantissas and exponents might require more than 24 and 8 bits, respectively & overflow or an 

underflow may occur. These and other aspects of the operations must be carefully considered in 

designing an arithmetic unit that meets the standard. If their exponents differ, the mantissas of 

floating-point numbers must be shifted with respect to each other before they are added or 

subtracted. Consider a 

decimal example in which we wish to add 2.9400 x  to 4.3100 x . We rewrite 

2.9400 x   as 0.0294 x  and then perform addition of the mantissas to get 4.3394 x 

. The rule for addition and subtraction can be stated as follows: 

 

Add/Subtract Rule 

 

The steps in addition (FA) or subtraction (FS) of floating-point numbers (s1, eˆ , f1) fad{s2, eˆ 2, 

f2) are as follows. 

 

1. Unpack sign, exponent, and fraction fields. Handle special operands such as zero, infinity, 

or NaN(not a number). 

2. Shift the significand of the number with the smaller exponent right by   bits. 

3. Set the result exponent er to max(e1,e2). 

4. If the instruction is FA and s1= s2 or if the instruction is FS and s1 ≠ s2 then add the 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

86 | P a g e  
  

significands; otherwise subtract them. 

5. Count the number z of leading zeros. A carry can make z = -1. Shift the result significand 

left z bits or right 1 bit if z = -1. 

6. Round the result significand, and shift right and adjust z if there is rounding overflow, 

which is a carry-out of the leftmost digit upon rounding. 

7. Adjust the result exponent by er = er - z, check for overflow or underflow, and pack the 

result sign, biased exponent, and fraction bits into the result word. 

 

Multiplication and division are somewhat easier than addition and subtraction, in that no 

alignment of mantissas is needed. 

BCD Adder: 

 

BCD adder A 4-bit binary adder that is capable of adding two 4-bit words having a BCD (binary-

coded decimal) format. The result of the addition is a BCD-format 4-bit output word, representing 

the decimal sum of the addend and augend, and a carry that is generated if this sum exceeds a 

decimal value of 9. Decimal addition is thus possible using these devices. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

87 | P a g e  
  

 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

88 | P a g e  
  

 

Semiconductor Memory Technologies: 
Semiconductor random-access memories (RAMs) are available in a wide range of speeds. 
Their cycle times range from 100 ns to less than 10 ns. Semiconductor memory is used in any electronics 
assembly that uses computer processing technology. The use of semiconductor memory has grown, and the 
size of these memory cards has increased as the need for larger and larger amounts of storage is needed. 
There are two main types or categories that can be used for semiconductor technology. 
RAM - Random Access Memory: As the names suggest, the RAM or random access memory is a form of 
semiconductor memory technology that is used for reading and writing data in any order - in other words as 
it is required by the processor. It is used for such applications as the computer or processor memory where 
variables and other stored and are required on a random basis. Data is stored and read many times to and 
from this type of memory. 
 
 

 

ROM - Read Only Memory: A ROM is a form of semiconductor memory technology used where the data is 
written once and then not changed. In view of this it is used where data needs to be stored permanently, even 
when the power is removed - many memory technologies lose the data once the power is removed. As a 
result, this type of semiconductor memory technology is widely used for storing programs and data that must 
survive when a computer or processor is powered down. For example the BIOS of a computer will be stored 
in ROM. As the name implies, data cannot be easily written to ROM. Depending on the technology used in the 
ROM, writing the data into the ROM initially may require special hardware. Although it is often possible to 
change the data, this gain requires special hardware to erase the data ready for new data to be written in. 
 
 
 

 
 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

89 | P a g e  
  

The different memory types or memory technologies are detailed below: 
DRAM: Dynamic RAM is a form of random access memory. DRAM uses a capacitor to store each bit 
of data, and the level of charge on each capacitor determines whether that bit is a logical 1 or 0. 
However these capacitors do not hold their charge indefinitely, and therefore the data needs to be 
refreshed periodically. As a result of this dynamic refreshing it gains its name of being a dynamic 
RAM. DRAM is the form of semiconductor memory that is often used in equipment including 
personal computers and workstations where it forms the main RAM for the computer. 
 
EEPROM: This is an Electrically Erasable Programmable Read Only Memory. Data can be written 
to it and it can be erased using an electrical voltage. This is typically applied to an erase pin on the 
chip. Like other types of PROM, EEPROM retains the contents of the memory even when the 
power is turned off. Also like other types of ROM, EEPROM is not as fast as RAM. 
 
EPROM:   This is an Erasable Programmable Read Only Memory. This form of semiconductor 
memory can be programmed and then erased at a later time. This is normally achieved by 
exposing the silicon to ultraviolet light. To enable this to happen there is a circular window in the 
package of the EPROM to enable the light to reach the silicon of the chip. When the PROM is in use, 
this window is normally covered by a label, especially when the data may need to be preserved for 
an extended period. The PROM stores its data as a charge on a capacitor. There is a charge storage 
capacitor for each cell and this can be read repeatedly as required. However it is found that after 
many years the charge may leak away and the data may be lost. Nevertheless, this type of 
semiconductor memory used to be widely used in applications where a form of ROM was 
required, but where the data needed to be changed periodically, as in a development 
environment, or where quantities were low. 
 
FLASH MEMORY: Flash memory may be considered as a development of EEPROM technology. 
Data can be written to it and it can be erased, although only in blocks, but data can be read on an 
individual cell basis. To erase and re-programme areas of the chip, programming voltages at levels 
that are available within electronic equipment are used. It is also non-volatile, and this makes it 
particularly useful. As a result Flash memory is widely used in many applications including 
memory cards for digital cameras, mobile phones, computer memory sticks and many other 
applications. 
 
F-RAM: Ferroelectric RAM is a random-access memory technology that has many 
similarities to the standard DRAM technology. The major difference is that it incorporates a 
ferroelectric layer instead of the more usual dielectric layer and this provides its non-volatile 
capability. As it offers a non-volatile capability, F-RAM is a direct competitor to Flash. 
 
MRAM: This is Magneto-resistive RAM, or Magnetic RAM. It is a non-volatile RAM memory 
technology that uses magnetic charges to store data instead of electric charges. Unlike 
technologies including DRAM, which require a constant flow of electricity to maintain the integrity 
of the data, MRAM retains data even when the power is removed. An additional advantage is that 
it only requires low power for active operation. As a result this technology could become a major 
player in the electronics industry now that production processes have been developed to enable it 
to be produced. 
 
P-RAM / PCM: This type of semiconductor memory is known as Phase change Random 
Access Memory, P-RAM or just Phase Change memory, PCM. It is based around a phenomenon 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

90 | P a g e  
  

where a form of chalcogenide glass changes is state or phase between an amorphous state (high 
resistance) and a polycrystalline state (low resistance). It is possible to detect the state of an 
individual cell and hence use this for data storage. Currently this type of memory has not been 
widely commercialized, but it is expected to be a competitor for flash memory. 
 

PROM: This stands for Programmable Read Only Memory. It is a semiconductor 
memory which can only have data written to it once - the data written to it is 
permanent. These memories are bought in a blank format and they are programmed 
using a special PROM programmer. Typically a PROM will consist of an array of 
fuseable links some of which are "blown" during the programming process to 
provide the required data pattern. 

 
SDRAM: Synchronous DRAM. This form of semiconductor memory can run at faster 
speeds than conventional DRAM. It is synchronised to the clock of the processor and 
is capable of keeping two sets of memory addresses open simultaneously. By 
transferring data alternately from one set of addresses, and then the other, SDRAM 
cuts down on the delays associated with non-synchronous RAM, which must close one 
address bank before opening the next. 

 
SRAM: Static Random Access Memory. This form of semiconductor memory gains its 
name from the fact that, unlike DRAM, the data does not need to be refreshed 
dynamically. It is able to support faster read and write times than DRAM (typically 10 
ns against 60 ns for DRAM), and in addition its cycle time is much shorter because it 
does not need to pause between accesses. However it consumes more power, is less 
dense and more expensive than DRAM. As a result of this it is normally used for 
caches, while DRAM is used as the main semiconductor memory technology. 

 
 
 

MEMORY ORGANIZATION 
 

Memory Interleaving: 
Pipeline and vector processors often require simultaneous access to memory 

from two or more sources. An instruction pipeline may require the fetching of an 
instruction and an operand at the same time from two different segments. 

Similarly, an arithmetic pipeline usually requires two or more operands to 
enter the pipeline at the same time. Instead of using two memory buses for 
simultaneous access, the memory can be partitioned into a number of modules 
connected to a common memory address and data buses. A memory module is a 
memory array together with its own address and data registers. Figure 9-13 shows a 
memory unit with four modules. Each memory array has its own address register AR 
and data register DR. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

91 | P a g e  
  

 

 

The address registers receive information from a common address bus and the 
data registers communicate with a bidirectional data bus. The two least significant bits 
of the address can be used to distinguish between the four modules. The modular 
system permits one module to initiate a memory access while other modules are in the 
process of reading or writing a word and each module can honor a memory request 
independent of the state of the other modules. 

The advantage of a modular memory is that it allows the use of a technique 
called interleaving. In an interleaved memory, different sets of addresses are assigned 
to different memory modules. For example, in a two-module memory system, the even 
addresses may be in one module and the odd addresses in the other. 

 

Concept of Hierarchical Memory Organization 
This Memory Hierarchy Design is divided into 2 main types: 

External Memory or Secondary Memory 
Comprising of Magnetic Disk, Optical Disk, Magnetic Tape i.e. peripheral storage 

devices which are accessible by the processor via I/O Module. 

Internal Memory or Primary Memory 
Comprising of Main Memory, Cache Memory & CPU registers. This is directly 

accessible by the processor. 
 
 
 
 

 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

92 | P a g e  
  

Characteristics of Memory Hierarchy 
 

Capacity: 
It is the global volume of information the memory can store. As we move from 

top to bottom in the Hierarchy, the capacity increases. 

Access Time: 
It is the time interval between the read/write request and the availability of the 

data. As we move from top to bottom in the Hierarchy, the access time increases. 

Performance: 
Earlier when the computer system was designed without Memory Hierarchy 

design, the speed gap increases between the CPU registers and Main Memory due to 
large difference in access time. This results in lower performance of the system and 
thus, enhancement was required. This enhancement was made in the form of Memory 
Hierarchy Design because of which the performance of the system increases. One of 
the most significant ways to increase system performance is minimizing how far down 
the memory hierarchy one has to go to manipulate data. 

Cost per bit: 
As we move from bottom to top in the Hierarchy, the cost per bit increases i.e. 

Internal Memory is costlier than External Memory. 

Cache Memories: 
The cache is a small and very fast memory, interposed between the 

processor and the main memory. Its purpose is to make the main memory appear 
to the processor to be much faster than it actually is. The effectiveness of this 
approach is based on a property of computer programs called locality of 
reference. 

Analysis of programs shows that most of their execution time is spent in 
routines in which many instructions are executed repeatedly. These instructions may 
constitute a simple loop, nested loops, or a few procedures that repeatedly call each 
other. 

The cache memory can store a reasonable number of blocks at any given time, 
but this number is small compared to the total number of blocks in the main memory. 
The correspondence between the main memory blocks and those in the cache is 
specified by a mapping function. 

When the cache is full and a memory word (instruction or data) that is not in 
the cache is referenced, the cache control hardware must decide which block should 
be removed to create space for the new block that contains the referenced word. The 
collection of rules for making this decision constitutes the cache‟s replacement 
algorithm. 

 

Cache Hits 
The processor does not need to know explicitly about the existence of the 

cache. It simply issues Read andWrite requests using addresses that refer to locations 
in the memory. The cache control circuitry determines whether the requested word 
currently exists in the cache. 
If it does, the Read orWrite operation is performed on the appropriate cache location. In 
this case, a read 
or write hit is said to have occurred. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

93 | P a g e  
  

 

Cache Misses 
A Read operation for a word that is not in the cache constitutes a Read miss. It 

causes the block of words containing the requested word to be copied from the main 
memory into the cache. 

 

Cache Mapping: 
There are three different types of mapping used for the purpose of cache 

memory which are as follows: Direct mapping, Associative mapping, and Set-
Associative mapping. These are explained as following below. 

Direct mapping 
The simplest way to determine cache locations in which to store memory 

blocks is the direct- mapping technique. In this technique, block j of the main memory 
maps onto block j modulo 128 of the cache, as depicted in Figure 8.16. Thus, whenever 
one of the main memory blocks 0, 128, 256, . . . is loaded into the cache, it is stored in 
cache block 0. Blocks 1, 129, 257, . . . are stored in cache block 1, and so on. Since more 
than one memory block is mapped onto a given cache block position, contention may 
arise for that position even when the cache is not full. 

For example, instructions of a program may start in block 1 and continue in 
block 129, possibly after a branch. As this program is executed, both of these blocks 
must be transferred to the block-1 position in the cache. Contention is resolved by 
allowing the new block to overwrite the currently resident block. 

With direct mapping, the replacement algorithm is trivial. Placement of a 
block in the cache is determined by its memory address. The memory address can 
be divided into three fields, as shown in Figure 8.16. The low-order 4 bits select one 
of 16 words in a block. 

When a new block enters the cache, the 7-bit cache block field determines the 
cache position in which this block must be stored. If they match, then the desired 
word is in that block of the cache. If there is no match, then the block containing the 
required word must first be read from the main memory and loaded into the cache. 

The direct-mapping technique is easy to implement, but it is not very flexible. 
 
 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

94 | P a g e  
  

 
 
 
 

Associative Mapping 
In Associative mapping method, in which a main memory block can be placed 

into any cache block position. In this case, 12 tag bits are required to identify a 
memory block when it is resident in the cache. The tag bits of an address received from 
the processor are compared to the tag bits of each block of the cache to see if the 
desired block is present. This is called the associative-mapping technique. 

 

 
It gives complete freedom in choosing the cache location in which to place the 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

95 | P a g e  
  

memory block, resulting in a more efficient use of the space in the cache. When a new 
block is brought into the cache, it replaces (ejects) an existing block only if the cache is 
full. In this case, we need an algorithm to select the block to be replaced. 

To avoid a long delay, the tags must be searched in parallel. A search of this kind is 
called an 

associative search. 
 

Set-Associative Mapping 
Another approach is to use a combination of the direct- and associative-

mapping techniques. The blocks of the cache are grouped into sets, and the mapping 
allows a block of the main memory to reside in any block of a specific set. Hence, the 
contention problem of the direct method is eased by having a few choices for block 
placement. 

 

 

 

At the same time, the hardware cost is reduced by decreasing the size of the 
associative search. 

An example of this set-associative-mapping technique is shown in Figure 8.18 for a 
cache with two blocks per set. In this case, memory blocks 0, 64, 128, . . . , 4032 
map into cache set 0, and they can occupy either of the two block positions within 
this set. 

Having 64 sets means that the 6-bit set field of the address determines which 
set of the cache might contain the desired block. The tag field of the address must 
then be associatively compared to the tags of the two blocks of the set to check if the 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

96 | P a g e  
  

desired block is present. This two-way associative search is simple to implement. 
The number of blocks per set is a parameter that can be selected to suit the 
requirements 

of a particular computer. For the main memory and cache sizes in Figure 8.18, four 
blocks per set can be accommodated by a 5-bit set field, eight blocks per set by a 4-bit 
set field, and so on. The extreme condition of 128 blocks per set requires no set bits 
and corresponds to the fully-associative technique, with 12 tag bits. The other extreme 
of one block per set is the direct-mapping. 
 

Replacement Algorithms 
In a direct-mapped cache, the position of each block is predetermined by its 

address; hence, the replacement strategy is trivial. In associative and set-associative 
caches there exists some flexibility. 
When a new block is to be brought into the cache and all the positions that it may 
occupy are full, the cache controller must decide which of the old blocks to 
overwrite. 

This is an important issue, because the decision can be a strong determining 
factor in system performance. In general, the objective is to keep blocks in the cache 
that are likely to be referenced in the near future. But, it is not easy to determine 
which blocks are about to be referenced. 

The property of locality of reference in programs gives a clue to a reasonable 
strategy. Because program execution usually stays in localized areas for reasonable 
periods of time, there is a high probability that the blocks that have been referenced 
recently will be referenced again soon. Therefore, when a block is to be overwritten, it 
is sensible to overwrite the one that has gone the longest time without being 
referenced. This block is called the least recently used (LRU) block, and the technique 
is called the LRU replacement algorithm. 

The LRU algorithm has been used extensively. Although it performs well 
for many access patterns, it can lead to poor performance in some cases. 

 

Write Policies 
The write operation is proceeding in 2 ways. 

 Write-through protocol 

 Write-back protocol 

 
Write-through protocol: 

Here the cache location and the main memory locations are updated 
simultaneously. 

 

Write-back protocol: 

 This technique is to update only the cache location and to 
mark it as with associated flag bit called dirty/modified 
bit. 

 The word in the main memory will be updated later, when the 
block containing this marked word is to be removed from the cache 
to make room for a new block. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

97 | P a g e  
  

To overcome the read miss Load –through / Early restart protocol is used. 
 

BASIC CONCEPTS OF MEMORY SYSTEM 

The maximum size of the Main Memory (MM) that can be used in any computer is determined by its 

addressing scheme. For example, a 16-bit computer that generates 16-bit addresses is capable of 

addressing upto 216 =64K memory locations. If a machine generates 32-bit addresses, it can access upto 

232 = 4G memory locations. This number represents the size of address space of the computer. 

 

If the smallest addressable unit of information is a memory word, the machine is called word-

addressable. If individual memory bytes are assigned distinct addresses, the computer is called byte-

addressable. Most of the commercial machines are byte addressable. For example in a byte-addressable 

32-bit computer, each memory word contains 4 bytes. A possible word-address assignment would be: 

Word Address Byte Address 

 

0 0 1 2 3 

4 4 5 6 7 

8 8 9 10 11 

. ….. . ….. . ….. 

With the above structure a READ or WRITE may involve an entire memory word or it may involve 

only a byte. In the case of byte read, other bytes can also be read but ignored by the CPU. However, 

during a write cycle, the control circuitry of the MM must ensure that only the specified byte is altered. 

