=" Jaipur Engineering college and research

(¢ "E : : . Academic year-

JEER centre, Shri Ram kiNangal, via Sitapura

QEE L J P 2020-2021
PAIAND RESEARCH CENTRE RIICO Jaipur- 302 022.

Jaipur Engineering College & Research Centre, Jaipur

(5EE4-04)
Microprocessor

Prepared By:
Gopal Tiwari
AssistantProfessor

= Jaipur Engineering college and research
(@& - : o Academic year-
) centre, Shri Ram kiNangal, via Sitapura
JEERL J PAIE | 2020-2021
RIICO Jaipur- 302 022.
Vision of JECRC

To become a renowned centre of outcome based learning, and work towards academic,
professional, cultural and social enrichment of the lives of individuals and communities.

Mission of JECRC

M1.

M2.

M3.
M4.

Focus on evaluation of learning outcomes and motivate students to inculcate
research aptitude by project based learning.

Identify, based on informed perception of Indian, regional and global needs,
areas of focus and provide platform to gain knowledge and solutions.

Offer opportunities for interaction between academia and industry.

Develop human potential to its fullest extent so that intellectually capable and
imaginatively gifted leaders can emerge in a range of professions.

Vision of EE Department

Electrical Engineering Department strives to be recognized globally for outcome based knowledge
and to develop human potential to practice advance technology which contribute to society.

Mission of EE Department

M1.

M2.

M3.

To impart quality technical knowledge to the learners to make them globally
competitive Electrical Engineers.

To provide the learners ethical guidelines along with excellent academic environment
for a long productive career.

To promote industry-institute relationship.

PSO of EE Department

PSO1
PSO2

Graduates will be able to contribute for the development of automation.
Graduates will be able to contribute towards integration of the green energy.

=\ Jaipur Engineering college and research
(@ : : . Academic year-
, centre, Shri Ram kiNangal, via Sitapura
JELRL | 9 PUE 1 5020-2021
RIICO Jaipur- 302 022.

PROGRAM OUTCOMES
1. Engineering knowledge: Apply the knowledge of mathematics, science,
engineering fundamentals, and an engineering specialization to the solution of
complex engineering problems.
2. Problem analysis: Identify, formulate, research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.
3. Design/development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the specified needs
with appropriate consideration for the public health and safety, and the cultural,
societal, and environmental considerations.
4. Conduct investigations of complex problems: Use research-based knowledge
and research methods including design of experiments, analysis and interpretation of
data, and synthesis of the information to provide valid conclusions.
5. Modern tool usage: Create, select, and apply appropriate techniques, resources,
and modern engineering and IT tools including prediction and modeling to complex
engineering activities with an understanding of the limitations.
6. The engineer and society: Apply reasoning informed by the contextual
knowledge to assess societal, health, safety, legal and cultural issues and the
consequent responsibilities relevant to the professional engineering practice.
7. Environment and sustainability: Understand the impact of the professional
engineering solutions in societal and environmental contexts, and demonstrate the
knowledge of, and need for sustainable development.
8. Ethics: Apply ethical principles and commit to professional ethics and
responsibilities and norms of the engineering practice.
9. Individual and team work: Function effectively as an individual, and as a
member or leader in diverse teams, and in multidisciplinary settings.
10. Communication: Communicate effectively on complex engineering activities
with the engineering community and with society at large, such as, being able to
comprehend and write effective reports and design documentation, make effective
presentations, and give and receive clear instructions.
11. Project management and finance: Demonstrate knowledge and understanding
of the engineering and management principles and apply these to one’s own work,as

JeCRE

JAIPUR ENGINEERING COLLEGE
AND RESEARCH CENTRE

Jaipur Engineering college and research
centre, Shri Ram kiNangal, via Sitapura
RIICO Jaipur- 302 022.

Academic year-
2020-2021

a member and leader in a team, to manage projects and in multidisciplinary
environments.
12. Life-long learning: Recognize the need for, and have the preparation and
ability to engage in independent and life-long learning in the broadest context of
technological change.

Course Outcomes

To differentiate and analyse the properties features of Microprocessor and
CO1 | Microcontroller and understand the basic building blocks of a
microcontroller
cO2 Identify a detail s/w and h/w structure of microcontrollers and programming
techniques
CO3 | lustrate how the different peripheral and interfaced with microcontroller.
CO-PO Mapping
PO PO1 | PO2 | PO3 | PO4 PO5 PO6 | PO7 | PO8 PO9 PO10 | PO11 | PO12 | PSO1 | PSO1
Col 3 3 3 2 3 2 1 2 2 3 3
Co2
2 3 3 2 2 2 1 2 2 3 3
Co3
2 3 3 2 2 2 1 2 2 3 3

h Jaipur Engineering college and research
(@& : : o Academic year-
) centre, Shri Ram kiNangal, via Sitapura
JE{R[0 P 2020-2021
RIICO Jaipur- 302 022.
Teaching and Examination Scheme
S.NO| Course Course Hours Marks Cr
Type Per
Week
Code Name LIT|P|Exa |IA]|ETE| Total
m
Hrs

1 PCC/PEC | 5EE4-04 | Microprocessor |3 [0 |0 |3 30 (120 [150 |3

Jaipur Engineering college and research

centre, Shri Ram kiNangal, via Sitapura | A\cademic year-
- 2020-2021

P AND RESEARCH CENTRE RIICO Jaipur- 302 022.

RAJASTHAN TECHNICAL UNIVERSITY, KOTA
SYLLABUS
3rd Year - V Semester: B.Tech. (Electrical Engineering)

SEE4-04: MICROPROCESSOR

Credit: 3 Max. Marks: 150({IA:30, ETE:150)
3L+0T+0P End Term Exam: 3 Hours
Syllabus
SN CONTENTS HOURS
Introduction: Objective, scope and outcome of the course. o1

Fundamentals of Microprocessors

Fundamentals of Microprocessor Architecturs. S-bitMicroprocessor
and Microcontroller

architecture, Comparison of 8-hit microcontrollers, 16-bit and 32-bit a7
microcontrollers. Definition of embedded system and its characteris-

tics, Role of microcontrollers in embedded Systems. Overview of the
80531 family.

3 |The 8051 Architecture:

Internal Block Diagram, CPU, ALU, address, data and control bus,
Working registers, SFRs, Clack and RESET circuits, Stack and Stack 08
Pointer, Program Counter, 1/0 ports, Memory Structures, Data and
Program Memory, Timing diagrams and Execution Cycles.

4 |Instruction Set and Programming

Addressing modes: Introduction, Instruction syntax, Data types, Sub-
routines Immediate

addressing, Register addressing, Direct addressing, Indirect address-
ing, Relative addressing,

Indexed addressing, Bit inherent addressing, bit direct addressing.
2051 Instruction set, 08
Instruction timings. Data transfer instructions, Arithmetic instrc-
tions, Logical instructions,

Branch instructions, Subroutine instructions, Bit manipulation in-
struction. Assembly

lanpuage programs, C language programs. Assemblers and compilers.
Programming and

debugging tools..

5 |Memeory and [/0 Interfacing

Memory and [0 expansion buses, control signals, memory wait

states. Interfacing of peripheral devices such as General Purpose 170, 06
ADC, DAC, tmers, counters, memory devices.

6 |External Communication Interface
Synchronous and Asynchronous Communication. RS232, SPI, [2C. 06
Introduction and interfacing to protocols like Blue-tooth and Zig-bee.

T |Applications

LED, LCD and keyvboard interfacing. Stepper motor interfacing, DC 05

Motor interfacing, sensor interfacing

TOTAL 41

Microcontrollers

UNIT -1

1.1 MICROPROCESSORS AND MICROCONTROLLERS

Microprocessor Microcontroller
Arithmetic Iami logic ALU Timer/ 10 Ports
unit Counter
Avcumulator
Accumulator [I'.I.I.CH'I.IPT
Registers Circuits
Werking Registers Internal
Internal FAM ROM
Program Counter Stack Pointer Stack Pointer Clock
Clock Circuit Interrupt circuit Program Counter
Block diagram of microprocessor Block diagram of microcontroller

Microprocessor contains ALU, General purpose | Microcontroller contains the circuitry of
registers, stack pointer, program counter, clock | microprocessor, and in addition it has built in
timing circuit, interrupt circuit ROM, RAM, 1/0 Devices, Timers/Counters etc.

It has many instructions to move data between | It has few instructions to move data between

memory and CPU memory and CPU
Few bit handling instruction It has many bit handling instructions
Less number of pins are multifunctional More number of pins are multifunctional

Single memory map for data and code | Separate memory map for data and code
(program) (program)

Access time for memory and [0 are more Less access time for built in memory and 0.

Microprocessor based system requires | It requires less additional hardwares
additional hardware

Maore flexible in the design point of view Less flexible since the additional circuits which is
residing inside the microcontroller is fixed for a
particular microcontroller

Large number of instructions with flexible | Limited number of instructions with few
addressing modes addressing modes

. .
Microcontrollers

1.2. RISC AND CISC CPU ARCHITECTURES

Microcontrollers with small instruction set are called reduced instruction set computer [(RISC)
machines and those with complex instruction set are called complex instruction set computer
(CISC). Intel 8051 is an example of CISC machine whereas microchip PIC 18FB7X is an example of

RISC machine.

RISC

CISC

Instruction takes one or two cycles

Instruction takes multiple cycles

Only load/store instructions are used to access
Memory

In additions to load and store instructions,
memory access is possible with other
instructions also.

Instructions executed by hardware

Instructions executed by the micro program

Fixed format instruction

Variable format instructions

Few addressing modes

Many addressing modes

Few instructions

Complex instruction set

Most of the have multiple register banks

Single register bank

Highly pipelined

Less pipelined

Complexity is in the compiler

Complexity in the microprogram

Microcontrollers

1.2. HARVARD & VON- NEUMANN CPU ARCHITECTURE

Von-Neumann (Princeton architecture)

Harvard architecture

< Data > Program
Memory
CPU
Data
> Memory
Address Bus

—< Ay
Data v Data
I M Memory
[11
CPU Address Bus
K J
Data Program
[> Memory
| Address Bus

Von-Neumann (Princeton architecture)

Harvard architecture

It uses single memory for both

instructions and data.

space

It has separate program memory and data
memaory

It is not possible to fetch instruction code and
data

Instruction code and data can he fetched
simultaneously

Execution of instruction takes more machine
cycle

Execution of instruction takes less machine

cycle

Uses CISC architecture

Uses RISC architecture

Instruction pre-fetching is a main feature

Instruction parallelism is a main feature

Also known as control flow or control driven
computers

Also known as data flow or data driven

computers

Simplifies the chip design because of single
memory space

Chip design is complex due to separate memory
space

Eg. BOB5, 8086, MC6BOD

Eg. General purpose microcontrollers, special
DSP chips ete.

Microcontrollers

1.3 COMPUTER SOFTWARE
A set of instructions written in a specific sequence for the computer to solve a specific task is called
a program and software is a collection of such programs.

The program stored in the computer memory in the form of binary numbers is called machine
instructions. The machine language program is called object code.

An agssembly language is a mnemonic representation of machine language. Machine language and
assembly language are low level languages and are processor specific.

The assembly language program the programmer enters is called source code. The source code
(assembly language) is translated to object code (machine language) using assembler.

Programs can be written in high level languages such as C, C++ etc. High level language will be
converted to machine language using compiler or interpreter. Compiler reads the entire program
and translate into the object code and then it is executed by the processor. Interpreter takes one
statement of the high level language as input and translate it into object code and then executes.

1.4 THE 8051 ARCHITECTURE
Introduction

Salient features of 8051 microcontroller are given below.
» Eight bit CPU
#* On chip clock oscillator
» 4Kbytes of internal program memory (code memory) [ROM]
= 128 bytes of internal data memory [RAM]
* 64 Kbytes of external program memory address space.
= 64 Kbytes of external data memory address space.
32 bidirectional [/0 lines [can be used as four 8 bit ports or 32 individually addressable [/0
lines)
Two 16 Bit Timer/Counter :T0, T1
Full Duplex serial data receiver/transmitter
s Four Register banks with 8 registers in each bank.
» Sixteen bit Program counter (PC) and a data pointer (DPTR)
= 8 Bit Program Status Word (PSW)
» B Bit Stack Pointer
Five vector interrupt structure (RESET not considered as an interrupt.)
« B051 CPU consists of 8 bit ALU with associated registers like accumulator ‘A", B register,
PSW, SP, 16 bit program counter, stack pointer.
* ALU can perform arithmetic and logic functions on 8 bit variables.
« 8051 has 128 bytes of internal RAM which is divided into
o Working registers [00 - 1F]
o Bit addressable memory area [20 - 2F]
o General purpose memory area (Scratch pad memory) [30-7F]

Microcontrollers

The 8051 architecture.

/o
AQ=AT
PSW
ALU SER Port O D0-D7
General
A B Purpose jo
RAM Port 1
Ifo
AB-
ROM
DPTR
PC
DPH I
INT
DPL Port 3 CHTR
SERIAL
BD/WR
_E | IE
ALE | System General IF i
PSEN Timing purpose PCON i
drea SEUF !
int ; i
XTAL2 ":iE:x Bit addressible TCON !
RESET | - TAMOD i
Dat:] Register Bank 3 TLﬂ :
huffﬂfs Register Bank 2 TH‘] i
Fegister Bank 1 TL1 :
vcC | Memory bty THI i
GND control SFR and i
| General Purpose RAM i

= 8051 has 4 K Bytes of internal ROM. The address space is from 0000 to OFFFh. If the
program size is more than 4 K Bytes 8051 will fetch the code automatically from external
memaory.

o Accumulator is an 8 bit register widely used for all arithmetic and logical operations.
Accumulator is also used to transfer data between external memory. B register is used along
with Accumulator for multiplication and division. A and B registers together is also called
MATH registers.

Microci

antrollers

PSW (Program Status Word). This is an 8 bit register which contains the arithmetic status of
ALU and the bank select bits of register banks.
lcy |ac|Fo|Rs1|Rrso|ov]|-]p]

cY - carry flag

AC - auxiliary carry flag

FO - available to the user for general purpose
RS1,RS0 - register bank select bits

ov - overflow

P - parity

Stack Pointer (5P) - it contains the address of the data item on the top of the stack. Stack
may reside anywhere on the internal RAM. On reset, 5P is initialized to 07 so that the default
stack will start from address 08 onwards.

Data Pointer (DPTR) - DPH (Data pointer higher byte), DPL [Data pointer lower byte). This
is a 16 bit register which is used to furnish address information for internal and external
program memory and for external data memory.

Program Counter (PC) - 16 bit PC contains the address of next instruction to be executed.
On reset PC will set to 0000. After fetching every instruction PC will increment by one.

1.5 PIN DIAGRAM

P10] 1 @[] Ve
P11 [] 2 3 [T] FOO (ADD)
P12] 3 38 [] FO1(ADD)
P13 [# 31 [7] P02 (ADZ)
P14 [S 3 [] P03 (ADT
P15 [& 8051 35 [] P04 (AD4)
Pl 7 M ™) P05 (ADS)
P17] ® 33 [] PO (AD)
BRST [# 32 [T] FOT(ADT)
RXD) B30 [10 3 [7] ERNFPP
(TXD) B3l [1 30 [ALEFEOG
TOWTH ER2 [12 =[] FEEH
TANTI BR3 [] 13 I [] P27 (A15
(T F34 [] 14 27 [] F26 (A4
Ty P35 [] 15 26 [] F25{AID
TWR) P36 [16 25 [] P24 AID
TED) BFIT [17 M [T] FRIAID
XTAL? [] 12 3 [] B2 A
XTALL [] 19 2 [] F21{A%)
GHD [] 20 21 [] P20 {AS)
Pinout Description

Pins 1-8 PORT 1. Each of these pins can be configured as an input or an output.

Pin 9

RESET. A logic one on this pin disables the microcontroller and clears the contents of
most registers. In other words, the positive voltage on this pin resets the
microcontroller. By applying logic zero to this pin, the program starts execution from
the beginning,

Pins10-17 | PORT 3. Similar to port 1, each of these pins can serve as general input or output.

Besides, all of them have alternative functions

Ny

’ -y T o
ML OCOFILIONERS

Pin 10

RXD. Serial asynchronous communication input or Serial synchronous communication
output.

Pin 11 TXD. Serial asynchronous communication output or Serial synchronous
communication clock output.

Pin12 INTO.External Interrupt 0 input

Pini3 INT1. External [Interrupt 1 input

Pin 14 T0. Counter 0 clock input

Pin 15 T1. Counter 1 clock input

Pin 16 WR. Write to external (additional) RAM

Pin 17 RD. Eead from external RAM

Pin 18, 19 | XTALZ, XTAL1. Internal oscillator input and output. A quartz crystal which specifies
operating frequency is usually connected to these pins.

Pin 20 GND. Ground.

Pin 21-28 | Port 2. If there is no intention to use external memory then these port pins are
configured as general inputs/outputs. In case external memory is used, the higher
address byte, i.e. addresses AB-A1S5 will appear on this port. Even though memory
with capacity of 64Kb is not used, which means that not all eight port bits are used for
its addressing, the rest of them are not available as inputs/outputs.

Pin 29 PSEN. If external ROM is used for storing program then a logic zero (0) appears on it
every time the microcontroller reads a byte from memory.

Pin 30 ALE. Prior to reading from external memory, the microcontroller puts the lower
address byte (AD-A7) on PO and activates the ALE output. After receiving signal from
the ALE pin, the external latch latches the state of PO and uses it as a memory chip
address. Immediately after that, the ALE pin is returned its previous logic state and PO
is now used as a Data Bus.

Pin 31 EA. By applying logic zero to this pin, P2 and P3 are used for data and address
transmission with no regard to whether there is internal memory or not. It means that
even there is a program written to the microcontroller, it will not be executed. Instead,
the program written to external ROM will be executed. By applying logic one to the EA
pin, the microcontroller will use both memories, first internal then external (if exists).

Pin 32-39 | PORT 0. Similar to P2, if external memory is not used, these pins can be used as
general inputs/outputs. Otherwise, PO is configured as address output [A0-A7) when
the ALE pin is driven high (1) or as data output (Data Bus) when the ALE pin is driven
low (0).

Pin 40 VCC. +5V power supply.

10

Microcontrollers

1.6 MEMORY ORGANIZATION

Internal RAM organization

R7 IF [T
R& 1E
RS 10 e
R4 ic v - 7F 78 7F
FE] 1B <, w77 70 7E
RZ 14 é . .
R1 19 m
R s | B i &7 &
R7 17 5F 58
el 1
R& 16
RS 15 ~1 14 57 50
R4 14 g ” +F +8
R3 13 = = | 7 40
k2 12 é 3F iy
Ri 11 o
R wo) _ = | 37 30
R7 F N 2F 2R
R 0E = — — 32
RS i) —_ et} 31
R4 o s e] 1F 18 3{]
R3 o8 < | 27 10
RZ 04 - =
Rl o9 (ue) n | OF g
i1 - S I — - w | 07 oo General purpose memory
R7 a7
RE 06
RS 05 =
R4 04 - Bit addressable memory
R3 03 z
RZ 0z =
Ri 01
RO [
Working Registers

Register Banks: 00h to 1Fh. The 8051 uses B general-purpose registers R0 through R7 [RO, R1,
R2Z, R3, R4, R5, R6, and R7). There are four such register banks. Selection of register bank can be
done through RS1,RS0 bits of PSW. On reset, the default Register Bank D will be selected.