In this case, the higher-order 30 bits can specify the word and the lower-order 2 bits can specify the byte 

within the word. 

 

CPU-Main Memory Connection – A block schematic: - 

From the system standpoint, the Main Memory (MM) unit can be viewed as a “block box”. Data 

transfer between CPU and MM takes place through the use of two CPU registers, usually called MAR 

(Memory Address Register) and MDR (Memory Data Register). If MAR is K bits long and MDR is ‘n’ 

bits long, then the MM unit may contain upto 2k addressable locations and 

each location will be ‘n’ bits wide, while the word length is equal to ‘n’ bits. During a “memory 
cycle”, n bits of data may be transferred between the MM and CPU. 
 
This transfer takes place over the processor bus, which has k address lines (address bus), n data 
lines (data bus) and control lines like Read, Write, Memory Function completed (MFC), Bytes 
specifiers etc (control bus). For a read operation, the CPU loads the address into MAR, set READ to 
1 and sets other control signals if required. The data from the MM is loaded into MDR and MFC is 
set to 1. For a write operation, MAR, MDR are suitably loaded by the CPU, write is set to 1 and 
other control signals are set suitably. The MM control circuitry loads the data into appropriate 
locations and sets MFC to 1. This organization is shown in the following block schematic. 
 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

98 | P a g e  
  

Address Bus (k bits) Main Memory upto 2k addressable locations Word length = n bits Data bus (n 
bits) Control Bus (Read, Write, MFC, Byte Specifier etc) MAR MDR CPU 
 
Some Basic Concepts 
Memory Access Times: - It is a useful measure of the speed of the memory unit. It is the time that 
elapses between the initiation of an operation and the completion of that operation (for example, 
the time between READ and MFC). 
Memory Cycle Time :- It is an important measure of the memory system. It is the minimum time 
delay required between the initiations of two successive memory operations (for example, the 
time between two successive READ operations). The cycle time is usually slightly longer than the 
access time. 
Random Access Memory (RAM): 
A memory unit is called a Random Access Memory if any location can be accessed for a READ or 
WRITE operation in some fixed amount of time that is independent of the location’s address. Main 
memory units are of this type. This distinguishes them from serial or partly serial access storage 
devices such as magnetic tapes and disks which are used as the secondary storage device. 
 
Cache Memory:- 
The CPU of a computer can usually process instructions and data faster than they can be fetched 
from compatibly priced main memory unit. Thus the memory cycle time become the bottleneck in 
the system. One way to reduce the memory access time is to use cache memory. This is a small 
and fast memory that is inserted between the larger, slower main memory and the CPU. This 
holds the currently active segments of a program and its data. Because of the locality of address 
references, the CPU can, most of the time, find the relevant information in the cache memory itself 
(cache hit) and infrequently needs access to the main memory (cache miss) with suitable size of 
the cache memory, cache hit rates of over 90% are possible leading to a cost-effective increase in 
the performance of the system. 
 
Memory Interleaving: - 
This technique divides the memory system into a number of memory modules and arranges 
addressing so that successive words in the address space are placed in different modules. When 
requests for memory access involve consecutive addresses, the access will be to different   
modules.   Since    parallel    access    to    these    modules    is    possible,    the average rate of 
fetching words from the Main Memory can be increased. 
 
Virtual Memory: - 
In a virtual memory System, the address generated by the CPU is referred to as a virtual or logical 
address. The corresponding physical address can be different and the required mapping is 
implemented by a special memory control unit, often called the memory management unit. The 
mapping function itself may be changed during program execution according to system 
requirements. 
 
Because of the distinction made between the logical (virtual) address space and the physical 
address space; while the former can be as large as the addressing capability of the CPU, the actual 
physical memory can be much smaller. Only the active portion of the virtual address space is 
mapped onto the physical memory and the rest of the virtual address space 
is mapped onto the bulk storage device used. If the addressed information is in the Main Memory 
(MM), it is accessed and execution proceeds. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

99 | P a g e  
  

 
Otherwise, an exception is generated, in response to which the memory management unit 
transfers a contiguous block of words containing the desired word from the bulk storage unit to 
the MM, displacing some block that is currently inactive. If the memory is managed in such a way 
that, such transfers are required relatively infrequency (ie the CPU will generally find the required 
information in the MM), the virtual memory system can provide a reasonably good performance 
and succeed in creating an illusion of a large memory with a small, in expensive MM. 
 
Internal Organization of Semiconductor Memory Chips:- 
Memory chips are usually organized in the form of an array of cells, in which each cell is capable of 
storing one bit of information. A row of cells constitutes a memory word, and the cells of a row are 
connected to a common line referred to as the word line, and this line is driven by   the   address   
decoder   on   the   chip.   The   cells   in   each   column   are connected to a sense/write circuit by 
two lines known as bit lines. The sense/write circuits are connected to the data input/output lines 
of the chip. During a READ operation, the Sense/Write circuits sense, or read, the information 
stored in the cells selected by a word line and transmit this information to the output lines. During 
a write operation, they receive input information and store it in the cells of the selected word. 
 
The following figure shows such an organization of a memory chip consisting of 16 words of 8 bits 
each, which is usually referred to as a 16 x 8 organization. 
The data input and the data output of each Sense/Write circuit are connected to a single bi- 
directional data line in order to reduce the number of pins required. One control line, the 
R/W (Read/Write) input is used a specify the required operation and another control line, the CS    
(Chip    Select)    input    is    used    to    select    a    given    chip    in     a     multichip memory 
system. This circuit requires 14 external connections, and allowing 2 pins for power supply and 
ground connections, can be manufactured in the form of a 16-pin chip. It can store 16 x 8 = 128 
bits. Another type of organization for 1k x 1 format is shown below: 
 

 
 

The 10-bit address is divided into two groups of 5 bits each to form the row and column addresses 
for the cell array. A row address selects a row of 32 cells, all of which are accessed in parallel. One 
of these, selected by the column address, is connected to the external data lines by the input and 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

100 | P a g e  
  

output multiplexers. This structure can store 1024 bits, can be implemented in a 16-pin chip. 
 
A Typical Memory Cell 
Semiconductor memories may be divided into bipolar and MOS types. They may be compared as 
follows: 

 
Two transistor inverters connected to implement a basic flip-flop. The cell is connected to one word line 

and two bits lines as shown. Normally, the bit lines are kept at about 1.6V, and the word line is kept at a 

slightly higher voltage of about 2.5V. Under these conditions, the two diodes D1 and D2 are reverse 

biased. Thus, because no current flows through the diodes, the cell is isolated from the bit lines. 

 

Read Operation: 

Let us assume the Q1 on and Q2 off represents a 1 to read the contents of a given cell, the voltage on the 

corresponding word line is reduced from 2.5 V to approximately 0.3 V. This causes one of the diodes 

D1 or D2 to become forward-biased, depending on whether the transistor Q1 or Q2 is conducting. As a 

result, current flows from bit line b when the cell is in the 1 state and from bit line b when the cell is in 

the 0 state. The Sense/Write circuit at the end of each pair of bit lines monitors the current on lines b 

and b’ and sets the output bit line accordingly. 

 

Write Operation: 

While a given row of bits is selected, that is, while the voltage on the corresponding word line is 

0.3V, the cells can be individually forced to either the 1 state by applying a positive voltage of 

about 3V to line b’ or to the 0 state by driving line b. This function is performed by the Sense/Write 

circuit. 

 

MOS Memory Cell: 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

101 | P a g e  
  

MOS technology is used extensively in Main Memory Units. As in the case of bipolar memories, 
many MOS cell configurations are possible. The simplest of these is a flip-flop circuit. Two 
transistors T1 and T2 are connected to implement a flip-flop. Active pull-up to VCC is provided 
through T3 and T4. Transistors T5 and T6 act as switches that can be opened or closed under 
control of the word line. For a read operation, when the cell is selected, T5 or T6 is closed and the 
corresponding flow of current through b or b’ is sensed by the sense/write circuits to set the 
output bit line accordingly. For a write operation, the bit is selected and a positive voltage is 
applied on the appropriate bit line, to store a 0 or 1. This configuration is shown below: 
 

 

 
 

Static Memories Vs Dynamic Memories:- 
Bipolar as well as MOS memory cells using a flip-flop like structure to store information can 
maintain the information as long as current flow to the cell is maintained. Such memories are 
called static memories. In contracts, Dynamic memories require not only the maintaining of a 
power supply, but also a periodic “refresh” to maintain the information stored in them. Dynamic 
memories can have very high bit densities and very lower power consumption relative to static 
memories and are thus generally used to realize the main memory unit. 
 
Dynamic Memories:- 
The basic idea of dynamic memory is that information is stored in the form of a charge on the 
capacitor. An example of a dynamic memory cell is shown below: 
When the transistor T is turned on and an appropriate voltage is applied to the bit line, 
information is stored in the cell, in the form of a known amount of charge stored on the capacitor. 
After the transistor is turned off, the capacitor begins to discharge. This is caused by the 
capacitor’s own leakage resistance and the very small amount of current that still flows through 
the transistor. Hence the data is read correctly only if is read before the charge on the capacitor 
drops below some threshold value. During a Read 

 
 

operation, the bit line is placed in a high-impedance state, the transistor is turned on and a sense 
circuit connected to the bit line is used to determine whether the charge on the capacitor is above 
or below the threshold value. During such a Read, the charge on the capacitor is restored to its 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

102 | P a g e  
  

original value and thus the cell is refreshed with every read operation. 
Typical Organization of a Dynamic Memory Chip:- 

 
The cells are organized in the form of a square array such that the high-and lower-order 8 bits of 
the 16-bit address constitute the row and column addresses of a cell, respectively. In order to 
reduce the number of pins needed for external connections, the row and column address are 
multiplexed on 8 pins. 
 
To access a cell, the row address is applied first. It is loaded into the row address latch in response 
to a single pulse on the Row Address Strobe (RAS) input. This selects a row of cells. Now, the 
column address is applied to the address pins and is loaded into the column address latch under 
the control of the Column Address Strobe (CAS) input and this address selects the appropriate 
sense/write circuit. If the R/W signal indicates a Read operation, the output of the selected circuit 
is transferred to the data output. Do. For a write operation, the data on the DI line is used to 
overwrite the cell selected. 
 
It is important to note that the application of a row address causes all the cells on the 
corresponding row to be read and refreshed during both Read and Write operations. To ensure 
that the contents of a dynamic memory are maintained, each row of cells must be addressed 
periodically, typically once every two milliseconds. A Refresh circuit performs this function. Some 
dynamic memory chips in-corporate a refresh facility the chips themselves and hence they 
appear as static memories to the user! such chips are often referred to as Pseudostatic. 
Another feature available on many dynamic memory chips is that once the row address is 
loaded, successive locations can be accessed by loading only column addresses. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

103 | P a g e  
  

Such block transfers can be carried out typically at a rate that is double that for transfers involving 
random addresses. Such a feature is useful when memory access follow a regular pattern, for 
example, in a graphics terminal Because of their high density and low cost, dynamic memories are 
widely used in the main memory units of computers. Commercially available chips range in size 
from 1k to 4M bits or more, and are available in various organizations like 64k x 1, 16k x 4, 1MB x 
1 etc. 
 
RAID (Redundant Array of Independent Disks) 
 
RAID (redundant array of independent disks; originally redundant array of inexpensive disks) 
provides a way of storing the same data in different places (thus, redundantly) on multiple hard 
disks (though not all RAID levels provide redundancy). By placing data on multiple disks, 
input/output (I/O) operations can overlap in a balanced way, improving performance. Since 
multiple disks increase the mean time between failures (MTBF), storing data redundantly also 
increases fault tolerance. 
 
RAID arrays appear to the operating system (OS) as a single logical hard disk. RAID employs the 
technique of disk mirroring or disk striping, which involves partitioning each drive's storage 
space into units ranging from a sector (512 bytes) up to several megabytes. The stripes of all the 
disks are interleaved and addressed in order. 
 
In a single-user system where large records, such as medical or other scientific images, are stored, 
the stripes are typically set up to be small (perhaps 512 bytes) so that a single record spans all 
disks and can be accessed quickly by reading all disks at the same time. 
In a multi-user system, better performance requires establishing a stripe wide enough to hold the 
typical or maximum size record. This allows overlapped disk I/O across drives. 
 
Standard RAID levels 
RAID 0: This configuration has striping but no redundancy of data. It offers the best performance 
but no fault-tolerance. 
 

 
RAID 1: Also known as disk mirroring, this configuration consists of at least two drives that 
duplicate the storage of data. There is no striping. Read performance is improved since either disk 
can be read at the same time. Write performance is the same as for single disk storage. 

http://searchstorage.techtarget.com/definition/redundant
http://searchstorage.techtarget.com/definition/hard-disk
http://searchstorage.techtarget.com/definition/hard-disk
http://whatis.techtarget.com/definition/redundancy
http://searchcio-midmarket.techtarget.com/definition/input-output
http://whatis.techtarget.com/definition/MTBF-mean-time-between-failures
http://searchcio-midmarket.techtarget.com/definition/fault-tolerant
http://whatis.techtarget.com/definition/operating-system-OS
http://searchstorage.techtarget.com/definition/disk-mirroring
http://searchstorage.techtarget.com/definition/disk-striping
http://searchstorage.techtarget.com/definition/partition
http://searchstorage.techtarget.com/definition/sector
http://searchstorage.techtarget.com/definition/byte
http://searchstorage.techtarget.com/definition/megabyte
http://searchoracle.techtarget.com/definition/record
http://searchstorage.techtarget.com/definition/RAID-0-disk-striping


 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

104 | P a g e  
  

 
RAID 2: This configuration uses striping across disks with some disks storing error checking and 
correcting (ECC) information. It has no advantage over RAID 3 and is no longer used. 

 
RAID 3: This technique uses striping and dedicates one drive to storing parity information. The 
embedded ECC information is used to detect errors. Data recovery is accomplished by calculating 
the exclusive OR (XOR) of the information recorded on the other drives. Since an I/O operation 
addresses all drives at the same time, RAID 3 cannot overlap I/O. For this reason, RAID 3 is best 
for single-user systems with long record applications. 
 

 
 

RAID 4: This level uses large stripes, which means you can read records from any single 
drive. This allows you to use overlapped I/O for read operations. Since all write operations have 
to update the parity drive, no I/O overlapping is possible. RAID 4 offers no advantage over RAID 5. 

http://searchstorage.techtarget.com/definition/RAID-2-redundant-array-of-independent-disks
http://searchnetworking.techtarget.com/definition/ECC
http://searchstorage.techtarget.com/definition/RAID-3-redundant-array-of-independent-disks
http://searchstorage.techtarget.com/definition/parity
http://searchdisasterrecovery.techtarget.com/definition/data-recovery
http://searchstorage.techtarget.com/definition/RAID-4-redundant-array-of-independent-disks


 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

105 | P a g e  
  

 
RAID 5: This level is based on block-level striping with parity. The parity information is striped 
across each drive, allowing the array to function even if one drive were to fail. The array’s 
architecture allows read and write operations to span multiple drives. This results in performance 
that is usually better than that of a single drive, but not as high as that of a RAID 0 array. RAID 5 
requires at least three disks, but it is often recommended to use at least five disks for performance 
reasons. 
 
RAID 5 arrays are generally considered to be a poor choice for use on write-intensive systems 
because of the performance impact associated with writing parity information. When a disk does 
fail, it can take a long time to rebuild a RAID 5 array. Performance is usually degraded during the 
rebuild time and the array is vulnerable to an additional disk failure until the rebuild is complete. 
 

 
RAID 6: This technique is similar to RAID 5 but includes a second parity scheme that is distributed 
across the drives in the array. The use of additional parity allows the array to continue to function 
even if two disks fail simultaneously. However, this extra protection comes at a cost. RAID 6 
arrays have a higher cost per gigabyte (GB) and often have slower write performance than RAID 5 
arrays. 

http://searchstorage.techtarget.com/definition/RAID-5-redundant-array-of-independent-disks
http://searchsqlserver.techtarget.com/definition/block
http://searchstorage.techtarget.com/definition/RAID-6-redundant-array-of-independent-disks
http://searchstorage.techtarget.com/definition/gigabyte


 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

106 | P a g e  
  

 
 

 

 

Direct Memory Access (DMA) 

DMA stands for "Direct Memory Access" and is a method of transferring data from the 

computer's RAM to another part of the computer without processing it using the CPU. While most data 

that is input or output from your computer is processed by the CPU, some data does not require 

processing, or can be processed by another device. 

 

In these situations, DMA can save processing time and is a more efficient way to move data from the 

computer's memory to other devices. In order for devices to use direct memory access, they must be 

assigned to a DMA channel. Each type of port on a computer has a set of DMA channels that can be 

assigned to each connected device. For example, a PCI controller and a hard drive controller each have 

their own set of DMA channels. 

For example, a sound card may need to access data stored in the computer's RAM, but since it can 
process the data itself, it may use DMA to bypass the CPU. Video cards that support DMA can also 
access the system memory and process graphics without needing the CPU. Ultra DMA hard drives 
use DMA to transfer data faster than previous hard drives that required the data to first be run 
through the CPU. 
 
An alternative to DMA is the Programmed Input/Output (PIO) interface in which all data 
transmitted between devices goes through the processor. A newer protocol for the ATAIIDE 
interface is Ultra DMA, which provides a burst data transfer rate up to 33 mbps. Hard drives that 
come with Ultra DMAl33 also support PIO modes 1, 3, and 4, and multiword DMA mode 2 at 16.6 
mbps. 
 
DMA Transfer Types 
Memory To Memory Transfer 
In this mode block of data from one memory address is moved to another memory address. In 
this mode current address register of channel 0 is used to point the source address and the 
current address register of channel is used to point the destination address in the first transfer 
cycle, data byte from the source address is loaded in the temporary register of the DMA controller 
and in the next transfer cycle the data from the temporary register is stored in the memory 
pointed by destination address. 
 

http://ecomputernotes.com/fundamental/introduction-to-computer/direct-memory-access
http://ecomputernotes.com/fundamental/introduction-to-computer/direct-memory-access
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
http://ecomputernotes.com/fundamental/input-output-and-memory/what-are-the-different-types-of-ram-explain-in-detail
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-cpu
http://ecomputernotes.com/fundamental/input-output-and-memory/what-are-the-different-types-of-ram-explain-in-detail


 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

107 | P a g e  
  

After each data transfer current address registers are decremented or incremented according to 
current settings. The channel 1 current word count register is also decremented by 1 after each 
data transfer. When the word count of channel 1 goes to FFFFH, a TC is generated which activates 
EOP output terminating the DMA service. 
 