Bit Addressable RAM: 20h to 2Fh . The 8051 supports a special feature which allows access to bit
variables. This is where individual memory bits in Internal RAM can be set or cleared. In all there
are 128 bits numbered 00h to 7Fh. Being bit variables any one variable can have a value 0 or 1. A bit
variable can be set with a command such as SETB and cleared with a command such as CLR.
Example instructions are:

SETE 25h ; sets the bit 25h (becomes 1)

CLR 25h ; clears bit 25h {becomes)

Note, bit 25h is actually bit 5 of Internal RAM location 24h.

The Bit Addressable area of the RAM is just 16 bytes of Internal RAM located between 20h and 2Fh.

General Purpose RAM: 30h to 7Fh. Even if 80 bytes of Internal RAM memory are available for
general-purpose data storage, user should take care while using the memory location from 00 -2Fh

11

Microcontrollers

since these locations are also the default register space, stack space, and bit addressable space. It is
a good practice to use general purpose memory from 30 - 7Fh. The general purpose RAM can be
accessed using direct or indirect addressing modes.

1.7 EXTERNAL MEMORY INTERFACING
Eg. Interfacing of 16 K Byte of RAM and 32 K Byte of EPROM to 8051

Number of address lines required for 16 Kbyte memory is 14 lines and that of 32Kbytes of
memory is 15 lines.

The connections of external memory is shown below.

PSEN EFSEN
Ald Ald
Au =m-_- mEmmmmEe Fm
Al K7 i ALL
o b == mmmmmmee e FEEEEEEEE T EETY + 32 Kbyte
AR e *
A% WE o :’5‘ RAM
Y ——— L :
A3
AL = N [RaM N
8051 aoar L A7 ML
V4 PP A an
EAl
NI i AT AT
A A
i DATA BUS [ADO— AD7]
ADT

The lower order address and data bus are multiplexed. De-multiplexing is done by the latch.
Initially the address will appear in the bus and this latched at the output of latch using ALE signal.
The output of the latch is directly connected to the lower byte address lines of the memory. Later
data will be available in this bus. 5till the latch output is address it self. The higher byte of address
bus is directly connected to the memory. The number of lines connected depends on the memory
size.

The RD and WR (both active low) signals are connected to BAM for reading and writing the data.

PSEN of microcontroller is connected to the output enable of the ROM to read the data from the
Memaory.

EA (active low) pin is always grounded if we use only external memory. Otherwise, once the
program size exceeds internal memory the microcontroller will automatically switch to external
memory.

12

Microcontrollers

1.8 STACK

A stack is a last in first out memory. In 8051 internal RAM space can be used as stack. The address
of the stack is contained in a register called stack pointer. Instructions PUSH and POP are used for
stack operations. When a data is to be placed on the stack, the stack pointer increments before
storing the data on the stack so that the stack grows up as data is stored (pre-increment). As the
data is retrieved from the stack the byte is read from the stack, and then 5P decrements to point the
next available byte of stored data (post decrement). The stack pointer is set to 07 when the B051
resets. So that default stack memory starts from address location 08 onwards (to avoid overwriting
the default register bank ie., bank 0).

Eg; Show the stack and SP for the following.

[SP]=0 //CONTENT OF 5P IS 07 (DEFAULT VALUE)

MOV Re, #25H [Re]= 25H //CONTENT OF R6 IS 25H

MOV R1, #12H [R1]=12ZH //CONTENT OF R1 15 12H

MOV R4, #0F3H [R4]=F3H //CONTENT OF R4 IS F3H

PUSH 6 [SP]=08 [0B]=[06]=25H J/CONTENT OF 08 15 25H
PUSH 1 [SP]=09 [09]=[01]=12H J/CONTENT OF 09 15 12H
PUSH 4 [SP]=0A [0A)=[D4]=F3H J/CONTENT OF 0A 15 F3H
POFP 6 [D6])=[DA]=F3H [SP]=09 //CONTENT OF 06 15 F3H

POP1 [01]=[09]=12H [SP]=08 //CONTENT OF 0115 12H

POF 4 |04]=[08]=25H [SP]=07 f/CONTENT OF 04 15 25H

13

Microcontrollers

UNIT 2

2.1 INSTRUCTION SYNTAX.

General syntax for B051 assembly language is as follows.
LABEL: OPCODE OPERAND ;COMMENT

LABEL : [THIS IS NOT NECESSARY UNLESS THAT SPECIFIC LINE HAS TO BE ADDRESSED). The label is a symbolic
address for the instruction. When the program is assembled, the label will be given specific address
in which that instruction is stored. Unless that specific line of instruction is needed by a branching
instruction in the program, it is not necessary to label that line.

OPCODE: Opcode is the symbolic representation of the operation. The assembler converts the
opcode to a unique binary code (machine language).

OPERAND: While opcode specifies what operation to perform, operand specifies where to perform
that action. The operand field generally contains the source and destination of the data. In some
cases only source or destination will be available instead of both. The operand will be either
address of the data, or data itself.

COMMENT: Always comment will begin with ; or // symbol. To improve the program quality,
programmer may always use comments in the program.

2.2 ADDRESSING MODES

Various methods of accessing the data are called addressing modes.
8051 addressing modes are classified as follows.

Immediate addressing.

Register addressing.

Direct addressing.

Indirect addressing.

Relative addressing.

Absolute addressing.

Long addressing,

Indexed addressing.

. Bitinherent addressing.
10. Bit direct addressing.

1. Immediate addressing.

In this addressing mode the data is provided as a part of instruction itself. In other words

e B U

data immediately follows the instruction.

Eg MOV A #30H
ADD A, #83 # Symbol indicates the data is immediate.

14

Microcontrollers

Register addressing.

In this addressing mode the register will hold the data. One of the eight general registers
(RO to R7) can be used and specified as the operand.

Eg MOV ARD

ADD ARG
RO - R7 will be selected from the current selection of register bank. The default register bank will be bank 0.
Direct addressing

There are two ways to access the internal memory. Using direct address and indirect address. Using
direct addressing mode we can not only address the internal memory but SFRs also. In direct addressing, an 8
bit internal data memory address is specified as part of the instruction and hence, it can specify the address
only in the range of 00H to FFH. In this addressing mode, data is obtained directly from the memory.

Eg MOV A,60h

ADD A30h
Indirect addressing

The indirect addressing mode uses a register to hold the actual address that will be used in data
movement. Registers R0 and R1 and DPTR are the only registers that can be used as data pointers. Indirect
addressing cannot be used to refer to SFR registers. Both R0 and R1 can hold 8 bit address and DPTR can hold
16 bit address.

Eg MOV A, @R0

ADD A@R1

MOVX A, @DPTR
Indexed addressing.

In indexed addressing, either the program counter (PC], or the data pointer (DTPR)—is
used to hold the base address, and the A is used to hold the offset address. Adding the value of the
base address to the value of the offset address forms the effective address. Indexed addressing is
used with [MP or MOVC instructions. Look up tables are easily implemented with the help of index
addressing.

Eg. MOVCA, @A+DPTR // copies the contents of memory location pointed by the sum of the

accumulator A and the DPTR into accumulator A.

MOVC A, @A+PC Jf copies the contents of memory location pointed by the sum of the
accumulator A and the program counter into accumulator A.
Relative Addressing.

Relative addressing is used only with conditional jump instructions. The relative address,
(offset), is an 8 bit signed number, which is automatically added to the PC to make the address of
the next instruction. The 8 bit signed offset value gives an address range of +127 to —128 locations.
The jump destination is usually specified using a label and the assembler calculates the jump offset
accordingly. The advantage of relative addressing is that the program code is easy to relocate and
the address is relative to position in the memory.

Eg. SIMP LOOP1
JC BACK
Absolute addressing

Absolute addressing is used only by the AJMP (Absolute Jump) and ACALL (Absolute Call)
instructions. These are 2 bytes instructions. The absolute addressing mode specifies the lowest 11
bit of the memory address as part of the instruction. The upper 5 bit of the destination address are

15

Microcontrollers

the upper 5 bit of the current program counter. Hence, absolute addressing allows branching only
within the current 2 Kbyte page of the program memory.

Eg. AJMP LOOP1
ACALL LOGP2

8. Long Addressing
The long addressing mode is used with the instructions L|MP and LCALL. These are 3 byte
instructions. The address specifies a full 16 bit destination address so that a jump or a call can be
made to a location within a 64 Kbyte code memory space.
Eg. LJMP FINISH
LCALL DELAY

9. Bit Inherent Addressing

In this addressing, the address of the flag which contains the operand, is implied in the opcode
of the instruction.
Eg. CLRC ; Clears the carry flag to 0

10. Bit Direct Addressing
In this addressing mode the direct address of the bit is specified in the instruction. The RAM
space 20H to 2FH and most of the special function registers are bit addressable. Bit address values
are between 00H to 7FH.
Eg. CLR 0O7h : Clears the bit 7 of 20h RAM space
SETBOVH H Sets the bit 7 of 20H RAM space.
2.3 INSTRUCTION SET.

1. Instruction Timings
The 8051 internal operations and external read /write operations are controlled by the oscillator
clock.
T-state, Machine cycle and Instruction cycle are terms used in instruction timings.
T-state is defined as one subdivision of the operation performed in one clock period. The terms "T-
state’ and 'clock period’ are often used synonymously.
Machine cycle is defined as 12 oscillator periods. A machine cycle consists of six states and each
state lasts for two oscillator periods. An instruction takes one to four machine cycles to execute an
instruction. Instruction cycle is defined as the time required for completing the execution of an
instruction. The 8051 instruction cycle consists of one to four machine cycles.
Eg. If B051 microcontroller is operated with 12 MHz oscillator, find the execution time for the
following four instructions.

1. ADDA, 45H

2. SUBB A, #55H

3. MOV DFTR, #2000H

4. MULAB
Since the oscillator frequency is 12 MHz, the clock period is, Clock period = 1/12 MHz = 0.08333 puS.
Time for 1 machine cycle = 0.08333 uSx 12 =1 pS.

Instruction No. of machine cycles Execution time
1. ADDA, 45H 1 Ius

16

Microcontrollers

2. SUBBA, #55H 2 2us
3. MOV DPTR, #2000H 2 2us
4. MULAB 4 4us

2. 8051 Instructions

The instructions of 8051 can be broadly classified under the following headings.
1. Data transfer instructions

Arithmetic instructions

Logical instructions

Branch instructions

Subroutine instructions

Bit manipulation instructions

ook

Data transfer instructions.
In this group, the instructions perform data transfer operations of the following types.
a. Move the contents of a register Rn to A

i. MOVAR2
ii. MOV ART?T
b. Move the contents of a register A to En
i. MOVR4.A
ii. MOVRLA
c. Move an immediate 8 bit data to register A or to Rn or to a memory location(direct or
indirect)
i. MOV A, #45H iv. MOV @RO0, #0EBH
ii. MOV R6, #51H v. MOV DPTR, #0F5A2H
ifi. MOV 30H, #44H vi. MOV DPTR, #5467H

d. Move the contents of a memory location to A or A to a memory location using direct and
indirect addressing

i. MOV A, &5H fii. MOV 45H, A
ii. MOV A, @R0 . MOV @R1, A
e. Move the contents of a memory location to Rn or En to a memory location using direct
addressing
i. MOV R3,65H

ii. MOV 45H, R2
£ Move the contents of memory location to another memory location using direct and
indirect addressing
i. MOV 47H, 65H
ii. MOV 45H, @R0
g. Move the contents of an external memory to A or A to an external memory

i. MOVXA@R1 iii. MOV A@DPTR
fi. MOV @R0A iv. MOVX@DPTR.A
h. Move the contents of program memory to A
i. MOVCA, @A+PC

ii. MOVC A, @A+DPTR

17

Microcontrollers

“— TR A |

Iy

A Register Addressing
Instructions
MOV A, @Ri | Internal !
MOV A, Direct RAM
Exteral
RAKM
MOVY A, @Fu internal
i and
MOVX A, @DPTR External
DPTR - BOM

DPTR + A MOVC A, @A + DPTR 3

MOWC A, @A + PC
PC+A -

e

|

FIG. Addressing Using MOV, MOVX and MOVC

i. Push and Pop instructions
[SP]=07 //CONTENT OF SP IS 07 (DEFAULT VALUE)
MOV Re, #25H [R&]=25H J/CONTENT OF Re 1S 25H
MOV R1,#12H [R1]=12H J/CONTENT OFR11S 12H
MOV R4, #0F3H [R4]=F3H J/CONTENT OF R4 IS F3H

PUSH 6 [SP]=08 [08]=[06]=25H //CONTENT OF 08 1S 25H
PUSH 1 [SP]=09 [09]=[01]=12H //CONTENT OF 09 1S 12H
PUSH 4 [SP]=0A [0A]=[04]=F3H //CONTENT OF 0A IS F3H
POP 6 [06]=[0A]=F3H [SP]=09 //CONTENT OF 06 1S F3H
POP 1 [01]=[09]=12H [SP]=08 //CONTENT OF 0115 12H
POP 4 [04]=[08]=25H [SP]=07 //CONTENT OF 04 1S 25H

j- Exchange instructions
The content of source ie., register, direct memory or indirect memory will be exchanged
with the contents of destination ie., accumulator.

i. XCHAR3
ii. XCHA®@R1
ifi. XCH A,54h

k. Exchange digit. Exchange the lower order nibble of Accumulator [A0-A3) with lower
order nibble of the internal RAM location which is indirectly addressed by the register.
i. XCHDA,@R1
1. XCHD A,@ROD

18

Microcontrollers

Arithmetic instructions.

The 8051 can perform addition, subtraction. Multiplication and division operations on 8 bit
numbers.

Addition
In this group, we have instructions to
i. Add the contents of A with immediate data with or without carry.
i. ADD A, #45H
ii. ADDC A, #0B4H
ii. Add the contents of A with register Rn with or without carry.
i. ADDA,RS
ii. ADDC A, R2
ifi. Add the contents of A with contents of memory with or without carry using direct and
indirect addressing
i. ADDA,51H
ii. ADDC A, 75H
iii. ADD A, @R1
iv. ADDC A, @RO

CY AC and OV flags will be affected by this operation.

Subtraction
In this group, we have instructions to
i. Subtract the contents of A with immediate data with or without carry.
i. SUBB A, #45H
ii. SUBBA, #0B4H
ii. Subtract the contents of A with register Rn with or without carry.
i. SUBBA,RS
ii. SUBBA,R2
ifi. Subtract the contents of A with contents of memory with or without carry using direct and
indirect addressing
i. SUBBA,51H
ii. SUBBA, 75H
iii. SUBB A, @R1
iv. SUEB A, @R0

CY AC and OV flags will be affected by this operation.
Multiplication
MUL AB. This instruction multiplies two 8 bit unsigned numbers which are stored in A and B

register. After multiplication the lower byte of the result will be stored in accumulator and higher
byte of result will be stored in B register.

Eg MOV A#45H i[A]=45H
MOV B,#0F5H ;[B]=F5H
MUL AB ;[A] x [B] = 45 x F5 = 4209

fAJ=09H, [Bl=42H
Division

19

Microcontrollers

DIV AB. This instruction divides the 8 bit unsigned number which is stored in A by the 8 bit
unsigned number which is stored in B register. After division the result will be stored in
accumulator and remainder will be stored in B register.

Eg MOV A#45H ;[A]=0E8H
MOV B,#0FSH ;[B]=1BH
DIV AB :[A] / [B] = E8 /1B = 08 H with remainder 10H
:[A] = 08H, [B]=10H

DA A (Decimal Adjust After Addition).

When two BCD numbers are added, the answer is a non-BCD number. To get the result in BCD, we
use DA A instruction after the addition. DA A works as follows.

¢ [flower nibble is greater than 9 or auxiliary carry is 1, 6 is added to lower nibble.

¢ [fupper nibble is greater than 9 or carry is 1, 6 is added to upper nibble.

Egl: MOVA#ZIH

MOV R1,#55H
ADD AR1 J/[A)=78
DA A [[A)=78 no changes in the accumulator after da a
Eg2: MOV A#53H
MOV R1,#58H
ADD AR1 /1 [A]=ABh
DAA S A)=11, C=1 . ANSWER 15 111. Aecumulator data is changed after DA A

Increment: increments the operand by one.
INCA INCRn INC DIRECT INC @RiINC DPTR

INC increments the value of source by 1. If the initial value of register is FFh, incrementing the value
will cause it to reset to 0. The Carry Flag is not set when the value "rolls over” from 255 to 0.

In the case of "INC DPTR", the value two-byte unsigned integer value of DPTR is incremented. If the
initial value of DPTR is FFFFh, incrementing the value will cause it to reset to 0.

Decrement: decrements the operand by one.
DEC A DEC Rn DEC DIRECT DEC @Ri

DEC decrements the value of source by 1. If the initial value of is 0, decrementing the value will cause
it to reset to FFh. The Carry Flag is not set when the value "rolls over" from 0 to FFh.

Logical Instructions

Logical AND
ANL destination, source: ANL does a bitwise "AND" operation between source and destination,
leaving the resulting value in destination. The value in source is not affected. "AND" instruction
logically AND the bits of source and destination.
ANL A #DATA ANLA,Rn

ANL A, DIRECT ANL A,@Ri
ANL DIRECT. A ANL DIRECT, #DATA

Logical OR

DRL destination, source: ORL does a bitwise "OR" operation between source and destination,

20

Microcontrollers

leaving the resulting value in destination. The value in source is not affected. " OR " instruction

logically OR the bits of source and destination.
ORL A #DATA ORLA, Rn

ORL A,DIRECT ORL A,@Ri

ORL DIRECT,A ORL DIRECT, #DATA

Logical Ex-OR

XRL destination, source: XRL does a bitwise "EX-0OR" operation between source and
destination, leaving the resulting value in destination. The value in source is not affected. ™ XRL"
instruction logically EX-0OR the bits of source and destination.

XRL A#DATA XRL ARn

XRL A,DIRECT XRL A,@Ri

XRL DIRECT,A XRL DIRECT, #DATA

Logical NOT
CPL complements operand, leaving the result in operand. If operand is a single bit then the state of
the bit will be reversed. If operand is the Accumulator then all the bits in the Accumulator will be
reversed.
CPLA, CPLC, CPL bitaddress
SWAP A - Swap the upper nibble and lower nibble of A.