Auto initialize 
In this mode, during the initialization the base address and word count registers are loaded 
simultaneously with the current address and word count registers by the microprocessor. The 
address and the count in the base registers remain unchanged throughout the DMA service. 
After the first block transfer i.e. after the activation of the EOP signal, the original values of the 
current address and current word count registers are automatically restored from the base 
address and base word count register of that channel. After auto initialization the channel is ready 
to perform another DMA service, without CPU intervention. 
 

 
DMA Controller 
The controller is integrated into the processor board and manages all DMA data transfers. 
Transferring data between system memory and a 110 device requires two steps. Data goes from 
the sending device to the DMA controller and then to the receiving device. The microprocessor 
gives the DMA controller the location, destination, and amount of data that is to be transferred. 
Then the DMA controller transfers the data, allowing the microprocessor to continue with other 
processing tasks. 
 
When a device needs to use the Micro Channel bus to send or receive data, it competes with all the 
other devices that are trying to gain control of the bus. This process is known as arbitration. The 
DMA controller does not arbitrate for control of the BUS instead; the I/O device that is sending or 
receiving data (the DMA slave) participates in arbitration. It is the DMA controller, however, that 
takes control of the bus when the central arbitration control point grants the DMA slave's request. 
DMA vs. interrupts vs. polling 

 
 
 
 
 
 
Works in the background without CPU intervention 
This speed up data transfer and CPU speed 
The DMA is used for moving large files since it would take too much of CPU capacity 
 

A diagram showing the position of the DMA in relation to peripheral devices, the CPU and 
internal memory 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

108 | P a g e  
  

Interrupt Systems 
Interrupts take up time of the CPU 
they work by asking for the use of the CPU by sending the interrupt to which the CPU 
responds 
o Note: In order to save time the CPU does not check if it has to respond 
Interrupts are used when a task has to be performed immediately 
 
 
Polling 
Polling requires the CPU to actively monitor the process 
The major advantage is that the polling can be adjusted to the needs of the device 
polling is a low level process since the peripheral device is not in need of a quick response 
 

http://dis-dpcs.wikispaces.com/6.5.3%2BInterrupts%2Band%2BPolling
http://dis-dpcs.wikispaces.com/6.5.3%2BInterrupts%2Band%2BPolling


 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

109 | P a g e  
  

 

Characteristics of Multiprocessors 
A multiprocessor system is an interconnection of two or more CPU, with memory and 
input-output equipment. As defined earlier, multiprocessors can be put under MIMD 
category. The term multiprocessor is sometimes confused with the term multi 
computers. Though both support concurrent operations, there is an important 
difference between a system with multiple computers and a system with multiple 
processors. 
 
In a multi computers system, there are multiple computers, with their own operating 
systems, which communicate with each other, if needed, through communication 
links. A multiprocessor system, on the other hand, is controlled by a single operating 
system, which coordinate the activities of the various processors, either through 
shared memory or inter processor messages. 
 
The advantages of multiprocessor systems are: 
Increased reliability because of redundancy in processors 
Increased throughput because of execution of multiple jobs in parallel portions of the 
same job in parallel 
 
A single job can be divided into independent tasks, either manually by the 
programmer, or by the compiler, which finds the portions of the program that are 
data independent, and can be executed in parallel. The multiprocessors are further 
classified into two groups depending on the way their memory is organized. The 
processors with shared memory are called tightly coupled or shared memory 
processors. 
 
The information in these processors is shared through the common memory. Each of 
the processors can also have their local memory too. The other class of 
multiprocessors is loosely coupled or distributed memory multi-processors. In this, 
each processor has their own private memory, and they share information with each 
other through interconnection switching scheme or message passing. 
 
 
The principal characteristic of a multiprocessor is its ability to share a set of main 
memory and some I/O devices. This sharing is possible through some physical 
connections between them called the interconnection structures. 
 
Inter processor Arbitration 
Computer system needs buses to facilitate the transfer of information between its 
various components. For example, even in a uniprocessor system, if the CPU has to 
access a memory location, it sends the address of the memory location on the address 
bus. This address activates a memory chip. The CPU then sends a red signal through 
the control bus, in the response of which the memory puts the data on the address 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

110 | P a g e  
  

bus. 
 
This address activates a memory chip. The CPU then sends a read signal through the 
control bus, in the response of which the memory puts the data on the data bus. 
Similarly, in a multiprocessor system, if any processor has to read a memory location 
from the shared areas, it follows the similar routine. 
 
There are buses that transfer data between the CPUs and memory. These are called 
memory buses. An I/O bus is used to transfer data to and from input and output 
devices. A bus that connects major components in a multiprocessor system, such as 
CPUs, I/Os, and memory is called system bus. A processor, in a multiprocessor 
system, requests the access of a component through the system bus. 
 
In case there is no processor accessing the bus at that time, it is given then control of 
the bus immediately. If there is a second processor utilizing the bus, then this 
processor has to wait for the bus to be freed. If at any time, there is request for the 
services of the bus by more than one processor, then the arbitration is performed to 
resolve the conflict. A bus controller is placed between the local bus and the system 
bus to handle this. 
 
Inter processor Communication and Synchronization 
In a multiprocessor system, it becomes very necessary, that there be proper 
communication protocol between the various processors. In a shared memory 
multiprocessor system, a common area in the memory is provided, in which all the 
messages that need to be communicated to other processors are written. 
A proper synchronization is also needed whenever there is a race of two or more 
processors for shared resources like I/O resources. The operating system in this case 
is given the task of allocating the resources to the various processors in a way, that at 
any time not more than one processor use the resource. 
 
A very common problem that can occur when two or more resources are trying to 
access a resource which can be modified. For example processor 1 and 2 are 
simultaneously trying to access memory location 100. Say the processor 1 is writing 
on to the location while processor 2 is reading it. The chances are that processor 2 
will end up reading erroneous data. Such kind of resources which need to be 
protected from simultaneous access of more than one processors are called critical 
sections. The following assumptions are made regarding the critical sections: 
Mutual exclusion: At most one processor can be in a critical section at a time 
-Termination : The critical section is executed in a finite time 
Fair scheduling: A process attempting to enter the critical section will eventually do 
so in a finite time. 
A binary value called a semaphore is usually used to indicate whether a processor is 
currently Executing the critical section. 
 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

111 | P a g e  
  

Cache Coherence 
As discussed in unit 2, cache memories are high speed buffers which are inserted 
between the processor and the main memory to capture those portions of the 
contents of main memory which are currently in use. These memories are five to ten 
times faster than main memories, and therefore, reduce the overall access time. In a 
multiprocessor system, with shared memory, each processor has its own set of private 
cache. 
 
Multiple copies of the cache are provided with each processor to reduce the access 
time. Each processor, whenever accesses the shared memory, also updates its private 
cache. This introduced the problem of cache coherence, which may result in data 
inconsistency. That is, several copies of the same data may exist in different caches at 
any given time. 
 
For example, let us assume there are two processors x and y. Both have the same copy 
of the cache. Processor x, produces data 'a' which is to be consumed by processor y. 
Processor update the value of 'a' in its own private copy of the cache. As it does not 
have any access tothe private copy of cache of processor y, the processor y continues 
to use the variable 'a' with old value, unless it is informed of the change. 
 
Thus, in such kind of situations if the system is to perform correctly, every updation in 
the cache should be informed to all the processors, so that they can make necessary 
changes in their private copies of the cache. 
 

 
 
 

Introduction of Cache Memory 

 

 

Basic Cache Structure 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

112 | P a g e  
  

 
Processors are generally able to perform operations on operands faster than the 
access time of large capacity main memory. Though semiconductor memory which 
can operate at speeds comparable with the operation of the processor exists, it is not 
economical to provide all the main memory with very high speed semiconductor 
memory. The problem can be alleviated by introducing a small block of high speed 
memory called a cache between the main memory and the processor. 
 
The idea of cache memories is similar to virtual memory in that some active portion of 
a low-speed memory is stored in duplicate in a higher- speed cache memory. When a 
memory request is generated, the request is first presented to the cache memory, and 
if the cache cannot respond, the request is then presented to main memory. 
 
The difference between cache and virtual memory is a matter of implementation; the 
two notions are conceptually the same because they both rely on the correlation 
properties observed in sequences of address references. Cache implementations are 
totally different from virtual memory implementation because of the speed 
requirements of cache. 
 
We define a cache miss to be a reference to a item that is not resident in cache, but is 
resident in main memory. The corresponding concept for cache memories is page 
fault, which is defined to be a reference to a page in virtual memory that is not 
resident in main memory. For cache misses, the fast memory is cache and the slow 
memory is main memory. For page faults the fast memory is main memory, and the 
slow memory is auxiliary memory. 
 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

113 | P a g e  
  

Fig 1. A cache-memory reference. The tag 0117X matches address 01173, so the cache 
returns the item in the position X=3 of the matched block 
 
Figure 1 shows the structure of a typical cache memory. Each reference to a cell in 
memory is presented to the cache. The cache searches its directory of address tags 
shown in the figure to see if the item is in the cache. If the item is not in the cache, a 
miss occurs. 
 
For READ operations that cause a cache miss, the item is retrieved from main memory 
and copied into the cache. During the short period available before the main-memory 
operation is complete, some other item in cache is removed form the cache to make 
rood for the new item. 
 
The cache-replacement decision is critical; a good replacement algorithm can yield 
somewhat higher performance than can a bad replacement algorithm. The effective 
cycle-time of a cache memory (teff) is the average of cache-memory cycle time (tcache) 
and main-memory cycle time (tmain), where the probabilities in the averaging process 
are the probabilities of hits and misses. 
 
If we consider only READ operations, then a formula for the average cycle-time is: 
 
teff = tcache + ( 1 - h ) tmain 
 
where h is the probability of a cache hit (sometimes called the hit rate), the quantity ( 1 
- h ), which is the probability of a miss, is know as the miss rate. 
 
In Fig.1 we show an item in the cache surrounded by nearby items, all of which are 
moved into and out of the cache together. We call such a group of data a block of the 
cache. 
 
 
 
Cache Memory Organizations 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

114 | P a g e  
  

 
 

fig.2 The logical organization of a four-way set-

associate cache 

 
Fig.2 shows a conceptual implementation of a cache memory. This system is called set 
associative because the cache is partitioned into distinct sets of blocks, ad each set 
contains a small fixed number of blocks. The sets are represented by the rows in the 
figure. In this case, the cache has N sets, and each set contains four blocks. When an 
access occurs to this cache, the cache controller does not search the entire cache 
looking for a match. 
Instead, the controller maps the address to a particular set of the cache and searches 
only the set for a match. 
 
If the block is in the cache, it is guaranteed to be in the set that is searched. Hence, if 
the block is not in that set, the block is not present in the cache, and the cache 
controller searches no further. Because the search is conducted over four blocks, the 
cache is said to be four-way set associative or, equivalently, to have an associativity of 
four. 
 
Fig.2 is only one example, there are various ways that a cache can be arranged 
internally to store the cached data. In all cases, the processor reference the cache with 
the main memory address of the data it wants. Hence each cache organization must 
use this address to find the data in the cache if it is stored there, or to indicate to the 
processor when a miss has occurred. The problem of mapping the information held in 
the main memory into the cache must be totally implemented in hardware to achieve 
improvements in the system operation. Various strategies are possible. 
 

• Fully associative mapping 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

115 | P a g e  
  

Perhaps the most obvious way of relating cached data to the main memory address is 
to store both memory address and data together in the cache. This the fully 
associative mapping approach. A fully associative cache requires the cache to be 
composed of associative memory holding both the memory address and the data for 
each cached line. The incoming memory address is simultaneously compared with all 
stored addresses using the internal logic of the associative memory, as shown in Fig.3. 
If a match is fund, the corresponding data is read out. Single words form anywhere 
within the main memory could be held in the cache, if the associative part of the cache 
is capable of holding a full address 
 

 

Fig.3 Cache with fully associative mapping 

 

In all organizations, the data can be more than one word, i.e., a block of consecutive 
locations to take advantage of spatial locality. In Fig.4 aline constitutes four words, 
each word being 4 bytes. The least significant part of the address selects the particular 
byte, the next part selects the word, and the remaining bits form the address 
compared to the address in the cache. The whole line can be transferred to and from 
the cache in one transaction if there are sufficient data paths between the main 
memory and the cache. With only one data word path, the words of the line have to be 
transferred in separate transactions. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

116 | P a g e  
  

 
 

Fig.5 Fully associative mapped cache with multi-word 

lines 

 

The fully associate mapping cache gives the greatest flexibility of holding 
combinations of blocks in the cache and minimum conflict for a given sized cache, but 
is also the most expensive, due to the cost of the associative memory. It requires a 
replacement algorithm to select a block to remove upon a miss and the algorithm 
must be implemented in hardware to maintain a high speed of operation. The fully 
associative cache can only be formed economically with a moderate size capacity. 
Microprocessors with small internal caches often employ the fully associative 
mechanism. 
 
Direct mapping 
 
The fully associative cache is expensive to implement because of requiring a 
comparator with each cache location, effectively a special type of memory. In direct 
mapping, the cache consists of normal high speed random access memory, and each 
location in the cache holds the data, at an address in the cache given by the lower 
significant bits of the main memory address. This enables the block to be selected 
directly from the lower significant bits of the memory address. The remaining higher 
significant bits of the address are stored in the cache with the data to complete the 
identification of the cached data. 
 
Consider the example shown in Fig.5. The address from the processor is divided into 
tow fields, a tag and an index. The tag consists of the higher significant bits of the 
address, which are stored with the data. The index is the lower significant bits of the 
address used to address the cache. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

117 | P a g e  
  

 

 

 

Fig.5 Cache with direct mapping 

 

When the memory is referenced, the index is first used to access a word in the cache. 
Then the tag stored in the accessed word is read and compared with the tag in the 
address. If the two tags are the same, indicating that the word is the one required, 
access is made to the addressed cache word. However, if the tags are not the same, 
indicating that the required word is not in the cache, reference is made to the main 
memory to find it. For a memory read operation, the word is then transferred into the 
cache where it is accessed. It is possible to pass the information to the cache and the 
processor simultaneously, i.e., to read-through the cache, on a miss. The cache 
location is altered for a write operation. The main memory may be altered at the same 
time (write-through) or later. 
 
Fig.6. shows the direct mapped cache with a line consisting of more than one word. 
The main memory address is composed of a tag, an index, and a word within a line. All 
the words within a line in the cache have the same stored tag. The index part to the 
address is used to access the cache and the stored tag is compared with required tag 
address. For a read operation, if the tags are the same the word within the block is 
selected for transfer to the 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

118 | P a g e  
  

processor. If the tags are not the same, the block containing the required word is first 
transferred to the cache. 
 

 

Fig.6 Direct mapped cache with a multi-word block 

 

In direct mapping, the corresponding blocks with the same index in the main memory 
will map into the same block in the cache, and hence only blocks with different indices 
can be in the cache at the same time. A replacement algorithm is unnecessary, since 
there is only one allowable location for each incoming block. Efficient replacement 
relies on the low probability of lines with the same index being required. However 
there are such occurrences, for example, when two data vectors are stored starting at 
the same index and pairs of elements need to processed together. To gain the greatest 
performance, data arrays and vectors need to be stored in a manner which minimizes 
the conflicts in processing pairs of elements. Fig.6 shows the lower bits of the 
processor address used to address the cache location directly. It is possible to 
introduce a mapping function between the address index and the cache index so that 
they are not the same. 
 
Set-associative mapping 
 
In the direct scheme, all words stored in the cache must have different indices. The 
tags may be the same or different. In the fully associative scheme, blocks can displace 
any other block and can be placed anywhere, but 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

119 | P a g e  
  

the cost of the fully associative memories operate relatively slowly. 
 
Set-associative mapping allows a limited number of blocks, with the same index and 
different tags, in the cache and can therefore be considered as a compromise between 
a fully associative cache and a direct mapped cache. The organization is shown in 
Fig.7. The cache is divided into "sets" of blocks. A four-way set associative cache 
would have four blocks in each set. The number of blocks in a set is know as the 
associativity or set size. Each block in each set has a stored tag which, together with 
the index, completes the identification of the block. First, the index of the address 
from the processor is used to access the set. 
Then, comparators are used to compare all tags of the selected set with the incoming 
tag. If a match is found, the corresponding location is accessed, other wise, as before, 
an access to the main memory is made. 
 

 

Fig.7 Cache with set-associative mapping 

 

The tag address bits are always chosen to be the most significant bits of the full 
address, the block address bits are the next significant bits and the word/byte address 
bits form the least significant bits as this spreads out consecutive man memory blocks 
throughout consecutive sets in the cache. 
This addressing format is known as bit selection and is used by all known systems. In 
a set-associative cache it would 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

120 | P a g e  
  

be possible to have the set address bits as the most significant bits of the address and 
the block address bits as the next significant, with the word within the block as the 
least significant bits, or with the block address bits as the least significant bits and the 
word within the block as the middle bits. 
 
Notice that the association between the stored tags and the incoming tag is done using 
comparators and can be shared for each associative search, and all the information, 
tags and data, can be stored in ordinary random access memory. The number of 
comparators required in the set-associative cache is given by the number of blocks in 
a set, not the number of blocks in all, as in a fully associative memory. The set can be 
selected quickly and all the blocks of the set can be read out simultaneously with the 
tags before waiting for the tag comparisons to be made. After a tag has been 
identified, the corresponding block can be selected. 
 

The replacement algorithm for set-associative mapping need only consider the lines 
in one set, as the choice of set is predetermined by the index in the address. Hence, 
with two blocks in each set, for example, only one additional bit is necessary in each set 
to identify the block to replace. 
 
Sector mapping 
 
In sector mapping, the main memory and the cache are both divided into sectors; each 
sector is composed of a number of blocks. Any sector in the main memory can map 
into any sector in the cache and a tag is stored with each sector in the cache to identify 
the main memory sector address. 
However, a complete sector is not transferred to the cache or back to the main 
memory as one unit. Instead, individual blocks are transferred as required. On cache 
sector miss, the required block of the sector is transferred into a specific location 
within one sector. The sector location in the cache is selected and all the other existing 
blocks in the sector in the cache are from a previous sector. 
 

Sector mapping might be regarded as a fully associative mapping scheme with valid 
bits, as in some microprocessor caches. Each block in the fully associative mapped 
cache corresponds to a sector, and each byte corresponds to a "sector block". 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

121 | P a g e  
  

 

Cache Performance 
 
The performance of a cache can be quantified in terms of the hit and miss rates, the 
cost of a hit, and the miss penalty, where a cache hit is a memory access that finds data 
in the cache and a cache miss is one that does not. 
 
When reading, the cost of a cache hit is roughly the time to access an entry in the cache. 
The miss penalty is the additional cost of replacing a cache line with one containing 
the desired data. 
 

(Access 
time) 

= (hit cost) + (miss rate)*(miss penalty) 

 =(Fast memory access time) + (miss rate)*(slow memory access 
time) 

 
Note that the approximation is an underestimate - control costs have been left out. Also 
note that only one word is being loaded from the faster memory while a whole cache 
block's worth of data is being loaded from the slower memory. 
 
Since the speeds of the actual memory used will be improving 
``independently'', most effort in cache design is spent on fast control and decreasing 
the miss rates. We can classify misses into three categories, compulsory misses, 
capacity misses and conflict misses. Compulsory misses are when data is loaded into 
the cache for the first time (e.g. program startup) and are unavoidable. Capacity 
misses are when data is reloaded because the cache is not large enough to hold all the 
data no matter how we organize the data (i.e. even if we changed the hash function and 
made it omniscient). All other misses are conflict misses - there is theoretically 
enough space in the cache to avoid the miss but our fast hash function caused a miss 
anyway. 
 
 
 
Fetch and write mechanism 
 
Fetch policy 
 
We can identify three strategies for fetching bytes or blocks from the main memory to 
the cache, namely: 
 
Demand fetch 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

122 | P a g e  
  

Which is the fetching a block when it is needed and is not already in the cache, i.e. to 
fetch the required block on a miss. This strategy is the simplest and requires no 
additional hardware or tags in the cache recording the references, except to identify 
the block in the cache to be replaced. 
 
 
 
Prefetch 
 
Which is fetching blocks before they are requested. A simple prefetch strategy is to 
prefetch the (i+1)th block when the ith block is initially referenced on the expectation 
that it is likely to be needed if the ith block is needed. On the simple prefetch strategy, 
not all first references will induce a miss, as some will be to prefetched blocks. 
 
 
 
Selective fetch 
 
Which is the policy of not always fetching blocks, dependent upon some defined 
criterion, and in these cases using the main memory rather than the cache to hold the 
information. For example, shared writable data might be easier to maintain if it is 
always kept in the main memory and not passed to a cache for access, especially in 
multi-processor systems. Cache systems need to be designed so that the processor can 
access the main memory directly and bypass the cache. Individual locations could be 
tagged as non-cacheable. 
 
Instruction and data caches 
 
The basic stored program computer provides for one main memory for holding both 
program instructions and program data. The cache can be organized in the same 
fashion, with the cache holding both program instructions and data. This is called a 
unified cache. We also can separate the cache into two parts: data cache and 
instruction (code) cache. The general arrangement of separate caches is shown in fig.8. 
Often the cache will be integrated inside the processor chip. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

123 | P a g e  
  

 
 

Fig.8 Separate instruction and data caches 

 

Write operations 
 
As reading the required word in the cache does not affect the cache contents, there 
can be no discrepancy between the cache word and the copy held in the main memory 
after a memory read instruction. However, in general, writing can occur to cache 
words and it is possible that the cache word and copy held in the main memory may 
be different. It is necessary to keep the cache and the main memory copy identical if 
input/output transfers operate on the main memory contents, or if multiple 
processors operate on the main memory, as in a shared memory multiple processor 
system. 
 
If we ignore the overhead of maintaining consistency and the time for writing data 
back to the main memory, then the average access time is given by the previous 
equation, i.e. teff = tcache + ( 1 - h ) tmain , assuming that all accesses are first made to the 
cache. The average access time including write operations will add additional time to 
this equation that will depend upon the mechanism used to maintain data consistency. 
 
There are two principal alternative mechanisms to update the main memory, namely 
the write-through mechanism and the write-back mechanism. 
 

Write-through mechanism 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

124 | P a g e  
  

In the write-though mechanism, every write operation to the cache is repeated to the 
main memory, normally at the same time. The additional write operation to the main 
memory will, of course, take much longer than to the cache and will dominate the 
access time for write operations. The average access time of write-through with 
transfers from main memory to the cache on all misses (read and write) is given by: 
 

ta = tcache + ( 1 - h ) ttrans + w(tmain - tcache) 
 = (1 - w) tcache + (1 - h) ttrans + wtmain 

Where 
ttrans 

= time to transfer block to cache, assuming the 
whole block must be transferred together 

W = fraction of write references. 
 
 
The term (tmain - tcache) is the additional time to write the word to main memory 
whether a hit or a miss has occurred, given that both cache and main memory write 
operation occur simultaneously but the main memory write operation must complete 
before any subsequent cache read/write operation can be proceed. If the size of the 
block matches the external data path size, a whole block can be transferred in one 
transaction and ttrans = tmain. 
 
On a cache miss, a block could be transferred from the main memory to the cache 
whether the miss was caused by a write or by a read operation. The term allocate on 
write is used to describe a policy of bringing a word/block from the main memory into 
the cache for a write operation. In write- through, fetch on write transfers are often not 
done on a miss, i.e., a Non- allocate on write policy. The information will be written 
back to the main memory but not kept in the cache. 
 
The write-through scheme can be enhanced by incorporating buffers, as shown in 
Fig.9, to hold information to be written back to the main memory, freeing the cache for 
subsequent accesses. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

125 | P a g e  
  

 

 
 

 

Fig.9 Cache with write buffer 

 

For write-through, each item to be written back to the main memory is held in a buffer 
together with the corresponding main memory address if the transfer cannot be made 
immediately. 
 
Immediate writing to main memory when new values are generated ensures that the 
most recent values are held in the main memory and hence that any device or 
processor accessing the main memory should obtain the most recent values 
immediately, thus avoiding the need for complicated consistency mechanisms. There 
will be latency before the main memory has been updated, and the cache and main 
memory values are not consistent during this period. 
 
Write-back mechanism 
 
In the write-back mechanism, the write operation to the main memory is only done at 
block replacement time. At this time, the block displaced by the incoming block might 
be written back to the main memory irrespective of whether the block has been 
altered. The policy is known as simple write-back, and leads to an average access time 
of: 
 
ta = tcache + ( 1 - h ) ttrans + (1 - h) ttrans 
 
Where one (1 - h) ttrans term is due to fetching a block from memory and the other (1 - 
h) ttrans term is due to writing back a block. Write-back normally handles write misses 
as allocate on write, as opposed to write-through, which often handles write misses as 
Non-allocate on write. 
 
The write-back mechanism usually only writes back lines that have been altered. To 
implement this policy, a 1-bit tag is associated with each cache line and is set whenever 
the 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

126 | P a g e  
  

block is altered. At replacement time, the tags are examined to determine whether it is 
necessary to write the block back to the main memory. The average access time now 
becomes: 
ta = tcache + ( 1 - h ) ttrans + wb(1 - h) ttrans where wb is the probability that a block has 
been altered 
(fraction of blocks altered). The probability that a block has been altered could be as 
high as the probability of write references, w, but is likely to be much less, as more 
than one write reference to the same block is likely and some references to the same 
byte/word within the block are likely. However, under this policy the complete block 
is written back, even if only one word in the block has been altered, and thus the 
policy results in more traffic than is necessary, especially for memory data paths 
narrower than a line, but still there is usually less memory traffic than write-through, 
which causes every alteration to be recorded in the main memory. The write-back 
scheme can also be enhanced by incorporating buffers to hold information to be 
written back to the main memory, just as is possible and normally done with write-
through. 
 
 
 
Replacement policy 
 
When the required word of a block is not held in the cache, we have seen that it is 
necessary to transfer the block from the main memory into the cache, displacing an 
existing block if the cache is full. Except for direct mapping, which does not allow a 
replacement algorithm, the existing block in the cache is chosen by a replacement 
algorithm. The replacement mechanism must be implemented totally in hardware, 
preferably such that the selection can be made completely during the main memory 
cycle for fetching the new block. Ideally, the block replaced will not be needed again in 
the future. However, such future events cannot be known and a decision has to be 
made based upon facts that are known at the time. 
 
Random replacement algorithm 
 
Perhaps the easiest replacement algorithm to implement is a pseudo-random 
replacement algorithm. A true random replacement algorithm would select a block to 
replace in a totally random order, with no regard to memory references or previous 
selections; practical random replacement 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

127 | P a g e  
  

algorithms can approximate this algorithm in one of several ways. For example, one 
counter for the whole cache could be incremented at intervals (for example after each 
clock cycle, or after each reference, irrespective of whether it is a hit or a miss). The 
value held in the counter identifies the block in the cache ( if fully associative) or the 
block in the set if it is a set-associative cache. The counter should have sufficient bits 
to identify any block. For a fully associative cache, an n-bit counter is necessary if 
there are 2n words in the cache. For a four-way set-associative cache, one 2-bit 
counter would be sufficient, together with logic to increment the counter. 
 
First-in first-out replacement algorithm 
 
The first-in first-out replacement algorithm removes the block that has been in the 
cache for the longest time. The first-in first-out algorithm would naturally be 
implemented with a first-in first-out queue of block address, but can be more easily 
implemented with counters, only one counter for a fully associative cache or one 
counter for each set in a set-associative cache, each with a sufficient number of bits to 
identify the block. 
 
Least recently used algorithm for a cache 
 
In the least recently used (LRU) algorithm, the block which has not been referenced for 
the longest time is removed from the cache. Only those blocks in the cache are 
considered. The word "recently" comes about because the block is not the least used, 
as this is likely to be back in memory. It is the least used of those blocks in the cache, 
and all of those are likely to have been recently used otherwise they would not be in 
the cache. The least recently used (LRU) algorithm is popular for cache systems and 
can be implemented fully when the number of blocks involved is small. There are 
several ways the algorithm can be implemented in hardware for a cache, these 
include: 
 
Counters 
 
In the counter implementation, a counter is associated with each block. A simple 
implementation would be to increment each counter at regular intervals and to reset 
a counter when the associated line had been referenced. 
Hence the value in each counter would indicate the age of a 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

128 | P a g e  
  

block since last referenced. The block with the largest age would be replaced at 
replacement time. 
 
Register stack 
 
In the register stack implementation, a set of n-bit registers is formed, one for each 
block in the set to be considered. 
The most recently used block is recorded at the "top" of the stack and the least recently 
used block at the bottom. 
Actually, the set of registers does not form a conventional stack, as both ends and 
internal values are accessible. The value held in one register is passed to the next 
register under certain conditions. When a block is referenced, starting at the top of 
the stack, starting at the top of the stack, the values held in the registers are shifted 
one place towards the bottom of the stack until a register is found to hold the same 
value as the incoming block identification. Subsequent registers are not shifted. The 
top register is loaded with the incoming block identification. This has the effect of 
moving the contents of the register holding the incoming block number to the top of 
the stack. This logic is fairly substantial and slow, and not really a practical solution. 
 

 
 
Fig.10 Least recently used replacement algorithm implementation 
 
Reference matrix 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

129 | P a g e  
  

The reference matrix method centers around a matrix of status bits. There is more 
than one version of the method. In one version (Smith, 1982), the upper triangular 
matrix of a B X B matrix is formed without the diagonal, if there are B blocks to 
consider. The triangular matrix has (B * (B - 1))/2 bits. When the ith block is 
referenced, all the bits in the ith row of the matrix are set to 1 and then all the bits in 
the ith column are set to 0. The least recently used block is one which has all 0's in its 
row and all 1's in its column, which can be detected easily by logic. The method is 
demonstrated in Fig.10 for B = 4 and the reference sequence 2, 1, 3, 0, 3, 2, 1, …, 
together with the values that would be obtained using a register stack. 
 
Approximate methods. 
 
When the number of blocks to consider increases above about four to eight, 
approximate methods are necessary for the LRU algorithm. Fig.11 shows a two-stage 
approximation method with eight blocks, which is applicable to any replacement 
algorithm. The eight blocks in Fig.11 are divided into four pairs, and each pair has one 
status bit to indicate the most/least recently used block in the pair (simply set or reset 
by reference to each block). 
The least recently used replacement algorithm now only considers the four pairs. Six 
status bits are necessary (using the reference matrix) to identify the least recently 
used pair which, together with the status bit of the pair, identifies the least recently 
used block of a pair. 
 

 
Fig.11 Two-stage replacement algorithm 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

130 | P a g e  
  

The method can be extended to further levels. For example, sixteen blocks can be 
divided into four groups, each group having two pairs. One status bit can be 
associated with each pair, identifying the block in the pair, and another with each 
group, identifying the group in a pair of groups. A true least recently used algorithm is 
applied to the groups. In fact, the scheme could be taken to its logical conclusion of 
extending to a full binary tree. Fig.12 gives an example. 
Here, there are four blocks in a set. One status bit, B0, specifies which half o the blocks 
are most/least recently used. Two more bits, B1 and B2, specify which block of pairs 
is most/least recently used. Every time a cache block is referenced (or loaded on a 
miss), the status bits are updated. For example, if block L2 is referenced, B2 is set to a 
0 to indicate that L2 is the most recently used of the pair L2 and L3. B0 is set to a 1 to 
indicate that L2/L3 is the most recently used of the four blocks, L0, L1, L2 and L3. To 
identify the line to replace on a miss, the status bits are examined. If B0 = 0, then the 
block is either L0 or L1. If then B1 = 0, it is L0. 
 

Fig.12 Replacement algorithm using a tree selection 
 
 
 
Second-level caches 
 
When the cache is integrated into the processor, it will be impossible to increase its 
size should the performance not be sufficient. In any case, increasing the size of the 
cache may create a slower cache. As an alternative, which has become very popular, a 
second larger cache can be introduced between the first cache and the main memory 
as shown in Fig.13. This "second-level" cache is sometimes called a secondary cache. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

131 | P a g e  
  

 

 
 
 
Fig.13 Two-level caches 
 
On a memory reference, the processor will access the first-level cache. If the 
information is not found there (a first-level cache miss occurs), the second-level cache 
will be accessed. If it is not in the second cache (a second-level cache miss occurs), 
then the main memory must be accessed. Memory locations will be transferred to the 
second-level cache and then to the first-level cache, so that two copies of a memory 
location will exist in the cache system at least initially, i.e., locations cached in the 
second-level cache also exist in the first-level cache. This is known as the Principle of 
Inclusion. (Of course the copies of locations in the second-level cache will never be 
needed as they will be found in the first-level cache.) Whether this continues will 
depend upon the replacement and write policies. The replacement policy practiced in 
both caches would normally be the least recently used algorithm. Normally write-
through will be practiced between the caches, which will maintain duplicate copies. 
The block size of the second-level cache will be at least the same if not larger than the 
block size of the first-level cache, because otherwise on a first-level cache miss, more 
than one second-level cache line would need to be transferred into the first-level 
cache block. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

132 | P a g e  
  

Optimizing the data cache performance 
------- Taking advantage of locality in matrix multiplication 
 
 
 
When we dealing with multiple arrays, with some arrays accessed by rows and some 
by columns. Storing the arrays row-by-row or column-by- column does not solve the 
problem because both rows and columns are used in every iteration of the loop. We 
must bring the same data into the cache again and again if the cache is not large 
enough to hold all the data, which is a waste. We will use a matrix multiplication (C = 
A.B, where A, B, and C are respectively m x p, p x n, and m x n matrices) as an example 
to show how to utilize the locality to improve cache performance. 
 
 
 
Principle of Locality 
 
Since code is generally executed sequentially, virtually all programs repeat sections of 
code and repeatedly access the same or nearby data. This characteristic is embodied 
in the Principle of Locality, which has been found empirically to be obeyed by most 
programs. It applies to both instruction references and data references, though it is 
more likely in instruction references. It has two main aspects: 
 
Temporal locality (locality in time) -- individual locations, once referenced, are likely 
to be referenced again in the near future. 
Spatial locality (locality in space) - references, including the next location, are likely to 
be near the last reference. 
 
Temporal locality is found in instruction loops, data stacks and variable accesses. 
Spatial locality describes the characteristic that programs access a number of distinct 
regions. Sequential locality describes sequential locations being referenced and is a 
main attribute of program construction. It can also be seen in data accesses, as data 
item are often stored in sequential locations. 
 
Taking advantage of temporal locality 
 
When instructions are formed into loops which are executed many times, the length of 
a loop is usually quite small. Therefore once a cache is loaded with loops of 
instructions from the main memory, the instructions are used more than once before 
new instructions are required from the main memory. The same situation applies to 
data; data is repeatedly accessed. Suppose the reference is 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

133 | P a g e  
  

repeated n times in all during a program loop and after the first reference, the location 
is always found in the cache, then the average access time would be: 
 
ta = (n*tcache + tmain)/n = tcache + tmain/n 
 
where n = number of references. As n increases, the average access time decreases. 
The increase in speed will, of course, depend upon the program. Some programs might 
have a large amount of temporal locality, while others have less. We can do some 
optimization about this. 
 
Taking advantage of spatial locality 
 
To take advantage of spatial locality, we will transfer not just one byte or word from 
the main memory to the cache (and vice versa) but a series of sequential locations 
called a block. We have assumed that it is necessary to reference the cache before a 
reference is make to the main memory to fetch a word, and it is usual to look into the 
cache first to see if the information is held there. 
 