Rotate Instructions

RR A

This instruction is rotate right the accumulator. Its operation is illustrated below. Each bit is shifted one
location to the right, with bit 0 going to bit 7.

'.'}, T { T } 8 g g |
76 543210
ACC

RLA
Rotate left the accumulator. Each bit is shifted one location to the left, with bit 7 going to bit 0

76543210

ACC

RRCA
Rotate right through the carry. Each bit is shifted one location to the right, with bit 0 going into the carry bit in
the PSW, while the carry was at goes into bit 7
i e e e e e e H
C 6543210

ACT

RLC A
Rotate left through the carry. Each bit is shifted one location to the left, with bit 7 going into the carry bit in
the PSW, while the carry goes into bit 0.

B s s e S S A
C T6HE I 43210

ACCT

21

Microcontrollers

Branch (JUMP) Instructions

Jump and Call Program Range
There are 3 types of jump instructions. They are:-

1. Relative Jump

2. Short Absolute Jump

3. Long Absolute Jump
Relative Jump

Jump that replaces the PC (program counter) content with a new address that is greater than (the
address following the jump instruction by 127 or less) or less than (the address following the jump
by 128 or less) is called a relative jump. Schematically, the relative jump can be shown as follows: -

Helalrog

Jump
range|

128

Jurmp instrudtion

Instruction ™~ " EXXEX

127

The advantages of the relative jump are as follows:-

1.

2.

3.

Only 1 byte of jump address needs to be specified in the 2's complement form, ie. For
jumping ahead, the range is 0 to 127 and for jumping back, the range is -1 to -128.
Specifying only one byte reduces the size of the instruction and speeds up program
execution.

The program with relative jumps can be relocated without reassembling to generate
absolute jump addresses.

Disadvantages of the absolute jump: -

1.

Short jump range (-128 to 127 from the instruction following the jump instruction)

Instructions that use Relative Jump

S]MP =relative address=; this is unconditional jump

The remaining relative jumps are conditional jumps

JC =relative address>

JNC =relative address>

|B bit, <relative address=

JNE bit, <relative address>

JBC bit, <relative address>

CIME =destination byte=, <source byte=, =relative address=
DINZ <bytes, <relative address=

JZ <relative address>

JNZ =relative address>

Short Absolute fump
In this case only 11bits of the absolute jump address are needed. The absolute jump address is
calculated in the following manner.

22

Microcontrollers

In B051, 64 kbyte of program memory space is divided into 32 pages of 2 kbyte each. The
hexadecimal addresses of the pages are given as follows:-

Page (Hex) Address (Hex)

oo 0000 - O7FF
01 0800 - OFFF
02 1000 - 17FF
03 1800 - 1FFF
1E FOOO - F7FF
1F F800 - FFFF

It can be seen that the upper 5bhits of the program counter (PC) hold the page number and the lower
11bits of the PC hold the address within that page. Thus, an absolute address is formed by taking
page numbers of the instruction (from the program counter) following the jump and attaching the
specified 11bits to it to form the 16-bit address.

Advantage: The instruction length becomes 2 bytes.

Example of short absolute jump: -
ACALL <address 11>
AJMP =address 11=

Long Absolute Jump,/Call

Applications that need to access the entire program memory from 0000H to FFFFH use long
absolute jump. Since the absolute address has to be specified in the op-code, the instruction length
is 3 bytes [except for [MP @ A+DPTR]. This jump is not re-locatable.

Example: -

LCALL =address 16>
LIMP =address 16>
JMP @A+DPTR

Another classification of jump instructions is
1. Unconditional Jump
2. Conditional Jump

1. The unconditional jump is a jump in which control is transferred unconditionally to the target location.

a. LJMP (long jump). This is a 3-byte instruction. First byte is the op-code and second and third
bytes represent the 16-bit target address which is any memory location from 0000 to FFFFH
eg: LJMP 3000H

b. AJMP: this causes unconditional branch to the indicated address, by loading the 11 bit address to
0 -10 bits of the program counter. The destination must be therefore within the same 2K blocks.

c. SIMP (short jump). This is a 2-byte instruction. First byte is the op-code and second byte is the
relative target address, 00 to FFH (forward +127 and backward -128 bytes from the current PC
value). To calculate the target address of a short jump, the second byte is added to the PC value
which is address of the instruction immediately below the jump.

23

Microcontrollers

2. Conditional Jump instructions.

|BC Jump if bit = 1 and clear bit

INBE Jump if bit =0

|B Jump if bit = 1

INC Jump ifCY =0

|C JumpifCY =1

CJNE reg#data Jump if byte # #data

CINE Abyte Jump if A 2 byte

DINZ Decrement and Jump if A= 0
INZ JumpifA=z0

|Z JumpifA=0

All conditional jumps are short jumps.

Bit level jump instructions:

Bit level [UMP instructions will check the conditions of the bit and if condition is true, it jumps to the
address specified in the instruction. All the bit jumps are relative jumps.

|B bit, rel ; jump if the direct bit is set to the relative address specified.
|NB bit, rel ; jump if the direct bit is clear to the relative address specified.
|BC bit, rel ; jump if the direct bit is set to the relative address specified and then clear the bit.

Subroutine CALL And RETURN Instructions

Subroutines are handled by CALL and RET instructions

There are two types of CALL instructions

1. LCALL address{16 bit)
This is long call instruction which unconditionally calls the subroutine located at the indicated 16 bit
address. This is a 3 byte instruction. The LCALL instruction works as follows.

a.

nen o

During execution of LCALL, [PC] = [PC]+3; (if address where LCALL resides is say, 0x3254;
during execution of this instruction [PC] = 3254h + 3h = 3257h

[SP]=[5P]+1; [if SP contains default value 07, then SP increments and [SP]=08

[I5P]] = [PC-a]; (lower byte of PC content ie., 57 will be stored in memory location 08.
[SP]=[5P]+1; (5P increments again and [SF]=09%)

[[5P]] = [PCys5.g): (higher byte of PC content ie., 32 will be stored in memory location 09,

With these the address [0x3254) which was in PC is stored in stack

#

[PC]= address (16 bit); the new address of subroutine is loaded to PC. No flags are affected.

2. ACALL address(11 bit)

This is absolute call instruction which unconditionally calls the subroutine located at the indicated 11
bit address. This is a 2 byte instruction. The SCALL instruction works as follows.

.

raen T

During execution of SCALL, [PC] = [PC]+2; (if address where LCALL resides is say, 0xB8549;
during execution of this instruction [PC] = 8549h + 2h = 854Bh

[SP]=[5P]+1; (if SP contains default value 07, then SP increments and [SP]=08

[I5P]] = [PCq.q]: (lower byte of PC content ie,, 4B will be stored in memory location 08.
[SP]=[5P]+1; (SP increments again and [SP]=09]

[I5P]] = [PCis.a); (higher byte of PC content ie., 85 will be stored in memory location 09,

With these the address [0x854B) which was in PC is stored in stack.

24

Microcontrollers

f. [PCypa]=address (11 bit); the new address of subroutine is loaded to PC. No flags are

affected.
RET instruction
RET instruction pops top two contents from the stack and load it to PC.
g [PCisa] = [[SP]] ;content of current top of the stack will be moved to higher byte of PC.

h. [5P]=[5P]-1; (5P decrements)
i. [PCq] = [[SP]] ;content of bottom of the stack will be moved to lower byte of PC.
i- [SP]=[5P]-1; (SP decrements again]

Bit manipulation instructions.

8051 has 128 bit addressable memory. Bit addressable SFRs and bit addressable PORT pins. It is possible to
perform following bit wise operations for these bit addressable locations.

1. LOGICAL AND
a. ANLCEIT(BIT ADDRESS) + "LOGICALLY AN EARRY AND CONTENT OF BIT ADDRESS, STORE RESULT [N CARRY
b. ANLC, /BIT; + "LOGRCALLY ANDY CARRY AND COMPLEMENT OF CONTENT OF BIT ADDRESS, STORE RESULT [N CARRY

2. LOGICAL OR

a. URL CJBIT{BIT ADDRESS} j 'LLH.iI.'ALL'I’DH'EAR.R'fANDEDﬂTENTUF HIT ADDRESS, STORE RESULT IN CAREY

b. URL C_. ‘FB IT_: _: .I.I'.H.il.'ALI.'I’ DR CAREY AND OO PLEMENT OF CONTENT OF BIT ADDEESS, STORE RESULT 1IN CAREY
3. CLR bit

a. CLR hit 1 CONTENT OF BIT ADDRESS SPECIFIED WILL BE CLEARED.

b. CLRC + COMTENT OF CARRY WILL BE CLEARED.
4. CPL bit

a. CPLbit ; CONTENT OF EIT ADDRESS SPECIFIED WILL BEE COMPLEMENTED.

. CPLC ; CONTENT OF CARRY WILL BE COMPLEMENTED.

25

Microcontrollers

UNIT 3

3.1 ASSEMBLER DIRECTIVES.

Assembler directives tell the assembler to do something other than creating the machine code for
an instruction. In assembly language programming, the assembler directives instruct the assembler
to

1. Process subsequent assembly language instructions

2. Define program constants

3. Reserve space for variables

The following are the widely used 8051 assembler directives.

ORG (origin)
The ORG directive is used to indicate the starting address. It can be used only when the
program counter needs to be changed. The number that comes after ORG can be either in
hex or in decimal.

Eg: ORG 0000H ;Set PC to 0000.
EQU and SET

EQU and SET directives assign numerical value or register name to the specified symbol
name.