 
 
Data Blocking 
 
For the matrix multiplication C = A.B, if we made code as below: 
 
For (I = 0; I < m; I++) 
For (J = 0; J < n; J = J++) { R = 0; 
For (K = 0; K < p; K++) 
R = R + A[I][K] * B[K][J]; C[I][J] = R; } 
 
 
The two inner loops read all p by n elements of B and access the same p elements in a 
row of A repeatedly, and write one row of n elements of C. The number of capacity 
misses clearly depends on the dimension parameters: m, n, p and the size of the cache. 
If the cache can hold all three metrics, then all is well, provided there are no cache 
conflicts. In the worst case, there would be (2*m*n*p + m*n) words read form memory 
for m*n*p operations. 
 
To enhance the cache performance if it is not big enough, we use an optimization 
technique: blocking. The block method for this matrix product consist of: 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

134 | P a g e  
  

Split result matrix C into blocks CI,J of size Nb x Nb, each blocks is constructed into a continuous array Cb which 
is then copied back into the right CI,J. 
Matrices A and B are spit into panels AI and BJ of size (Nb x p) and (p x Nb) each panel is copied into continuous 
arrays Ab and Bb. The choice of Nb must ensure that Cb, Ab and Bb fit into one level of cache, usually L2 cache. 
 
Then we rewrite the code as: 
 
For (I = 0; I < m/Nb; I++){ Ab = AI; 
For (J = 0; J < n/Nb; J++) { Bb = BJ; Cb = 0; 
For (K = 0; K < p/Nb; K++) 
Cb = Cb + AbK*BKb; 
CI,J = Cb; }} here "=" means assignment for matrix 
 
We suppose for simplicity that Nb divides m, n and p. The figure below may help you in understanding 
operations performed on blocks. In the case of previous algorithm matrix A is loaded only one time into cache 
compared to the n times access of the original one, while matrix B is still accessed m times. This simple block 
method greatly reduce memory access and real codes may choose by looking at matrix size which loop 
structure (ijk vs. jik) is best appropriate and if some matrix operand fits totally into cache. 
 

 
 
 
 
In the previous we do not talk about L1 cache use. In fact L1 will be generally too small to handle a CI,J block 
and one panel of A and B, but remember that operation performed at Cb = Cb + AbK*BKb is a matrix- matrix 
product so each operand AbK and BKb is aceessed Nb times: this part could also use a block method. Since Nb is 
relatively small, the implementation may load only one of Cb, AbK, BKb into L1 cache and works with others 
from L2. 
 
 
 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

135 | P a g e  
  

Memory management unit 
A computer’s memory management unit (MMU) is the physical hardware that handles its virtual memory and 
caching operations. The MMU is usually located within the computer’s central processing unit (CPU), but 
sometimes operates in a separate integrated chip (IC). All data request inputs are sent to the MMU, which in 
turn determines whether the data needs to be retrieved from RAM or ROM storage. 
A memory management unit is also known as a paged memory management unit. 
The memory management unit performs three major functions: 
Hardware memory management 
Operating system (OS) memory management 
Application memory management 
Hardware memory management deals with a system's RAM and cache memory, OS memory management 
regulates resources among objects and data structures, and application memory management allocates and 
optimizes memory among programs. 
The MMU also includes a section of memory that holds a table that matches virtual addresses to physical 
addresses, called the translation lookaside buffer (TLB). 
 
Semiconductor Memory Technologies: 
Semiconductor random-access memories (RAMs) are available in a wide range of speeds. 
Their cycle times range from 100 ns to less than 10 ns. Semiconductor memory is used in any electronics 
assembly that uses computer processing technology. The use of semiconductor memory has grown, and the 
size of these memory cards has increased as the need for larger and larger amounts of storage is needed. 
There are two main types or categories that can be used for semiconductor technology. 
RAM - Random Access Memory: As the names suggest, the RAM or random access memory is a form of 
semiconductor memory technology that is used for reading and writing data in any order - in other words as 
it is required by the processor. It is used for such applications as the computer or processor memory where 
variables and other stored and are required on a random basis. Data is stored and read many times to and 
from this type of memory. 
 
 

 

ROM - Read Only Memory: A ROM is a form of semiconductor memory technology used where the data is 
written once and then not changed. In view of this it is used where data needs to be stored permanently, even 
when the power is removed - many memory technologies lose the data once the power is removed. As a 
result, this type of semiconductor memory technology is widely used for storing programs and data that must 
survive when a computer or processor is powered down. For example the BIOS of a computer will be stored 
in ROM. As the name implies, data cannot be easily written to ROM. Depending on the technology used in the 
ROM, writing the data into the ROM initially may require special hardware. Although it is often possible to 
change the data, this gain requires special hardware to erase the data ready for new data to be written in. 
 
 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

136 | P a g e  
  

 

 
 

he different memory types or memory technologies are detailed below: 
 
DRAM: Dynamic RAM is a form of random access memory. DRAM uses a capacitor to store each bit of data, 
and the level of charge on each capacitor determines whether that bit is a logical 1 or 0. 
However these capacitors do not hold their charge indefinitely, and therefore the data needs to be refreshed 
periodically. As a result of this dynamic refreshing it gains its name of being a dynamic RAM. DRAM is the 
form of semiconductor memory that is often used in equipment including personal computers and 
workstations where it forms the main RAM for the computer. 
 
EEPROM: This is an Electrically Erasable Programmable Read Only Memory. Data can be written to it and it 
can be erased using an electrical voltage. This is typically applied to an erase pin on the chip. Like other types 
of PROM, EEPROM retains the contents of the memory even when the power is turned off. Also like other 
types of ROM, EEPROM is not as fast as RAM. 
 
EPROM:   This is an Erasable Programmable Read Only Memory. This form of semiconductor memory can be 
programmed and then erased at a later time. This is normally achieved by exposing the silicon to ultraviolet 
light. To enable this to happen there is a circular window in the package of the EPROM to enable the light to 
reach the silicon of the chip. When the PROM is in use, this window is normally covered by a label, especially 
when the data may need to be preserved for an extended period. The PROM stores its data as a charge on a 
capacitor. There is a charge storage capacitor for each cell and this can be read repeatedly as required. 
However it is found that after many years the charge may leak away and the data may be lost. Nevertheless, 
this type of semiconductor memory used to be widely used in applications where a form of ROM was 
required, but where the data needed to be changed periodically, as in a development environment, or where 
quantities were low. 
 
FLASH MEMORY: Flash memory may be considered as a development of EEPROM technology. Data can be 
written to it and it can be erased, although only in blocks, but data can be read on an individual cell basis. To 
erase and re-programme areas of the chip, programming voltages at levels that are available within 
electronic equipment are used. It is also non-volatile, and this makes it particularly useful. As a result Flash 
memory is widely used in many applications including memory cards for digital cameras, mobile phones, 
computer memory sticks and many other applications. 
 
F-RAM: Ferroelectric RAM is a random-access memory technology that has many similarities to the 
standard DRAM technology. The major difference is that it incorporates a ferroelectric layer instead of the 
more usual dielectric layer and this provides its non-volatile capability. As it offers a non-volatile capability, 
F-RAM is a direct competitor to Flash. 
 
MRAM: This is Magneto-resistive RAM, or Magnetic RAM. It is a non-volatile RAM memory technology 
that uses magnetic charges to store data instead of electric charges. Unlike technologies including DRAM, 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

137 | P a g e  
  

which require a constant flow of electricity to maintain the integrity of the data, MRAM retains data even 
when the power is removed. An additional advantage is that it only requires low power for active operation. 
As a result this technology could become a major player in the electronics industry now that production 
processes have been developed to enable it to be produced. 
 
P-RAM / PCM: This type of semiconductor memory is known as Phase change Random Access Memory, 
P-RAM or just Phase Change memory, PCM. It is based around a phenomenon where a form of chalcogenide 
glass changes is state or phase between an amorphous state (high resistance) and a polycrystalline state (low 
resistance). It is possible to detect the state of an individual cell and hence use this for data storage. Currently 
this type of memory has not been widely commercialized, but it is expected to be a competitor for flash 
memory. 
 
PROM: This stands for Programmable Read Only Memory. It is a semiconductor memory which can only have 
data written to it once - the data written to it is permanent. These memories are bought in a blank format and 
they are programmed using a special PROM programmer. Typically a PROM will consist of an array of 
fuseable links some of which are "blown" during the programming process to provide the required data 
pattern. 
 
SDRAM: Synchronous DRAM. This form of semiconductor memory can run at faster speeds than 
conventional DRAM. It is synchronised to the clock of the processor and is capable of keeping two sets of 
memory addresses open simultaneously. By transferring data alternately from one set of addresses, and then 
the other, SDRAM cuts down on the delays associated with non-synchronous RAM, which must close one 
address bank before opening the next. 
 
SRAM: Static Random Access Memory. This form of semiconductor memory gains its name from the fact that, 
unlike DRAM, the data does not need to be refreshed dynamically. It is able to support faster read and write 
times than DRAM (typically 10 ns against 60 ns for DRAM), and in addition its cycle time is much shorter 
because it does not need to pause between accesses. However it consumes more power, is less dense and 
more expensive than DRAM. As a result of this it is normally used for caches, while DRAM is used as the main 
semiconductor memory technology. 
 
 
 

MEMORY ORGANIZATION 
 
Memory Interleaving: 
Pipeline and vector processors often require simultaneous access to memory from two or more sources. An 
instruction pipeline may require the fetching of an instruction and an operand at the same time from two 
different segments. 
Similarly, an arithmetic pipeline usually requires two or more operands to enter the pipeline at the same 
time. Instead of using two memory buses for simultaneous access, the memory can be partitioned into a 
number of modules connected to a common memory address and data buses. A memory module is a memory 
array together with its own address and data registers. Figure 9-13 shows a memory unit with four modules. 
Each memory array has its own address register AR and data register DR. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

138 | P a g e  
  

 

 
 

 
The address registers receive information from a common address bus and the data registers communicate 
with a bidirectional data bus. The two least significant bits of the address can be used to distinguish between 
the four modules. The modular system permits one module to initiate a memory access while other modules 
are in the process of reading or writing a word and each module can honor a memory request independent of 
the state of the other modules. 
The advantage of a modular memory is that it allows the use of a technique called interleaving. In an 
interleaved memory, different sets of addresses are assigned to different memory modules. For example, in a 
two-module memory system, the even addresses may be in one module and the odd addresses in the other. 
 
Concept of Hierarchical Memory Organization 
This Memory Hierarchy Design is divided into 2 main types: 
External Memory or Secondary Memory 
Comprising of Magnetic Disk, Optical Disk, Magnetic Tape i.e. peripheral storage devices which are accessible 
by the processor via I/O Module. 
Internal Memory or Primary Memory 
Comprising of Main Memory, Cache Memory & CPU registers. This is directly accessible by the processor. 
 
 
 
 

 

Characteristics of Memory Hierarchy 
 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

139 | P a g e  
  

Capacity: 
It is the global volume of information the memory can store. As we move from top to bottom in the Hierarchy, 
the capacity increases. 
Access Time: 
It is the time interval between the read/write request and the availability of the data. As we move from top to 
bottom in the Hierarchy, the access time increases. 
Performance: 
Earlier when the computer system was designed without Memory Hierarchy design, the speed gap increases 
between the CPU registers and Main Memory due to large difference in access time. This results in lower 
performance of the system and thus, enhancement was required. This enhancement was made in the form of 
Memory Hierarchy Design because of which the performance of the system increases. One of the most 
significant ways to increase system performance is minimizing how far down the memory hierarchy one has 
to go to manipulate data. 
Cost per bit: 
As we move from bottom to top in the Hierarchy, the cost per bit increases i.e. Internal Memory is costlier 
than External Memory. 
 

 
Cache Memories: 
The cache is a small and very fast memory, interposed between the processor and the main memory. Its 
purpose is to make the main memory appear to the processor to be much faster than it actually is. The 
effectiveness of this approach is based on a property of computer programs called locality of reference. 
Analysis of programs shows that most of their execution time is spent in routines in which many instructions 
are executed repeatedly. These instructions may constitute a simple loop, nested loops, or a few procedures 
that repeatedly call each other. 

The cache memory can store a reasonable number of blocks at any given time, but this number is small 
compared to the total number of blocks in the main memory. The correspondence between the main memory 
blocks and those in the cache is specified by a mapping function. 
When the cache is full and a memory word (instruction or data) that is not in the cache is referenced, the 
cache control hardware must decide which block should be removed to create space for the new block that 
contains the referenced word. The collection of rules for making this decision constitutes the cache‟s 
replacement algorithm. 
 
Cache Hits 
The processor does not need to know explicitly about the existence of the cache. It simply issues Read 
andWrite requests using addresses that refer to locations in the memory. The cache control circuitry 
determines whether the requested word currently exists in the cache. 
If it does, the Read orWrite operation is performed on the appropriate cache location. In this case, a read 
or write hit is said to have occurred. 
 
Cache Misses 
A Read operation for a word that is not in the cache constitutes a Read miss. It causes the block of words 
containing the requested word to be copied from the main memory into the cache. 
 
Cache Mapping: 
There are three different types of mapping used for the purpose of cache memory which are as follows: Direct 
mapping, Associative mapping, and Set-Associative mapping. These are explained as following below. 
Direct mapping 
The simplest way to determine cache locations in which to store memory blocks is the direct- mapping 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

140 | P a g e  
  

technique. In this technique, block j of the main memory maps onto block j modulo 128 of the cache, as 
depicted in Figure 8.16. Thus, whenever one of the main memory blocks 0, 128, 256, . . . is loaded into the 
cache, it is stored in cache block 0. Blocks 1, 129, 257, . . . are stored in cache block 1, and so on. Since more 
than one memory block is mapped onto a given cache block position, contention may arise for that position 
even when the cache is not full. 
For example, instructions of a program may start in block 1 and continue in block 129, possibly after a branch. 
As this program is executed, both of these blocks must be transferred to the block-1 position in the cache. 
Contention is resolved by allowing the new block to overwrite the currently resident block. 
With direct mapping, the replacement algorithm is trivial. Placement of a block in the cache is determined by 
its memory address. The memory address can be divided into three fields, as shown in Figure 8.16. The low-
order 4 bits select one of 16 words in a block. 
When a new block enters the cache, the 7-bit cache block field determines the cache position in which this 
block must be stored. If they match, then the desired word is in that block of the cache. If there is no match, 
then the block containing the required word must first be read from the main memory and loaded into the 
cache. 
The direct-mapping technique is easy to implement, but it is not very flexible. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

141 | P a g e  
  

 
 
 
 

Associative Mapping 
In Associative mapping method, in which a main memory block can be placed into any cache block position. 
In this case, 12 tag bits are required to identify a memory block when it is resident in the cache. The tag bits of 
an address received from the processor are compared to the tag bits of each block of the cache to see if the 
desired block is present. This is called the associative-mapping technique. 
 

 
It gives complete freedom in choosing the cache location in which to place the memory block, resulting in a 
more efficient use of the space in the cache. When a new block is brought into the cache, it replaces (ejects) an 
existing block only if the cache is full. In this case, we need an algorithm to select the block to be replaced. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

To avoid a long delay, the tags must be searched in parallel. A search of this kind is called an 
associative search. 
 
Set-Associative Mapping 
Another approach is to use a combination of the direct- and associative-mapping techniques. The blocks 
of the cache are grouped into sets, and the mapping allows a block of the main memory to reside in any 
block of a specific set. Hence, the contention problem of the direct method is eased by having a few 
choices for block placement. 
 

 

 
At the same time, the hardware cost is reduced by decreasing the size of the associative search. 
An example of this set-associative-mapping technique is shown in Figure 8.18 for a cache with two blocks 
per set. In this case, memory blocks 0, 64, 128, . . . , 4032 map into cache set 0, and they can occupy either 
of the two block positions within this set. 
Having 64 sets means that the 6-bit set field of the address determines which set of the cache might 
contain the desired block. The tag field of the address must then be associatively compared to the tags of 
the two blocks of the set to check if the desired block is present. This two-way associative search is simple 
to implement. 
The number of blocks per set is a parameter that can be selected to suit the requirements 
of a particular computer. For the main memory and cache sizes in Figure 8.18, four blocks per set can be 
accommodated by a 5-bit set field, eight blocks per set by a 4-bit set field, and so on. The extreme 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

condition of 128 blocks per set requires no set bits and corresponds to the fully-associative technique, 
with 12 tag bits. The other extreme of one block per set is the direct-mapping. 
 

Replacement Algorithms 
In a direct-mapped cache, the position of each block is predetermined by its address; hence, the 
replacement strategy is trivial. In associative and set-associative caches there exists some flexibility. 
When a new block is to be brought into the cache and all the positions that it may occupy are full, the 
cache controller must decide which of the old blocks to overwrite. 
This is an important issue, because the decision can be a strong determining factor in system 
performance. In general, the objective is to keep blocks in the cache that are likely to be referenced in the 
near future. But, it is not easy to determine which blocks are about to be referenced. 
The property of locality of reference in programs gives a clue to a reasonable strategy. Because program 
execution usually stays in localized areas for reasonable periods of time, there is a high probability that 
the blocks that have been referenced recently will be referenced again soon. Therefore, when a block is to 
be overwritten, it is sensible to overwrite the one that has gone the longest time without being 
referenced. This block is called the least recently used (LRU) block, and the technique is called the LRU 
replacement algorithm. 
The LRU algorithm has been used extensively. Although it performs well for many access patterns, it can 
lead to poor performance in some cases. 
 
Write Policies 
The write operation is proceeding in 2 ways. 
Write-through protocol 
Write-back protocol 

 
Write-through protocol: 
Here the cache location and the main memory locations are updated simultaneously. 
 

Write-back protocol: 
This technique is to update only the cache location and to mark it as with associated flag bit called 
dirty/modified bit. 
The word in the main memory will be updated later, when the block containing this marked word is to be 
removed from the cache to make room for a new block. 
To overcome the read miss Load –through / Early restart protocol is used. 
 

 

 

 

 

 

I/O organization 

Peripherals: 

Input-output device attached to the computer are also called peripherals. 

 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

 

Figure 1.1: Connection of I/O bus to input-output device. 

 

A typical communication link between the processor and several peripherals is shown in figure 1.1. 

The I/O bus consists of data lines, address lines, and control lines. 

The magnetic disk, printer, and terminal are employed in practically any general purpose computer. 

Each peripheral device has associated with it an interface unit. 

Each interface decodes the address and control received from the I/O bus, interprets them for the peripheral, and 

provides signals for the peripheral controller. 

It also synchronizes the data flow and supervises the transfer between peripheral and processor. 

Each peripheral has its own controller that operates the particular electromechanical device. 

For example, the printer controller controls the paper motion, the print timing, and the selection of printing 

characters. 

The I/O bus from the processor is attached to all peripheral interfaces. 

To communicate with a particular device, the processor places a device address on the address lines. 

Each interface attached to the I/O bus contains an address decoder that monitors the address lines. 

When the interface detects its own address, it activates the path between the bus lines and the device that it  

controls. 

All peripherals whose address does not correspond to the address in the bus are disabled by their interface 

selected responds to the function code and proceeds to execute it. 

The function code is referred to as an I/O command. 
There are four types of commands that an interface may receive. They are classified as control, status, 
data output, and data input. 
A control command is issued to activate the peripheral and to inform it what to do. 
For example, a magnetic tape unit may be instructed to backspace the tape by one record, to rewind the 
tape, or to start the tape moving in the forward direction. 
A status command is used to test various status conditions in the interface and the peripheral. 
For example, the computer may wish to check the status of the peripheral before a transfer is initiated. 
During the transfer, one or more errors may occur which are detected by the interface. 
These errors are designated by setting bits in a status register that the processor can read at certain 
intervals. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

A data output command causes the interface to respond by transferring data from the bus into one of its 
registers. 
The computer starts the tape moving by issuing a control command. 
The processor then monitors the status of the tape by means of a status command. 
When the tape is in the correct position, the processor issues a data output command. 
The interface responds to the address and command and transfers the information from the data lines in 
the bus to its buffer register. 
The interface that communicates with the tape controller and sends the data to be stored on tape. 
The data input command is the opposite of the data output. 
In this case the interface receives an item of data from the peripheral and places it in its buffer register. 
The processor checks if data are available by means of a status command and then issues a data input 
command. 
The interface places the data on the data lines, where they are accepted by the processor. 
 
 I/O interface 
An example of an I/O interface units is shown in block diagram from in figure 1.2. 
It consists of two data registers called ports, a control register, a status register, bus buffers, and timing 
and control circuit. 
The interface communicates with the CPU through the data bus. 
The chip select and register select inputs determine the address assigned to the interface. 
The I/O read and writes are two control lines that specify an input or output, respectively. 
The four registers communicate directly with the I/O device attached to the interface. 
The I/O data to and from the device can be transferred into either port A or port B. 
 
If the interface is connected to a printer, it will only output data, and if it services a character reader, it 
will only input data. 
A magnetic disk unit transfers data in both directions but not at the same time, so the interface can use 
bidirectional lines. 
A command is passed to the I/O device by sending a word to the appropriate interface register. 
The control register receives control information from the CPU. By loading appropriate bits into the 
control register, the interface and the I/O device attached to it can be placed in a variety of operating 
modes. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

 
CS RS1 RS0 Register Selected 

0 X X None: data bus in high impedance 

1 0 0 Port A register 

1 0 1 Port B register 
1 1 0 Control register 

1 1 1 Status register 

Figure 1.2: Example of I/O interface unit 
For example, port A may be defined as an input port and port B as an output port. 
A magnetic tape unit may be instructed to rewind the tape or to start the tape moving in the forward 
direction. 
The bits in the status register are used for status conditions and for recording errors that may occur 
during the data transfer. 
For example, a status bit may indicate that port A has received a new data item from the I/O device. 
Another bit in the status register may indicate that a parity error has occurred during the transfer. 
 
The interface registers communicate with the CPU through the bidirectional data bus. 
The address bus selects the interface unit through the chip select and the two register select inputs. 
A circuit must be provided externally (usually, a decoder) to detect the address assigned to the interface 
registers. 
This circuit enables the chip select (CS) input when the interface is selected by the address bus. 
The two register select inputs RS1 and RS0 are usually connected to the two least significant lines of the 
address bus. 
These two inputs select one of the four registers in the interface as specified in the table accompanying 
the diagram. 
The content of the selected register is transfer into the CPU via the data bus when the I/O read signal is 
enables. 
The CPU transfers binary information into the selected register via the data bus when the I/O write input 
is enabled. 
Asynchronous data transfer and Strobe control  
Asynchronous data transfer 
Data transfer between two independent units, where internal timing in each unit is independent from the 
other. Such two units are said to be asynchronous to each other. 
 
Strobe Control 
The Strobe control method of asynchronous data transfer employs a single control line to time each 
transfer. 
 
Source-initiated strobe for data transfer 
The strobe may be activated by either the source or the destination unit. Figure 8.3 shows a source-
initiated transfer. 
The data bus carries the binary information from source unit to the destination unit. 
The strobe is a single line that informs the destination unit when a valid data word is available in the bus. 
The source unit first places the data on the data bus. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

After a delay to ensure that the data settle to a steady value, the source activates the strobe pulse. 
The information on the data bus and the strobe signal remain in the active state for a sufficient time 
period to allow the destination unit to receive the data. 
The source removes the data from the bus a brief period after it disables its strobe pulse. 
 

 

 
Figure 8.3: Source-initiated strobe for data transfer Figure 8.4: Destination-initiated strobe 

for data 

transfer 

 

Destination-initiated strobe for data transfer 
Figure 8.4 shows a data transfer initiated by the destination unit. In this case the destination unit 
activates the strobe pulse, informing the source to provide the data. 
The source unit responds by placing the requested binary information on the data bus. 
The data must be valid and remain in the bus long enough for the destination unit to accept it. 
The falling edge of the strobe pulse can be used again to trigger a destination register. 
The destination unit then disables the strobe. The source removes the data from the bus after a 
predetermined time interval. 
The transfer of data between the CPU and an interface unit is similar to the strobe transfer just described. 
Disadvantage of Strobe method: 
The disadvantage of the strobe method is that the source unit that initiates the transfer has no way of 
knowing whether the destination unit has actually received the data item that was placed in the bus 
Similarly, a destination unit that initiates the transfer has no way of knowing whether the source unit has 
actually placed the data on the bus. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

 

Asynchronous data transfer with Handshaking method. 
The handshake method solves the problem of Strobe method by introducing a second control signal that 
provides a reply to the unit that initiates the transfer. 
 
Source-initiated transfer using handshaking 
One control line is in the same direction as the data flow in the bus from the source to the destination. 
It is used by the source unit to inform the destination unit whether there are valid data in the bus. 

 
Figure 1.5: Source-initiated transfer using handshaking 
The other control line is in the other direction from the destination to the source. 
It is used by the destination unit to inform the source whether it can accept data. 
The sequence of control during the transfer depends on the unit that initiates the transfer. 
Figure 1.5 shows the data transfer procedure initiated by the source. 
The two handshaking lines the data valid, which is generated by the source unit, and data accepted, 
generated by the destination unit, the timing diagram shows the exchange of signals between the two 
units. 
The sequence of events listed in figure 1.5 shows the four possible states that the system can be at any 
given time. 
The source unit initiates the transfer by placing the data on the bus and enabling its data valid signal. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

 
The data accepted signal is activated by the destination unit after it accepts the data from the bus. 
The source unit then disables its data valid signal, which invalidates the data on the bus. 
The destination unit then disables its data accepted signal and the system goes into its initial state. 
The source does not send the next data item until after the destination unit shows its readiness to accept 
new data by disabling its data accepted signal. 
This scheme allows arbitrary delays from one state to the next and permits each unit to respond at its 
own data transfer rate. 
Destination-initiated transfer using handshaking 
The destination-initiated transfer using handshaking lines is shown in figure 1.6. 
Note that the name of the signal generated by the destination unit has been changed to ready for data to 
reflect its new meaning. 
The source unit in this case does not place data on the bus until after it receives the ready for data signal 
from the destination unit. 
From there on, the handshaking procedure follows the same pattern as in the source- initiated case. 
Note that the sequence of events in both cases would be identical if we consider the ready for data signal 
as the complement of data accepted. 
 In fact, the only difference between the source-initiated and the destination-initiated transfer is in 
their choice of initial state. 

Figure 1.6: Destination-initiated transfer using handshaking 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

 
 Programmed I/O  
 
Programmed I/O: 

 
Figure 1.7: Data transfer from I/O device to CPU 
In the programmed I/O method, the I/O device does not have direct access to memory. 
An example of data transfer from an I/O device through an interface into the CPU is shown in figure 1.7. 
When a byte of data is available, the device places it in the I/O bus and enables its data valid line. 
The interface accepts the byte into its data register and enables the data accepted line. 
The interface sets a bit in the status register that we will refer to as an F or "flag" bit. 
The device can now disables the data valid line, but it will not transfer another byte until the data 
accepted line is disables by the interface. 
A program is written for the computer to check the flag in the status register to determine if a byte has 
been placed in the data register by the I/O device. 
This is done by reading the status register into a CPU register and checking the value of the flag bit. 
Once the flag is cleared, the interface disables the data accepted line and the device can then transfer the 
next data byte. 
Example of Programmed I/O: 
A flowchart of the program that must be written for the CPU is shown in figure 8.8. 
It is assumed that the device is sending a sequence of bytes that must be stored in memory. 
The transfer of each byte requires three instructions : 
Read the status register. 
Check the status of the flag bit and branch to step 1 if not set or to step 3 if set. 
Read the data register. 
Each byte is read into a CPU register and then transferred to memory with a store instruction. 
A common I/O programming task is to transfer a block of words from an I/O device and store them in a 
memory buffer. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

 

 

 
 
Figure 1.8: Flowchart for CPU program to input data 
 
 
 Interrupt Initiated I/O 
In programmed initiated, CPU stays in a program loop until the I/O unit indicates that it is ready for data 
transfer. 
This is a time consuming process since it keeps the processor busy needlessly. 
It can be avoided by using an interrupt facility and a special command to inform the interface to issue an 
interrupt request signal when data are available from the device. 
In the meantime CPU can proceed to execute another program. 
The interface meanwhile keeps monitoring the device. 
When the interface determines that the device is ready for data transfer, it generates an interrupt request 
to the computer. 
While the CPU is running a program, it does not check the flag. However, when the flag is set, the 
computer is momentarily interrupted from proceeding with the current program and is informed of the 
fact that the flag has been set. 
The CPU deviates from what it is doing to take care of the input or output transfer. 
After the transfer is completed, the computer returns to the previous program to continue what it was 
doing before the interrupt. 
The CPU responds to the interrupt signal by storing the return address from the program counter into a 
memory stack and then control branches to a service routine that processes the required I/O transfer. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

 
The way that the processor chooses the branch address of the service routine varies from one unit to 
another. 
In non-vectored interrupt, branch address is assigned to a fixed location in memory. 
In a vectored interrupt, the source that interrupts supplies the branch information to the computer. The 
information is called vector interrupt. 
In some computers the interrupt vector is the first address of the I/O service routine. 
In other computers the interrupt vector is an address that points to a location in memory where the 
beginning address of the I/O service routine is stored. 
 
Priority interrupt and Daisy Chaining. 
Determines which interrupt is to be served first when two or more requests are made simultaneously 
Also   determines  which  interrupts  are  permitted  to interrupt the computer while another is being 
serviced 
Higher priority interrupts can make requests while servicing a lower priority interrupt. 
 
Daisy Chaining Priority 

Figure 1.9: Daisy-chain priority interrupt 
 
The daisy-chaining method of establishing priority consists of a serial connection of all devices that 
request an interrupt. 
The device with the highest priority is placed in the first position, followed by lower- priority devices up 
to the device with the lowest priority, which is placed last in the chain. 
This method of connection between three devices and the CPU is shown in figure 1.9. 
If any device has its interrupt signal in the low-level state, the interrupt line goes to the low-level state 
and enables the interrupt input in the CPU. 
When no interrupts are pending, the interrupt line stays in the high-level state and no interrupts are 
recognized by the CPU. 
The CPU responds to an interrupt request by enabling the interrupt acknowledge line. 
This signal passes on to the next device through the PO (priority out) output only if device 1 is not 
requesting an interrupt. 
If device 1 has a pending interrupt, it blocks the acknowledge signal from the next device by placing a 0 in 
the PO output. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

 
It then proceeds to insert its own interrupt vector address (VAD) into the data bus for the CPU to use 
during the interrupt cycle. 
A device with a 0 in its Pl input generates a 0 in its PO output to inform the next-lower- priority device 
that the acknowledge signal has been blocked. 
A device that is requesting an interrupt and has a 1 in its Pl input will intercept the acknowledge signal by 
placing a 0 in its PO output. 
If the device does not have pending interrupts, it transmits the acknowledge signal to the next device by 
placing a 1 in its PO output. 
Thus the device with Pl = 1 and PO = 0 is the one with the highest priority that is requesting an interrupt, 
and this device places its VAD on the data bus. 
The daisy chain arrangement gives the highest priority to the device that receives the interrupt 
acknowledge signal from the CPU. 
The farther the device is from the first position; the lower is its priority. 
 
Direct Memory Access (DMA). 
Direct Memory Access 
Transfer of data under programmed I/O is between CPU and peripheral. 
In direct memory access (DMA), Interface transfers data into and out of memory through the memory 
bus. 
The CPU initiates the transfer by supplying the interface with the starting address and the number of 
words needed to be transferred and then proceeds to execute other tasks. 
When the transfer is made, the DMA requests memory cycles through the memory bus. 
When the request is granted by the memory controller, DMA transfers the data directly into memory. 
 
DMA controller 
DMA controller - Interface which allows I/O transfer directly between Memory and Device, freeing CPU 
for other tasks 
CPU initializes DMA Controller by sending memory address and the block size (number of words). 
 

 
 
Figure 1.10: CPU bus signals for DMA transfer 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

 

 

 

Figure 1.11: Block diagram of DMA controller 

 

The DMA controller needs the usual circuits of an interface to communicate with the CPU and I/O device. 
In addition, it needs an address register, a word count register, and a set of address lines. 
The address register and address lines are used for direct communication with the memory. 
The word count register specifies the number of words that must be transferred. 
The data transfer may be done directly between the device and memory under control of the DMA. 
Figure 8.11 shows the block diagram of a typical DMA controller. 
The unit communicates with the CPU via the data bus and control lines. 
The register in the DMA are selected by the CPU through the address bus by enabling the DS (DMA select) 
and RS (register select) inputs. 
The RD (read) and WR (write) inputs are bidirectional. 
When the BG (bus grant) input is 0, the CPU can communicate with the DMA registers through the data 
bus to read from or write to the DMA registers. 
When BG= 1, the CPU has relinquished the buses and the DMA can communicate directly with the 
memory by specifying an address in the address but and activating the RD or WR control. 
The DMA communicates with the external peripheral through the request and acknowledge lines by using 
a prescribed handshaking procedure. 
The DMA controller has three registers: an address register, a word count register, and a control register. 
The address register contains an address to specify the desired location in memory. 
The word count register holds the number of words to be transferred. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

 
This register is decremented by one after each word transfer and internally tested for zero. 
The control register specifies the mode of transfer. 
All registers in the DMA appear to the CPU as I/O interface registers. 
Thus the CPU can read from or write into the DMA register under program control via the data bus. 
The DMA is first initialized by the CPU. 
After that, the DMA starts and continues to transfer data between memory and peripheral unit until an 
entire block is transferred. 
The CPU initializes the DMA by sending the following information through the data bus 
The staring address of the memory block where data are available (for read) or where data are to be 
stored (for write) 
The word count, which is the number of words in the memory block. 
Control to specify the mode of transfer such as read or write. 
The starting address is stored in the address register. 
 
 Input- Output Processor (IOP) 
 

Figure 1.12: Block diagram of a computer with I/O processor 
 
IOP is similar to a CPU except that it is designed to handle the details of I/O processing. 
Unlike the DMA controller that must be setup entirely by the CPU, the IOP can fetch and execute its own 
instruction. 
IOP instructions are specifically designed to facilitate I/O transfers. 
In addition, IOP can perform other processing tasks, such as arithmetic, logic branching, and code 
translation. 
The block diagram of a computer with two processors is shown in figure 1.12. 
The memory unit occupies central position and can communicate with each processor by means of direct 
memory access. 
The CPU is responsible for processing data needed in the solution of computational tasks. 
The IOP provides a path of for transfer of data between various peripheral devices and memory unit. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

 
The CPU is usually assigned the task of initiating the I/O program. 
From then, IOP operates independent of the CPU and continues to transfer data from external devices and 
memory. 
The data formats of peripheral devices differ from memory and CPU data formats. The IOP must structure 
data words from many different sources. 
For example, it may be necessary to take four bytes from an input device and pack them into one 32-bit 
word before the transfer to memory. 
Data are gathered in the IOP at the device rate and bit capacity while the CPU is executing its own 
program. 
After the input data are assembled into a memory word, they are transferred from IOP directly into 
memory by "stealing" one memory cycle from the CPU. 
Similarly, an output word transferred from memory to the IOP is directed from the IOP to the output 
word transferred from memory to the IOP. 
In most computer systems, the CPU is the master while the IOP is a slave processor. 
 The CPU is assigned the task of initiating all operations, but I/O instructions are executed in the 
IOP. 
CPU instructions provide operations to start an I/O transfer and also to test I/O status conditions needed 
for making decisions on various I/O activities. 
The IOP, in turn, typically asks for CPU attention by means of an interrupt. 
Instructions that are read from memory by an IOP are sometimes called commands, to distinguish them 
from instructions that are read by the CPU. 
 