EQU is used to define a constant without storing information in the memory. The symbol
defined with EQU should not be redefined.

SET directive allows redefinition of symbols at a later stage.

DB (DEFINE BYTE)

The DB directive is used to define an 8 bit data. DB directive initializes memory with 8 bit
values. The numbers can be in decimal, binary, hex or in ASCII formats. For decimal, the 'D’
after the decimal number is optional, but for binary and hexadecimal, 'B" and 'H" are
required. For ASCIL, the number is written in quotation marks ['LIKE This).

DATA1: DB 40H ; hex
DATAZ2: DB 01011100B ;binary
DATA3: DB 48 ; decimal
DATA4: DB "HELLOW’ - ASCII

END

The END directive signals the end of the assembly module. It indicates the end of the
program to the assembler. Any text in the assembly file that appears after the END directive
is ignored. If the END statement is missing, the assembler will generate an error message.

26

Microcontrollers

3.2 ASSEMBLY LANGUAGE PROGRAMS.

1. Write a program to add the values of locations 50H and 51H and store the result in locations
in 52h and 53H.

ORG 0000H ; Set program counter 0000H

MOV A50H ; Load the contents of Memory location 50H into A ADD ADD A51H
; Add the contents of memory 51H with CONTENTS A

MOV 52H.A ; Save the LS byte of the result in 52H

MOV A, #00 ; Load 00H into A

ADDC A, #00 ; Add the immediate data and carry to A

MOV 53HA ; Save the MS byte of the result in location 53h

END

2. Write a program to store data FFH into RAM memory locations 50H to 58H using direct
addressing mode

ORG 0000H ; Set program counter 0000H

MOV A, #0FFH ; Load FFH into A

MOV 50H, A ; Store contents of A in location 50H
MOV 51H, A ; Store contents of A in location 51H
MOV 52H, A ; Store contents of A in location 52H
MOV 53H, A : Store contents of A in location 53H
MOV 54H, A : Store contents of A in location 54H
MOV 55H, A ; Store contents of Ain location 55H
MOV 56H, A ; Store contents of A in location 56H
MOV 57H, A ; Store contents of A in location 57H
MOV 58H, A ; Store contents of A in location 58H
END

3. Write a program to subtract a 16 bit number stored at locations 51H-52H from 55H-56H and
store the result in locations 40H and 41H. Assume that the least significant byte of data or the
result is stored in low address. If the result is positive, then store 00H, else store 01H in 42H.
ORG 0000H ; Set program counter 0000H
MOV A, 55H ; Load the contents of memory location 55 into A
CLRC ; Clear the borrow flag
SUBB A51H ; Sub the contents of memory 51H from contents of A
MOV 40H, A ; Save the LSByte of the result in location 40H
MOV A, 56H ; Load the contents of memory location 56H into A
SUBB A,52H ; Subtract the content of memory 52H from the content A
MOV 41H, ; Save the MSbyte of the result in location 415.

MOV A, #00 ; Load 005 into A

ADDC A, #00 ; Add the immediate data and the carry flag to A
MOV 42H, A ; Ifresultis positive, store00H, else store 01H in 42H
END

27

Microcontrollers

4. Write a program to add two 16 bit numbers stored at locations 51H-52H and 55H-56H and
store the result in locations 40H, 41H and 42H. Assume that the least significant byte of
data and the result is stored in low address and the most significant byte of data or the result
is stored in high address.

ORG 000O0H ; Set program counter 0000H

MOV AS51H ; Load the contents of memory location 51H into A
ADD A55H ; Add the contents of 55H with contents of A
MOV 40H, A ; Save the LS byte of the result in location 40H
MOV AS52H ; Load the contents of 52H into A

ADDC A56H ; Add the contents of 56H and CY flag with A
MOV 41H,A ; Save the second byte of the resultin 41H

MOV A#00 ; Load 00H into A

ADDC A #00 ; Add the immediate data 00H and CY to A

MOV 42H,A ; Save the MS byte of the result in location 42H
END

5. Write a program to store data FFH into RAM memory locations 50H to 58H using indirect
addressing mode.

ORG 0000H : Set program counter 0000H
MOV A, #0FFH ; Load FFH into A
MOV RO, #50H i Load pointer, RO-50H
MOV R5, #08H ; Load counter, R5-08H
Start:MOV @RO, A ; Copy contents of A to RAM pointed by RO
INC RO i Increment pointer
DJNZ R5, start ; Repeat until R5 is zero
END

6. Write a program to add two Binary Coded Decimal (BCD) numbers stored at locations 60H
and 61H and store the result in BCD at memory locations 52H and 53H. Assume that the
least significant byte of the result is stored in low address.

ORG 0000H ; Set program counter 00004

MOV A,60H ; Load the contents of memory location 6 0H into A

ADD A61H ; Add the contents of memory location 61H with contents of A
DA A ; Decimal adjustment of the sum in A

MOV 52H, A ;Save the least significant byte of the result in location 52H

MOV A#00 ; Load 00H into .A

ADDCA#OOH ; Add the immediate data and the contents of carry flag to A
MOV 53HA ; Save the most significant byte of the result in location 53;,

END

7. Write a program to clear 10 RAM locations starting at RAM address 1000H.

ORG 0000H :Set program counter 0000H
MOV DPTR, #1000H ;Copy address 1000H to DPTR
CLR A :Clear A
MOV Re, #0AH ;Load 0AH to R6
again: MOVX @DPTRA iClear RAM location pointed by DPTR

28

Microcontrollers

8.

10.

11.

INC DPTR iIncrement DPFTR

DJNZ Ré, again :Loop until counter R6=0
END
Write a program to compute 1 + 2 + 3 + N (say N=15) and save the sum at70H
ORG 0000H ; Set program counter 0000H
N EQU 15
MOV RO, #00 : Clear RO
CLR A s Clear A
again: INC RO i Increment RO
ADD A, RO ; Add the contents of RO with A
CJNE RO,#N,again ; Loop until counter, RO, N
MOV 70H,A s Save the result in location 70H END

Write a program to multiply two 8 bit numbers stored at locations 70H and 71H and store the
result at memory locations 52H and 53H. Assume that the least significant byte of the result is
stored in low address.
ORG D00O0H ; Set program counter 00 OH
MOV A, 70H ; Load the contents of memory location 70h into A
MOV B, 71H ; Load the contents of memory location 71H into B
MUL AB ; Perform multiplication
MOV 52H,A ; Save the least significant byte of the result in location 52H MOV 53H,B ; Save the most
significant byte of the result in location 53
END
Ten 8 bit numbers are stored in internal data memory from location SoH. Write a
program to increment the data.
Assume that ten 8 bit numbers are stored in internal data memory from location 50H, hence
RO or R1 must be used as a pointer.
The program is as follows.

OPT 0000H

MOV RO,#50H

MOV R3,#0AH

Loopl: INC @RO

INC RO

DJNZ R3, loopl END

END
Write a program to find the average of five 8 bit numbers. Store the result in H.
[(Assume that after adding five 8 bit numbers, the result is 8 bit only].

ORG 0000H

MOV 40H,#05H

MOV 41H,#55H

MOV 42H #06H

MOV 43H,#1AH

MOV 44H,#09H

MOV RO,#40H

MOV R5,#05H

MOV EB,R5

CLRA

Loop: ADD A,@RO

INC RO

29

Microcontrollers

DINZ R5,Loop
DIV AE
MOV 55H,A END
12. Write a program to find the cube of an 8 bit number program is as follows
ORG 0000H
MOV R1,#N
MOV ARL
MOV BR1
MUL AB S/SQUARE 1S COMPUTED
MOVRZ B
MOVE,R1
MUL AB
MOV 50,4
MOV 51,B
MOV ARZ
MOVE,R1
MUL AB
ADD A, 51H
MOV 51H, A
MOV 52H, B
MOV A, # 00H
ADDCA, 52H
MOV 52H, A //CUBE 15 STORED IN 52H,51H,50H
END

13. Write a program to exchange the lower nibble of data present in external memory 6000H and

&6001H
ORG 0000H ; Set program counter 00h
MOV DPTR, #6000H ; Copy address 6000H to DPTR
MOVX A, @DPTR i Copy contents of 60008 to A
MOV RO, #45H i Load pointer, RO=45H
MOV @RO, A ; Copy cont of A to RAM pointed by 80
INC DPL i Increment pointer
MOVX A, @DPTR i Copy contents of 60018 to A
XCHD ﬂj @RU‘ ; Exchange lower nibble of A with RAM pointed by RO
MOVX @DPTR, A ; Copy contents of A to 60018
DEC DPL ; Decrement pointer
MOV A, @RO ; Copy cont of RAM pointed by RO to A
MOVX @DPTR, A ; Copy cont of A to RAM pointed by DPTR
END

14. Write a program to count the number of and o's of 8 bit data stored in location 6000H.

ORG 00008 i Set program counter 00008
MOV DPTR, #6000h ; Copy address 6000H to DPTR
MOVX A, @DPTR ; Copy number to A
MOV RO, #08 ; Copy 08 in RO

MOV R2,#00 ; Copy 00 in R2

MOV R3,#00 ; Copy 00 in R3

CLR C i Clear carry flag

BACK: RLC A ; Rotate A through carry flag

Microcontrollers

JC NEXT s If CF =1, branch to next
INC R2 s IFCF =0, increment B2 AJMF NEXT2
NEXT: INC R3 s If CF =1, increment R3
MNEXTZ: DIJNZ RO,BACK ; Repeatuntil RO is zero
END

15. Write a program to shift a 24 bit number stored at 57H-55H to the left logically four places.
Assume that the least significant byte of data is stored in lower address.

again: MOV AS55H

ORG 0000H ; Set program counter 0000h

MOV R1,#04 ; Setup loop count to 4

; Place the least significant byte of data in A

CLRC ; Clear tne carry flag

RLCA ; Rotate contents of A (55h] left through carry

MOV 55H.A
MOV A56H

RLC A ; Rotate contents of A (56H) left through carry

MOV 56H.A
MOV A57H

RLCA ; Rotate contents of A (57H) left through carry

MOV 57HA

DJNZ R1,again ; Repeat until R1 is zero

END

16. Two 8 bit numbers are stored in location 1000h and 1001h of external data memory.

LOOPS: CJNE A, TEMP, LOOP1

LOOP1:

LOOP3:

LOOP2:

Write a program to find the GCD of the numbers and store the result in 2000h.