 CPU-IOP Communication. 
The communication between CPU and IOP may take different forms, depending on the particular 
computer considered. 
In most cases the memory unit acts. 
The sequence of operations may be carried out as shown in the flowchart of figure 1.13. 
The CPU sends an instruction to test the IOP path. 
The IOP responds by inserting a status word in memory for the CPU to check. 
The bits of the status word indicate the condition of the IOP and I/O device, such as IOP overload 
condition, device busy with another transfer, or device ready for I/O transfer. 
The CPU refers to the status word in memory to device what do next. 
If all is in order, the CPU sends the instruction to start I/O transfer. 
The memory address received with this instruction tells the IOP where to find its program. 
The CPU can now continue with another program while the IOP is busy with the I/O program. 
Both programs refer to memory by means of DMA transfer. 
When the IOP terminates the execution of its program, it sends an interrupt request to the CPU. 
The CPU responds to the interrupt by issuing an instruction to read the status from the IOP. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 
 
The IOP responds by placing the contents of its status report into a specified memory location. 
The status word indicates whether the transfer has been completed or if any errors occurred during the 
transfer. 
From inspection of the bits in the status word, the CPU determines if the I/O operation was completed 
satisfactorily without errors. 
The IOP takes care of all data transfers between several I/O units and the memory while the CPU is 
processing another program. 
The IOP and CPU are competing for the use of memory, so the number of devices that can be in operation is 
limited by the access time of the memory. 

 
Figure 1.13: CPU-IOP communication 
 
 
 The processor provides 16 registers for use in general system and application programming. These 
registers can be grouped as follows: 
General-purpose data registers. These eight registers are available for storing operands and pointers. 
Segment registers. These registers hold up to six segment selectors. 
Status and control registers. These registers report and allow modification of the state of the 
processor and of the program being executed. 
 
General-Purpose Data Registers 
The 32-bit general-purpose data registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP are provided for holding 
the following items: 
Operands for logical and arithmetic operations 
Operands for address calculations 
Memory pointers 
 
Although all of these registers are available for general storage of operands, results, and pointers, caution 
should be used when referencing the ESP register. The ESP register holds the stack pointer and as a general 
rule should not be used for any other purpose. 
 
Segment Registers 
The 6 Segment Registers are: 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 
Stack Segment (SS). Pointer to the stack. 
Code Segment (CS). Pointer to the code. 
Data Segment (DS). Pointer to the data. 
 
 
 

 Extra Segment (ES). Pointer to extra data ('E' stands for 'Extra'). 
 F Segment (FS). Pointer to more extra data ('F' comes after 'E'). 
 G Segment (GS). Pointer to still more extra data ('G' comes after 'F'). 

Most applications on most modern operating systems (FreeBSD, Linux or Microsoft 
Windows) use a memory model that points nearly all segment registers to the same place 
and uses paging instead, effectively disabling their use. Typically the use of FS or GS is an 
exception to this rule, instead being used to point at thread-specific data. 

 
x86 Processor Registers and Fetch-Execute Cycle 
There      are      8      registers      that      can      be      specified      in       assembly-language 
instructions: eax, ebx, ecx, edx, esi, edi, ebp, and esp. Register esp points to the "top" word 
currently in use on the stack (which grows down). 
Register ebp is typically used as a pointer to a location in the stack frame of the currently 
executing function. 
Register ecx can be used in binary arithmetic operations to hold the second operand. 
There are two registers that are used implicitly in x86 programs and cannot be referenced by 
name in an assembly language program. 
These are eip, the "instruction pointer" or "program counter"; and eflags, which contains bits 
indicating the result of arithmetic and compare instructions. 
The basic operation of the processor is to repeatedly fetch and execute 

instructions. while (running) { 
fetch instruction beginning at address in 
eip; eip <- eip + length of instruction; 
execute fetched instruction; 

} 
Execution continues sequentially unless execution of an instruction causes a jump, which is 
done by storing the target address in eip (this is how conditional and unconditional jumps, and 
function call and return are implemented). 

 
Addressing modes 
The addressing mode indicates how the operand is presented. 

Register Addressing 

Operand address R is in the address field. 

mov ax, bx ; moves contents of register bx into ax 

Immediate 

Aactual value is in the field. 

mov ax, 1 ; moves value of 1 into register ax 

Or: 

mov ax, 010Ch ; moves value of 0x010C into register ax 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

Direct memory addressing 

 
 

COA – Dept of IT 

 
 

 

 
Operand address is in the address field. 

 
.data 

my_var dw 0abcdh ; my_var = 0xabcd 

.code 

mov ax, [my_var] ; copy my_var content in ax (ax=0xabcd) 

Direct offset addressing 

Uses arithmetics to modify address. 

 
byte_tbl db 12,15,16,22, ; Table of bytes 

mov al,[byte_tbl+2] 

mov al,byte_tbl[2] ; same as the former 

Register Indirect 

Field points to a register that contains the operand address. 

 
mov ax,[di] 

The registers used for indirect addressing are BX, BP, SI, DI 

Base-index 

 
mov ax,[bx + di] 

For example, if we are talking about an array, BX contains the address of the beginning of 
the array, and DI contains the index into the array. 

Base-index with displacement 

 
mov ax,[bx + di + 10] 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 
 

CPU Operation Modes 
Real Mode 
Real Mode is a holdover from the original Intel 8086. The Intel 8086 accessed memory using 20- 
bit addresses. But, as the processor itself was 16-bit, Intel invented an addressing scheme that 
provided a way of mapping a 20-bit addressing space into 16-bit words. Today's x86 processors 
start in the so-called Real Mode, which is an operating mode that mimics the behavior of the 
8086, with some very tiny differences, for backwards compatibility. 
Protected Mode Flat Memory Model 
If programming in a modern operating system (such as Linux, Windows), you are 
basically 

 

https://en.wikibooks.org/wiki/X86_Assembly/X86_Architecture#CPU_Operation_Modes


 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

programming in flat 32-bit mode. Any register can be used in addressing, and it is generally more efficient to 
use a full 32-bit register instead of a 16-bit register part. Additionally, segment registers are generally unused 
in flat mode, and it is generally a bad idea to touch them. 
Multi-Segmented Memory Model 
Using a 32-bit register to address memory, the program can access (almost) all of the memory in a modern 
computer. For earlier processors (with only 16-bit registers) the segmented memory model was used. The 
'CS', 'DS', and 'ES' registers are used to point to the different chunks of memory. For a small program (small 
model) the CS=DS=ES. For larger memory models, these 'segments' can point to different locations. 
Register Transfer Language And Micro Operations: Register Transfer language: 
Digital systems are composed of modules that are constructed from digital components, such as registers, 
decoders, arithmetic elements, and control logic 
The modules are interconnected with common data and control paths to form a digital computer system 
The operations executed on data stored in registers are called microoperations 
A microoperation is an elementary operation performed on the information stored in one or more registers 
Examples are shift, count, clear, and load 
Some of the digital components from before are registers that implement microoperations 
 The internal hardware organization of a digital computer is best by specifying 
The set of registers it contains and their functions 
The sequence of microoperations performed on the binary information stored 
The control that initiates the sequence of microoperations 
 
Use symbols, rather than words, to specify the sequence of microoperations The symbolic notation used is 
called a register transfer language 
A programming language is a procedure for writing symbols to specify a given computational process Define 
symbols for various types of microoperations and describe associated hardware that can implement the 
microoperations 
Register Transfer 
Designate computer registers by capital letters to denote its function. The register that holds an address for 
the memory unit is called MAR. The program counter register is called PC. 
IR is the instruction register and R1 is a processor register 
The individual flip-flops in an n-bit register are numbered in sequence from 0 to n-1 Refer to Figure 4.1 for the 
different representations of a register 

 
 
 
 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

Designate information transfer from one register to another by R2  R1 
This statement implies that the hardware is available 
The outputs of the source must have a path to the inputs of the destination 
The destination register has a parallel load capability 
If the transfer is to occur only under a predetermined control condition, designate it by 
If (P = 1) then (R2  R1) or, P: R2  R1,where P is a control function that can be either 0 or 1 
Every statement written in register transfer notation implies the presence of the required hardware 
construction 
Arithmetic Micro-operations 
There are four categories of the most common micro operations: 
Register transfer: transfer binary information from one register to another 
Arithmetic: perform arithmetic operations on numeric data stored in registers 
Logic: perform bit manipulation operations on non-numeric data stored in registers 
Shift: perform shift operations on data stored in registers 
 

The basic arithmetic micro operations are addition, subtraction, increment, decrement, and shift Example of 
addition: R3  R1+R2 
Subtraction is most often implemented through complementation and addition 
Example of subtraction: R3  R1 +R2 + 1 (strikethrough denotes bar on top – 1‟s complement of R2) Adding 1 to 
the 1‟s complement produces the 2‟s complement 
Adding the contents of R1 to the 2‟s complement of R2 is equivalent to subtracting 
 

 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

Multiply and divide are not included as micro operations 
A micro operation is one that can be executed by one clock pulse 
Multiply (divide) is implemented by a sequence of add and shift micro operations (subtract and shift) 
To implement the add micro operation with hardware, we need the registers that hold the data and the digital 
component that performs the addition 
A full-adder adds two bits and a previous carry 
A binary adder is a digital circuit that generates the arithmetic sum of two binary numbers of any length 
A binary added is constructed with full-adder circuits connected in cascade An n-bit binary adder requires n 
full-adders 
 
The subtraction A-B can be carried out by the following steps Take the 1‟s complement of B (invert each bit) 
Get the 2‟s complement by adding 1 Add the result to A 
The addition and subtraction operations can be combined into one common circuit by including an XOR gate 
with each full-adder 
The increment micro operation adds one to a number in a register 
This can be implemented by using a binary counter – every time the count enable is active, the count is 
incremented by one 
If the increment is to be performed independent of a particular register, then use half-adders connected in 
cascade 
An n-bit binary incrementer requires n half-adders 
Each of the arithmetic micro operations can be implemented in one composite arithmetic circuit The basic 
component is the parallel adder 
Multiplexers are used to choose between the different operations 
The output of the binary adder is calculated from the following sum: D = A + Y + Cin 

 
Logic Microoperations 
 
Logic operations specify binary operations for strings of bits stored in registers and treat each bit separately 
Example: the XOR of R1 and R2 is symbolized by 
P: R1  R1⊕ R2 
Example: R1 = 1010 and R2 = 1100 

1010 Content of R1 
1100 Content of R2 

 
 
 

0110 Content of R1 after P = 1 

Symbols used for logical microoperations: 
OR:  
AND:  
XOR: ⊕ 
The + sign has two different meanings: logical OR and summation 
When + is in a microoperation, then summation 
 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

When + is in a control function, then OR 
Example: 

P + Q: R1  R2 + R3, R4  R5  R6 
There are 16 different logic operations that can be performed with two binary variables 
The hardware implementation of logic microoperations requires that logic gates be inserted for each bit or 
pair of bits in the registers 
All 16 microoperations can be derived from using four logic gates 
 

 

 

 Logic microoperations can be used to 
change bit values, delete a group of bits, or 
insert new bit values into a register 

 The selective-set operation sets to 1 the 
bits in A where there are corresponding 
1‟s in B 

1010 A before 
1100 B 
(logic operand) 1110 A after A  A  B 
 The selective-complement 

operation complements bits in A 
where there are corresponding 1‟s 
in B 

1010 A before 
1100 B 
(logic operand) 0110 A 
after A  A⊕B 
 The selective-clear operation clears to 0 

the bits in A only where there are 
corresponding 1‟s in B 

1010 A before 
1100 B (logic operand) 0010 A 
after A  A  B 

 

The mask operation is similar to the selective-clear operation, except that the bits of A are cleared only where 
there are corresponding 0‟s in B 
1010 A before 
1100 B 
(logic operand) 1000 A after A  A  B 
The insert operation inserts a new value into a group of bits 
This is done by first masking the bits to be replaced and then Oring them with the bits to be inserted 

0110 1010 A before 
0000 1111 B (mask) 
0000 1010 A after masking 

0000 1010 A before 

1001 0000 B (insert) 

1001 1010 A after insertion 
 
 
 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

The clear operation compares the bits in A and B and produces an all 0‟s result if the two number are equal 
1010 A 
1010 B 
0000 A  A⊕B 
 
Shift Microoperations 
Shift microoperations are used for serial transfer of data 
They are also used in conjunction with arithmetic, logic, and other data- processing operations There are 
three types of shifts: logical, circular, and arithmetic 
A logical shift is one that transfers 0 through the serial input 
The symbols shl and shr are for logical shift-left and shift-right by one position R1  shlR 
The circular shift (aka rotate) circulates the bits of the register around the two ends without loss of 
information 
The symbols cil and cir are for circular shift left and right 
The arithmetic shift shifts a signed binary number to the left or right. To the left is multiplying by 2, to the 
right is dividing by 2. 
Arithmetic shifts must leave the sign bit unchanged. 
A sign reversal occurs if the bit in Rn-1 changes in value after the shift. This happens if the multiplication causes 
an overflow. 

An overflow flip-flop Vs can be usedto detect theoverflow Vs = Rn-1 ⊕Rn-2 

A bi-directional shift unit with parallel load could be used to implement this 
Two clock pulses are necessary with this configuration: one to load the value and another to shift 

In a processor unit with many registers it is more efficient to implement the shift operation with a 
combinational circuit 
The content of a register to be shifted is first placed onto a common bus and the output is connected to the 
combinational shifter, the shifted number is then loaded back into the register 
This can be constructed with multiplexers 

 
Arithmetic Logic Unit 
The arithmetic logic unit (ALU) is a common operational unit connected to a number of storage registers 
To perform a microoperation, the contents of specified registers are placed in the inputs of the ALU 
The ALU performs an operation and the result is then transferred to a destination register 
The ALU is a combinational circuit so that the entire register transfer operation from the source registers 
through the ALU and into the destination register can be performed during one clock pulse period 
 
 
 
 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

Micro Programmed Control 
A control unit whose binary control variables are stored in memory is called a microprogrammed control 
unit. Each word in control memory contains within it a microinstruction. The microinstruction specifies one 
or more microoperations for the system. A sequence of microinstructions constitutes a microprogram .Since 
alterations of the microprogram are not needed once the control unit is in operation, the control memory can 
be a read-only memory (ROM). 
A more advanced development known as dynamic microprogramming permits a microprogram to be loaded 
initially from an auxiliary memory such as a magnetic disk. 
Control units that use dynamic microprogramming employ a writable control memory. This type of 
memory can be used for writing (to change the microprogram) but is used mostly for reading. 
A memory that is part of a control unit is referred to as a control memory. 
 

 
The next address generator is sometimes called a microprogram sequencer, as it determines the address 
sequence that is read from control memory. 
The control data register holds the present microinstruction while the next address is computed and read 
from memory. 
The data register is sometimes called a pipeline register. 
The main advantage of the microprogrammed control is the fact that once the hardware configuration is 
established, there should be no need for further hardware or wiring changes. If we want to establish a 
different control sequence for the system, all we need to do is specify a different set of microinstructions for 
control memory. The hardware configuration should not be changed for different operations; the only thing 
that must be changed is the microprogram residing in control memory. It should be mentioned that most 
computers based on the reduced instruction set computer (RISC). 
 
Address Sequencing 
Microinstructions are stored in control memory in groups, with each group specifying a routine. 
The transformation from the instruction code bits to an address in control memory where the routine is 
located is referred to as a mapping process. 
A mapping procedure is a rule that transforms the instruction code into a control memory address 
Incrementing of the control address register. 
Unconditional branch or conditional branch, depending on status bit conditions. 
A mapping process from the bits of the instruction to an address for control memory. 
A facility for subroutine call and return 
 
Conditional Branching 
Special Bits : The branch logic provides decision-making capabilities in the control unit. The status 
conditions are special bits in the system that provide parameter information such as the carry-out of an 
adder, the sign bit of a number, the mode bits of an instruction, and input or output status conditions 
 
Branch Logic : The branch logic hardware may be implemented in a variety of ways. The simplest way is to 
test the specified condition and branch to the indicated address if the condition is met; otherwise, the address 
register is incremented. This can be implemented with a multiplexer. 
 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

Mapping of Instruction: A special type of branch exists when a microinstruction specifies a branch to the 
first word in control memory where a microprogram routine for an instruction is located. The status bits for 
this type of branch are the bits in the operation code part of the instruction. 
Microinstruction Format 
The microinstruction format for the control memory is shown in Fig. The 20 bits of the microinstruction are 
divided into four functional parts. The three fields F1, F2, and F3 specify microoperations for the computer. 
The CD field selects status bit conditions. The BR field specifies the type of branch to be used. The AD field 
contains a branch address. The address field is seven bits wide, since the control memory has 128 = 27 
words. 

 

 

 

 

 

 

 
a microinstruction can specify two simultaneous microoperations from F2 and F3 and none from Fl. 

 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

 

Basic concepts of pipelining: 
Performance of a computer can be increased by increasing the performance of the CPU. 
This can be done by executing more than one task at a time. This procedure is referred to as pipelining. The 
concept of pipelining is to allow the processing of a new task even though the processing of previous task has 
not ended. 
Pipelining is a technique of decomposing a sequential process into suboperations, with each subprocess 
being executed in a special dedicated segment that operates concurrently with all other segments. A pipeline 
can be visualized as a collection of processing segments through which binary information flows. Each 
segment performs partial processing dictated by the way the task is partitioned. The result obtained from the 
computation in each segment is transferred to the next segment in the pipeline. The final result is obtained 
after the data have passed through all segments. 
 
Consider the following operation: Result=(A+B)*C 
First the A and B values are Fetched which is nothing but a “Fetch Operation”. 
The result of the Fetch operations is given as input to the Addition operation, which is an Arithmetic 
operation. 
The result of the Arithmetic operation is again given to the Data operand C which is fetched from the memory 
and using another arithmetic operation which is Multiplication in this scenario is executed. Finally the Result 
is again stored in the “Result” variable. 
 
In this process we are using up-to 5 pipelines which are Fetch Operation (A), Fetch Operation(B) 
Addition of (A & B), Fetch Operation(C) Multiplication of ((A+B), C) 
Load ( (A+B)*C) 

 

 
 
 
 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

S = Tseq / Tpipe = n*m / (m+n -1) 

Now consider the case where a k-segment pipeline with a clock cycle time t, is used to execute n tasks. The 
first task T1 requires a time equal to k t, to complete its operation since there are k segments in the pipe. The 
remaining n - 1 tasks emerge from the pipe at the rate of one task per clock cycle and they will be completed 
after a time equal to (n - 1)t, . Therefore, to complete 
n tasks using a k-segment pipeline requires k + (n - 1) clock cycles. For example, the diagram of Fig. shows 
four segments and six tasks. 
The time required to complete all the operations is 4 + (6 - 1) = 9 clock cycles, as indicated in the diagram. 
 
 

 
 

Throughput and Speedup 
Parallel processing is a term used to denote a large class of techniques that are used to provide simultaneous 
data-processing tasks for the purpose of inaeasing the computational speed of a computer system. The 
purpose of parallel processing is to speed up the computer processing capability and increase its throughput. 
Throughput: Is the amount of processing that can be accomplished during a given interval of time. The 
amount of hardware increases with parallel processing and with it, the cost of the system increases. 
However, technological developments have reduced hardware costs to the point where parallel processing 
techniques a.re economically feasible. 
Speedup of a pipeline processing: The speedup of a pipeline processing over an equivalent nonpipeline 
processing is defined by the ratio 
 
 
the maximum speedup, also called ideal speedup, of a pipeline processor with m stages over an equivalent 
nonpipelined processor is m. In other words, the ideal speedup is equal to the number of pipeline stages. That 
is, when n is very large, a pipelined processor can produce output approximately m times faster than a 
nonpipelined processor. When n is small, the speedup decreases. 
 
Pipeline Hazards 
There are situations in pipelining when the next instruction cannot execute in the following clock cycle. These 
events are called hazards, and there are three different types. 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

Hazards 
The first hazard is called a structural hazard. It means that the hardware cannot support the combination of 
instructions that we want to execute in the same clock cycle. A structural hazard in the laundry room would 
occur if we used a washer dryer combination instead of a separate washer and dryer, or if our roommate was 
busy doing something else and wouldn‟t put clothes away. Our carefully scheduled pipeline plans would then 
be foiled. 
As we said above, the MIPS instruction set was designed to be pipelined, making it fairly easy for designers to 
avoid structural hazards when designing a pipeline. Suppose, however, that we had a single memory instead 
of two memories. If the pipeline in Figure 4.27 had a fourth instruction, we would see that in the same clock 
cycle the fi rst instruction is accessing data from memory while the fourth instruction is fetching an 
instruction from that same memory. Without two memories, our pipeline could have a structural hazard. 
 
Data Hazards 
Data hazards occur when the pipeline must be stalled because one step must wait for another to complete. 
Suppose you found a sock at the folding station for which no match existed. One possible strategy is to run 
down to your room and search through your clothes bureau to see if you can find the match. Obviously, while 
you are doing the search, loads must wait that have completed drying and are ready to fold as well as those 
that have finished washing and are ready to dry. 
In a pipeline, data hazards arise from the dependence of one instruction on an earlier one that is still in the 
pipeline (a relationship that does not really exist when doing laundry). For example, suppose we have an add 
instruction followed immediately by a subtract instruction that uses the sum ($s0): 
add $s0, $t0, $t1 sub $t2, $s0, $t3 
 
 
 

 
 

 
Without intervention, a data hazard could severely stall the pipeline. The add instruction doesn‟t  write its 
result until the fifth stage, meaning that we would have to waste three clock cycles in the pipeline.Although 
we could try to rely on compilers to remove all such hazards, the results would not be satisfactory. These 
dependences happen just too oft en and the delay is just too long to expect the compiler to rescue us from this 
dilemma. 
The primary solution is based on the observation that we don‟t need to wait for the instruction to complete 
before trying to resolve the data hazard. For the code sequence above, as soon as the ALU creates the sum for 
the add, we can supply it as an input for the subtract. Adding extra hardware to retrieve the missing item 
early from the internal resources is called forwarding or bypassing. 
In this graphical representation of events, forwarding paths are valid only if the destination stage is later in 
time than the source stage. For example, there cannot be a valid forwarding path from the output of the 
memory access stage in the first instruction to the input of the execution stage of the following, since that 
would mean going backward in time. 
 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

 
 

It cannot prevent all pipeline stalls, however. For example, suppose the first instruction was a load of $s0 
instead of an add. As we can imagine from looking at Figure 4.29, the desired data would be available only 
after the fourth stage of the first instruction in the dependence, which is too late for the input of the third 
stage of sub. Hence, even with forwarding, we would have to stall one stage for a load- use data hazard, as 
Figure 4.30 shows. This figure shows an important pipeline concept, officially called a pipeline stall, but oft 
en given the nickname bubble. We shall see stalls elsewhere in the pipeline. 
 
Control Hazards 
The third type of hazard is called a control hazard, arising from the need to make a decision based on the 
results of one instruction while others are executing. Suppose our laundry crew was given the happy task of 
cleaning the uniforms of a football team. Given how filthy the laundry is, we need to determine whether the 
detergent and water temperature setting we select is strong enough to get the uniforms clean but not so 
strong that the uniforms wear out sooner. In our laundry pipeline, we have to wait until aft er the second 
stage to examine the dry uniform to see if we need to change the washer setup or not. What to do? 
Here is the first of two solutions to control hazards in the laundry room and its computer equivalent. Stall: 
Just operate sequentially until the first batch is dry and then repeat until you have the right formula. 
This conservative option certainly works, but it is slow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

Parallel Processors 
Introduction to parallel processors: 
Parallel processing is a term used to denote a large class of techniques that are used to provide simultaneous 
data-processing tasks for the purpose of in a easing the computational speed of a computer system. Instead of 
processing each instruction sequentially as in a conventional computer, a parallel processing system is able to 
perform concurrent data processing to achieve faster execution time. 
The purpose of parallel processing is to speed up the computer processing capability and increase its 
throughput, that is, the amount of processing that can be accomplished during a given interval of time. The 
amount of hardware increases with parallel processing and with it, the cost of the system increases. However, 
technological developments have reduced hardware costs to the point where parallel processing techniques 
a.re economically feasible. 
Parallel processing can be viewed from various levels of complexity. At the lowest level, we distinguish 
between parallel and serial operations by the type of registers used. Shift registers operate in serial fashion 
one bit at a time, while registers with parallel load operate with all the bits of the word simultaneously. 
Parallel processing at a higher level of complexity can be achieved by having a multiplicity of functional units 
that perform identical or different operations simultaneously. Parallel processing is established by 
distributing the data among the multiple functional units. For example, the arithmetic, logic, and shift 
operations can be separated into three units and the operands diverted to each unit under the supervision of 
a control unit. 
Figure 9-1 shows one possible way of separating the execution unit into eight functional units operating in 
parallel. The operands in the registers are applied to one of the units depending on the operation specified by 
the instruction associated with the operands. The operation performed in each functional unit is indicated in 
each block of the diagram. The adder and integer multiplier perform the arithmetic operations with integer 
numbers. 
 
 

 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

There are a variety of ways that parallel processing can be classified. It can be considered from the internal 
organization of the processors, from the interconnection structure between processors, or from the flow of 
information through the system. One classification introduced by M. J. Flynn considers the organization of a 
computer system by the number of instructions and data items that are manipulated simultaneously. The 
normal operation of a computer is to fetch instructions from memory and execute them in the processor. 
The sequence of instructions read from memory constitutes an instruction stream . The operations 
performed on the data in the processor constitutes a data stream . Parallel processing may occur in the 
instruction stream, in the data stream, or in both. 
 
Flynn's classification divides computers into four major groups as follows: Single instruction stream, single 
data stream (SISD) 
Single instruction stream, multiple data stream (SIMD) Multiple instruction stream, single data stream 
(MISD) Multiple instruction stream, multiple data stream (MIMD) 
 
SISD represents the organization of a single computer containing a control unit, a processor unit, and a 
memory unit. Instructions are executed sequentially and the system may or may not have internal parallel 
processing capabilities. Parallel processing in this case may be achieved by means of multiple functional units 
or by pipeline processing. 
SIMD represents an organization that includes many processing units under the supervision of a common 
control unit. All processors receive the same instruction from the control unit but operate on different items 
of data. The shared memory unit must contain multiple modules so that it can communicate with all the 
processors simultaneously. 
MISD structure is only of theoretical interest since no practical system has been constructed using this 
organization. 
MIMD organization refers to a computer system capable of processing several programs at the same time. 
Most multiprocessor and multicomputer systems can be classified in this category. 
 
 
Concurrent access to memory and cache coherency: 
The primary advantage of cache is its ability to reduce the average access time in uniprocessors. When the 
processor finds a word in cache during a read operation, the main memory is not involved in the transfer. If 
the operation is to write, there are two commonly used procedures to update memory. 
Write-through policy: In the write-through policy, both cache and main memory are updated with every 
write operation. 
Write-back policy: In the write-back policy, only the cache is updated and the location is marked so that it 
can be copied later into main memory. 
In a shared memory multiprocessor system, all the processors share a common memory. In addition, each 
processor may have a local memory, part or all of which may be a cache. The compelling reason for having 
separate caches for each processor is to reduce the average access time in each processor. The same 
information may reside in a number of copies in some caches and main memory. 
To ensure the ability of the system to execute memory operations correctly, the multiple copies must be kept 
identical. 
This requirement imposes a cache coherence problem. A memory scheme is coherent if the value returned on 
a load instruction is always the value given by the latest store instruction with the same address. Without a 
proper solution to the cache coherence problem, caching cannot be used in bus- oriented multiprocessors 
with two or more processors. 
 
 

 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

Conditions for Incoherence 
Cache coherence problems exist in multiprocessors with private caches because of the need to share writable 
data. Read-only data can safely be replicated without cache coherence enforcement mechanisms. 
To illustrate the problem, consider the three-processor configuration with private caches shown in Fig. 13-
12. Sometime during the operation an element X from main memory is loaded into the three processors, P1, 
P2, and P3. As a consequence, it is also copied into the private caches of the three processors. For simplicity, 
we assume that X contains the value of 52. The load on X to the three processors results in consistent copies 
in the caches and main memory. If one of the processors performs a store to X, the copies of X in the caches 
become inconsistent. A load by the other processors will not return the latest value. Depending on the 
memory update policy used in the cache, the main memory may also be inconsistent with respect to the 
cache. 
 
 

 
This is shown in Fig. 13-13. A store to X (of the value of 120) into the cache of processor P1 updates memory 
to the new value in a write-through policy. A write-through policy maintains consistency between memory 
and the originating cache, but the other two caches are inconsistent since they still hold the old value. In a 
write-back policy, main memory is not updated at the time of the store. The copies in the other two caches 
and main memory are inconsistent. Memory is updated eventually when the modified data in the cache are 
copied back into memory. 
 

 
 
 
 
 
 
 
 
 
 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

 
Another configuration that may cause consistency problems is a direct memory access (DMA) 
activity in conjunction with an IOP connected to the system bus. In the case of input, the DMA may 
modify locations in main memory that also reside in cache without updating the cache. During a 
DMA output, memory locations may be read before they are updated from the cache when using a 
write-back policy. VO-based memory incoherence can be overcome by making the IOP a 
participant in the cache coherent solution that is adopted in the system. 
 

Very Long Instruction Word (VLIW) architecture in P-DSPs (programmable DSP) increases the 

number of instructions that are processed per cycle. It is a concatenation of several short instructions 

and requires multiple execution units running in parallel, to carry out the instructions in a single cycle. 

A language compiler or pre-processor separates program instructions into basic operations and places 

them into VLWI processor which then disassembles and transfers each operation to an appropriate 

execution unit. 

VLIW P-DSPs have a number of processing units (data paths) i.e. they have a number of ALUs, MAC 

units, shifters, etc. The VLIW is accessed from memory and is used to specify the operands and 

operations to be performed by each of the data paths. 

 
As shown in figure, the multiple functional units share a common multiported register file for fetching 

the operands and storing the results. Parallel random access by the functional units to the register file is 



 

Jaipur Engineering college and research 

centre, Shri Ram ki Nangal, via Sitapura 

RIICO Jaipur- 302 022. 

 

Academic year- 

2020-2021 

 

 

facilitated by the read/write cross bar. Execution of the operations in the functional units is carried out 

concurrently with the load/ store operation of data between a RAM and the register file. 

The performance gains that can be achieved with VLIW architecture depends on the degree of 

parallelism in the algorithm selected for a DSP application and the number of functional units. The 

throughput will be higher only if the algorithm involves execution of independent operations. For 

example, in convolution by using eight functional units, the time required can be reduced by a factor of 

8 compared to the case where a single functional unit is used. 

However, it may not always be possible to have independent stream of data for processing. The number 

of functional units is also limited by the hardware cost for the multi-ported register file and cross bar 

switch. 

Advantages of VLIW architecture 
Increased performance. 

Potentially scalable i.e. more execution units can be added and so more instructions can be packed into 

the VLIW instruction. 

Disadvantages of VLIW architecture 
New programmer needed. 

Program must keep track of Instruction scheduling. 

Increased memory use. 

High power consumption. 

Why to use VLIW? 

The key to higher performance in microprocessors for a broad range of applications is the ability to 

exploit fine-grain, instruction-level parallelism. Some methods for exploiting fine-grain parallelism 

include: 

pipelining 

multiple processors 

superscalar implementation 

specifying multiple independent operations per instruction 

Pipelining is now universally implemented in high-performance processors. Little more can be gained 

by improving the implementation of a single pipeline. Using multiple processors improves performance 

for only a restricted set of applications. Superscalar implementations can improve performance for all 

types of applications. Superscalar (super: beyond; scalar: one dimensional) means the ability to fetch, 

issue to execution units, and complete more than one instruction at a time. 

Superscalar implementations are required when architectural compatibility must be preserved, and they 

will be used for entrenched architectures with legacy software, such as the x86 architecture that 

dominates the desktop computer market. Specifying multiple operations per instruction creates a very-

long instruction word architecture or VLIW. 

A VLIW implementation has capabilities very similar to those of a superscalar processor—issuing and 

completing more than one operation at a time—with one important exception: the VLIW hardware is 

not responsible for discovering opportunities to execute multiple operations concurrently. For the VLIW 

implementation, the long instruction word already encodes the concurrent operations. This explicit 

encoding leads to dramatically reduced hardware complexity compared to a high-degree superscalar 

implementation of a RISC or CISC. The big advantage of VLIW, then, is that a highly concurrent 

(parallel) implementation is much simpler and cheaper to build than equivalently concurrent RISC or 

CISC chips. VLIW is a simpler way to build a superscalar microprocessor. 

 
 
 
 
 


	Computer Organization:
	BASIC TERMINOLOGY
	Architecture and function of general computer system
	Functional Unit
	Input unit: -
	Memory unit: -
	1. Primary memory
	Word:
	Arithmetic logic unit (ALU):-
	Output unit:-
	Control unit:-
	BASIC OPERATIONAL CONCEPTS
	Register:
	Instruction Format:
	INSTRUCTION CYCLE:
	The program counter PC:-
	Operating steps are
	THE VON NEUMANN ARCHITECTURE
	BUS STRUCTURES:
	Types of Buses:
	2. Address Bus:
	3. Control Bus:
	SOFTWARE
	PERFORMANCE
	Processor clock: -
	Basic performance equation
	Pipelining and super scalar operation: -
	Clock rate
	Instruction set CISC & RISC:-
	Comparison between RISC and CISC:
	Binary Coded Decimal (BCD) code
	Alphanumeric codes
	Computer Arithmetic-Multiplication, Division
	Binary Multiplication
	Binary Division

	Subtraction by 1’s Complement
	Subtraction by 2’s Complement
	Error  Detection &  Correction
	Error-Detectingcodes
	Error-Correctingcodes
	Howto Detectand Correct Errors?
	Useof Parity Bit
	How Does Error Detection Take Place?

	Instruction Codes
	Computer Instructions
	Timing and Control
	Hard-wired control:

	Instruction Cycle
	Instruction Fetch and Decode
	Input-Output and Interrupt Hardware Summary
	I/O Operations
	Stack Organization
	Register Stack
	Insert:
	Delete:
	Register Stack:-
	Memory Stack :
	INSTRUCTION FORMATS
	Three address Instruction
	Two Address Instruction
	One Address instruction
	Zero – Address Instruction
	Addressing Modes
	Immediate Addressing:
	Direct Addressing:
	Indirect Addressing:
	Register Addressing:
	Register Indirect Addressing:
	Displacement Addressing:
	Relative Addressing:
	Base-Register Addressing:
	Indexing:
	Stack Addressing:
	Data Transfer & Manipulation
	(1) Data Transfer Instruction
	(Typical data transfer instruction)
	(a) Arithmetic Instruction
	(c) Shift Instruction
	Introduction about Program Control:-
	Introduction About status bit register:-
	Introduction About Conditional branch instruction:- Conditional branch instruction:-
	Unsigned Compare(A-B):-
	Introduction About program interrupt:-
	TYPES OF INTERRUPTS
	2. External Interrupt:
	3. Software interrupts:

	CISC Characteristics
	RISC Characteristics
	Example of RISC & CISC
	Addressing Sequencing:
	CAR
	control ROM
	opcode
	mapping logic
	branch logic
	multiplexors
	incrementer
	SBR

	Addition and Subtraction
	Hardware Implementation
	Hardware Algorithm

	Multiplication
	Hardware Implementation and Algorithm

	Hardware Algorithm
	Example: Multiply 23 by 19 using multiply algorithm.
	Example.
	Division Algorithm
	Division Algorithm

	Restoring method
	Divide Overflow

	Arithmetic Operations on Floating-Point Numbers
	Add/Subtract Rule
	BCD Adder:
	MEMORY ORGANIZATION
	Concept of Hierarchical Memory Organization
	External Memory or Secondary Memory
	Internal Memory or Primary Memory
	Characteristics of Memory Hierarchy
	Access Time:
	Performance:
	Cost per bit:
	Cache Memories:
	Cache Hits
	Cache Misses
	Cache Mapping:
	Direct mapping
	Associative Mapping
	Set-Associative Mapping
	Replacement Algorithms
	Write Policies
	Write-through protocol:
	Write-back protocol:
	MOS Memory Cell:
	• Fully associative mapping

	Characteristics of Memory Hierarchy (1)