ALGORITHM
Step 1 :nitiglize external dota memory with data and DPTR with address
Step2 :Load A and TEMP with the operands

Step3 :Are the two operands equal? If yes, go to step 9

Step 4 :s(A) greater than [TEMP) ? If yes, go to step &

Step 5 :Exchange (A} with [TEMP) such that A contains the bigger number
Step 6 :Perform division operation [contents of A with contents of TEMFP)
Step 7 :fthe remainder is zero, go to step 9

Step 8 :Move the remainder into A and go to step 4

Step 9 :Save the contenits 'of TEMP in memory and terminate the program

ORG 0000H

TEMP EQU T70H
TEMPIEQU 71H
MOV DPTR, #1000H
MOVE A, @DPTR
MOV TEMP, A
MOVX A, @DPTR

AJMP LOOP2

JNC LOOP3

NOV TEMPL A
MOV A, TEMP
MOV TEMP, TEMPI
MOV E, TEMP

DIV AB

MOVAB

CINE A#00, LOOPS
MOV A, TEMP
MOV DPTR, #2000H
MOVE @DPTR, A
END

i[A) /=

i Set program counter 0000H

; Copy address 100011 to DPTR
; Copy First number to A
; Copy First number to temp INC DPTR
; Copy Second number to A
(TEMP) branch to LOOP1
i [A) = (TEMP) branch to LOOP2
i [A) = (TEMP] branch to LOOP3
i [A) = (TEMP) exchange [A) with [TEMP)

; Divide [A) by (TEMF)
; Move remainder to A
+ [A) /=00 branch to LOOPS

; Store the result in 2000H

31

Microcontrollers

UNIT 5

5.1 BASICS OF INTERRUPTS.

During program execution if peripheral devices needs service from microcontroller, device will
generate interrupt and gets the service from microcontroller. When peripheral device activate the
interrupt signal, the processor branches to a program called interrupt service routine. After
executing the interrupt service routine the processor returns to the main program.

Steps taken by processor while processing an interrupt:

1. It completes the execution of the current instruction.

2. P5Wis pushed to stack.

3. PC content is pushed to stack.

4. Interrupt flag is reset.

5. PCisloaded with I5R address.
ISR will always ends with RET! instruction. The execution of RET! instruction results in the
following.

1. POP the current stack top to the PC.

2.

POP the current stack top to PSW.

Classification of interrupts.

1.

External and internal interrupts.
External interrupts are those initiated by peripheral devices through the external pins of
the microcontroller.
Internal interrupts are those activated by the internal peripherals of the microcontroller
like timers, serial controller etc.)
Maskable and non-maskable interrupts.
The category of interrupts which can be disabled by the processor using program is called
maskable interrupts.
Non-maskable interrupts are those category by which the programmer cannot disable it
using program.
Vectored and non-vectored interrupt.
Starting address of the ISR is called interrupt vector. In vectored interrupts the starting
address is predefined. In non-vectored interrputs, the starting address is provided by the
peripheral as follows.

s Microcontroller receives an interrupt request from external device.

e Controller sends an acknowledgement [INTA) after completing the execution of

current instruction.
s The peripheral device sends the interrupt vector to the microcontroller.

32

Microcontrollers

5.2 8051 INTERRUPT STRUCTURE.

8051 has five interrupts. They are maskable and vectored interrupts. Out of these five, two are
external interrupt and three are internal interrupts.

Interrupt source Type Vector address | Priority
External interrupt 0 | External 0003 Highest
Timer 0 interrupt Internal 000B

External interrupt 1 | External 0013

Timer 1 interrupt Internal 001B

Serial interrupt Internal 0023 Lowest

8051 makes use of two registers to deal with interrupts.

1. IE Register

This is an 8 bit register used for enabling or disabling the interrupts. The structure of [E
register is shown below.

IE : Interrupt Enable Register (Bit Addressable)

If the bit 1= 0, the corresponding interrupt 15 disabled. If
the bt s 1. the corresponding intermupt is cnabled.

I-%

LTI
LA
Lo
X0

2. IP Register.

tan | |

— L Cad = O

Drisables all interrupes. 17 LA

0. no interrupt will be acknowledzed. 17LEA

is individually enable or disabled by seting or ¢learing its enable bit

Mot implemented, reserved Tor future use®.

Mot implemented. reserved for futune use®.

Lnable or disable the Scrial por interrupt.

Lnable or disable the Timer | overflow intermpt,

Lnable or disable External interrupt 1.

Lnable or disable the Timer O overflow interrupt.

Liable or disable External Interrap b,

This is an 8 bit register used for setting the priority of the interrupts.

1P : Interrupt Priority Register (Bit Addressable)

If the bit is 0, the corresponding imterrupt has a lower
pricrity and if the bit is the corresponding intermupt has a
higher priority.

PS
PTI

PXI
P10
PX0

Ir7
16
s
P4
1P
k2
Irl
IR0

I imterrupt source

s

FT1 rx1

FXi

Mot implemented. reserved for future use®.

Mot implemented, reserved for future usc®,

Mot implemented. reserved for future use®.

Defines the Serial Port interrupt priority level.

Defines the Timer | Interrupt priority level.

Defines External Imerrupt pricrity level.

Defines the Timer O intermupt priority level.

Defines the External Interrupt O priority level.

33

Microcontrollers

5.2 TIMERS AND COUNTERS

Timers/Counters are used generally for

= Time reference
= Creating delay

» Wave form properties measurement
Periodic interrupt generation

* Waveform generation

8051 has two timers, Timer 0 and Timer 1.

TH -
oo ns-|

|D15 D14 D13 D12 D11 D10

Timer 0

D D6 D5 D4 D3 D2 D1 DO

-

TH1

D15 D14 D13 D12 D11 Di0 D9 UB—I Ofr D6 D3 D4 D3 D@ D1 DO

Timer 1

Timer in 8051 is used as timer, counter and baud rate generator. Timer always counts up
irrespective of whether it is used as timer, counter, or baud rate generator: Timer is always
incremented by the microcontroller. The time taken to count one digit up is based on master clock

frequency.

If Master CLK=12 MHz,
Timer Clock frequency = Master CLK/12 = 1 MHz

Timer Clack Period = 1micro second
Thiz indicates that ene increment in count will take 1 micro second.

The two timers in 8051 share two SFRs [TMOD and TCON) which control the timers, and each timer
also has two 5FRs dedicated solely to itself (THO/TLO and TH1,/TL1).

The following are timer related SFRs in B051.

5FR Name
THO

TLO

TH1

TL1

TEON
T™MOD

Description
Timer @ High Byte
Timer { Low Byte
Timer 1 High Byte
Timer 1 Low Byte
Timer Control
Timer Mode

5FR Address
ah
BAh
BDh
BBh
B8k
B9k

34

Microcontrollers

TMOD Register
TMOD : Timer/Counter Mode Control Register (Not Bit Addressable)
GATE | oT |]| I Ml GATI | Wiy | M I Wi
TIMER 1 TIMER (1
GATE When TRx (in TCON) is set and GATE = 1, TIMER/COUNTERx will run only while INTx pin is high
ihardware control). When GATE = 0, TIMER/COUNTERx will run only while TRx = 1 (software
control j.
T Timer or Counter selector. Cleared for Timer operation (input from internal svstem clock). Set for
Counter operation (input from Tx input pin).
M Mode selector hit (NOTE 1),
M Mode selector bit (NOTE 1),
MNote | :
M My OPERATING MODE
i il 1] 13kt Tumer

L] | | | fe=bit Tumer'Counter
1 i 2 B-hit Auto-Reload Timer'Counter
i

| | {Timer 03 TLO is an 8-bit Timer Counter controlled by the standard Timer O controd
ins, THHD 15 an B=bit Timer andd 5 controlled by Timer | controd bits
] | i { Tomier 1) Timer/ Counter | stopypead
TCON Register
TCON : Timer/Counter Control Register (Bit Addressable)
| TFl I TRI | ¥] TR | 11 [I [1ED (LY
Il TCONT Timer | overflow flag. Set by hardware when the Timer/Counter | overflows. Cleared by
hardware as processor vectors o the interrupt service routine.
TRI1 TCONG Timer 1 run control bit. Setv'cleared by software to tum Timer/ Counter ON/OFF,
I'Fi ICON.5 Timer 0 overflow flag. Set by hardware when the Timer/Counter 0 overflows. Cleared by
hardware as processor vectors to the service routine.
TRO TCON.A Timer 0 run control bit. Setv'cleared by software to tum Timer/'Counter 0 OM/OFF,
IE1 TCON3 External Interrupt 1 edge flag, Set by hardware when External interrupt edge is detected. Cleared
by hardware when interrupt is processed.
I TCON.2 Interrupt | tvpe control bit. Set/cleared by software to specify falling edge/flow level triggered
External Interrupt.
1ED TOON. 1 External Interrupt 0 edge flag. Set by hardware when External Interrupt edge detected. Cleared

by hardware when interrupt is processed.
1o TCONO Interrupt O type control bit, Sev'cleared by software to specify falling edge/low level triggered
External Interrupt.

Timer/ Counter Control Logic.

Microcontrollers

sc fl-eq Y 12 Timrer mode

CoT=0

To Timer

/1|/ ’M'ﬂ!,lﬂﬂ

T1:4 CT=

It pn Counter mede T

TRA D bt
in TCON

™
>y
Gate Dt

in TMOD
IHT

it g

TIMER MODES

Timers can operate in four different modes. They are as follows
Timer Mode-0: In this mode, the timer is used as a 13-bit UP counter as follows.

o TL X 5hits {Lowen) . THX Bhits i p— | Intenupt
Input pulse
From previous
slage

Fig. Operation of Timer on Mode-0
The lower 5 bits of TLX and 8 bits of THX are used for the 13 bit count.Upper 3 bits of TLX are
ignored. When the counter rolls over from all 0's to all 1's, TFX flag is set and an interrupt is
generated. The input pulse is obtained from the previous stage. If TR1/0 bit is 1 and Gate bit is 0,
the counter continues counting up. If TR1/0 bit is 1 and Gate bit is 1, then the operation of the
counter is controlled by input. This mode is useful to measure the width of a given pulse fed to
nput.

Timer Mode-1: This mode is similar to mode-0 except for the fact that the Timer operates in 16-bit
mode.

. Intenupt
————== TLX Bbhirs s THX 8bits it &
Input pulse ' TFX
From previous
staie

Fig: Operation of Timer in Mode 1
Timer Mode-2: [Auto-Reload Mode): This is a 8 bit counter/timer operation. Counting is

performed in TLX while THX stores a constant value. In this mode when the timer overflows i.e. TLX
becomes FFH, it is fed with the value stored in THX. For example if we load THX with 50H then the

36

Microcontrollers

timer in mode 2 will count from 50H to FFH. After that 50H is again reloaded. This mode is useful in

applications like fixed time sampling.

TFX

Interrupt

Poe—

—== TLX 8bits
Input pulse
From previous =
stage T
THX 8bits

Fig: Operation of Timer in Mode 2
Timer Mode-3: Timer 1 in mode-3 simply holds its count. The effect is same as setting TR1=0.

Timer0 in mode-3 establishes TL0 and THO as two separate counters.

TLO 8bits
Input pulse
From previous
stage
f12—1—=| THO 8bits
|

TR1 bit in TCON
Fig: Operation of Timer in Mode 3

Interiupt
TR |t
Intermpt
T |—

Control bits TR1 and TF1 are used by Timer-0 [higher 8 bits) (THO) in Mode-3 while TRO and TFO
are available to Timer-0 lower 8 bits[TLO].

37

Microcontrollers

5.2 PROGRAMMING 8051 TIMERS IN ASSEMBLY

In order to program 8051 timers, it is important to know the calculation of initial count value to be
stored in the timer register. The calculations are as follows.

In any mode, Timer Clock period

1/Timer Clock Frequency.
1/(Master Clock Frequency/12)

a. Mode 1 (16 bit timer /counter)

Value to be loaded in decimal = 65536 - (Delay Required/Timer clock period)

Convert the answer into hexadecimal and load onto THx and TLx register.
(65536p = FFFFy+1)

Mode 0 (13 bit timer /counter)

Value to be loaded in decimal = 8192 - [Delay Required /Timer clock period)
Convert the answer into hexadecimal and load onto THx and TLx register.

(81920 = 1FFFu+1)

Mode 2 (8B bit auto reload)

Value to be loaded in decimal = 256 - [Delay Required /Timer clock period)
Convert the answer into hexadecimal and load onto THx register. Upon starting the

timer this value from THx will be reloaded to TLx register.
(256p = FFut1)

Steps for programming timers in 8051

Mode 1:

Load the TMOD value register indicating which timer (0 or 1) is to be used and
which timer mode is selected.

Load registers TL and TH with initial count values.

Start the timer by the instruction “SETB TRO" for timer 0 and “SETE TR1" for timer 1.
Keep monitoring the timer flag [TF) with the "|NB TFxtarget” instruction to see if it
is raised. Get out of the loop when TF becomes high.

Stop the timer with the instructions "CLR TRO" or “CLR TR1", for timer 0 and timer
1, respectively.

Clear the TF flag for the next round with the instruction "CLR TF0" or "CLR TF1", for
timer 0 and timer 1, respectively.

Go back to step 2 to load TH and TL again.

Mode 0:

The programming techniques mentioned here are also applicable to counter/timer
mode 0. The only difference is in the number of bits of the initialization value.

Mode 2:

Load the TMOD value register indicating which timer (0 or 1) is to be used; select
timer mode 2.

Load TH register with the initial count value. As it is an 8-bit timer, the valid range
is from 00 to FFH.

Start the timer.

38

Microcontrollers

s Keep monitoring the timer flag [TFx) with the “|NB TFx target” instruction to see if it
is raised. Get out of the loop when TFx goes high.

e Clear the TFx flag.

* (Go back to step 4, since mode 2 is auto-reload.

1. Write a program to continuously generate a square wave of 2 kHz frequency on pin
P1.5 using timer 1. Assume the crystal oscillator frequency to be 12 MHz.

The period of the square wave is T = 1/(2 kHz) = 500 ps. Each half pulse = 250 ps.
The value n for 250 ps is: 250 ps /1 s =250

65536 - 250 = FFD6H.

TL=06H and TH = OFFH.

MOV

AGAIN: MOV
MOV
SETB

BACK: JNB
CLR
CPL
CLR
SJMP

TMOD#10 Timer 1, mode 1
TL1,#06H ;TLO = 06H

TH1,#0FFH ;THO=FFH

TR1 :Start timer 1

TF1,BACK ;Stay until timer rolls over
TR1 ;Stop timer 1

P1.5 ;Complement P1.5 to get Hi, Lo
TF1 ;Clear timer flag 1

AGAIN ;Reload timer

2. Write a program segment that uses timer 1 in mode 2 to toggle P1.0 once whenever the
counter reaches a count of 100. Assume the timer clock is taken from external

source P3.5 (T1).

The TMOD value is 60H
The initialization value to be loaded into TH1 is
256-100=156=9CH

MOV TMOD#60h ;Counterl, mode 2, C/T'=1
MOV THL1,#9Ch ;Counting 100 pulses
SETE P35 ;Make T1 input
SETE TR1 ;Start timer 1

BACK: [NB TF1,BACK ;Keep doing itif TF=0
CPL P1.0 ;Toggle port bit
CLR TF1 ;Clear timer overflow flag
S5IMP BACK ;Keep doing it

39

Microcontrollers

UNIT 6

6.1 SERIAL COMMUNICATION.
6.1.1. DATA COMMUNICATION

The 8051 microcontroller is parallel device that transfers eight bits of data simultaneously
over eight data lines to parallel [/0 devices. Parallel data transfer over a long is very expensive.
Hence, a serial communication is widely used in long distance communication. In serial data
communication, 8-bit data is converted to serial bits using a parallel in serial out shift register and
then it is transmitted over a single data line. The data byte is always transmitted with least

significant bit first.
6.1.2. BASICS OF SERIAL DATA COMMUNICATION,

Communication Links
1. Simplex communication link: In simplex transmission, the line is dedicated for transmission.
The transmitter sends and the receiver receives the data.

Receiver

Y

Transmitter

2. Half duplex communication link: In half duplex, the communication link can be used for either
transmission or
reception. Data is transmitted in only one direction at a time.

Transmitter Receiver

N\ o

Receiver I —— Transmitter

3. Full duplex communication link: [f the data is transmitted in both ways at the same time, it is a
full duplex i.e. transmission and reception can proceed simultaneously. This communication link
requires two wires for data, one for transmission and one for reception.

Transmitter Receiver

4

Receiver - Transmitter

Types of Serial communication:

Serial data communication uses two types of communication.

1. Synchronous serial data communication: In this transmitter and receiver are synchronized. [t
uses a common clock to synchronize the receiver and the transmitter. First the synch character is
sent and then the data is transmitted. This format is generally used for high speed transmission. In
Synchronous serial data communication a block of data is transmitted at a time.

Transmitter lsyne | | [[T T[] Receiver

t f

40

Microcontrollers

Data
Clock
2. Asynchronous Serial data transmission: In this, different clock sources are used for transmitter
and receiver. In this mode, data is transmitted with start and stop bits. A transmission begins with
start bit, followed by data and then stop bit. For error checking purpose parity bit is included just
prior to stop bit. In Asynchronous serial data communication a single byte is transmitted at a time.

Transmitter | | Start [DO[D1[D2 [D3[D4[D5 [D6 [D7 [D8 [Stop Receiver
T Data T
Clock 1 Clock2

Baud rate:

The rate at which the data is transmitted is called baud or transfer rate. The baud rate is the
reciprocal of the time to send one bit. In asynchronous transmission, baud rate is not equal to
number of bits per second. This is because; each byte is preceded by a start bit and followed by
parity and stop bit. For example, in synchronous transmission, if data is transmitted with 9600
baud, it means that 9600 bits are transmitted in one second. For bit transmission time = 1 second/
9600 = 0.104 ms.

6.1.3. 8051 SERIAL COMMUNICATION

The 8051 supports a full duplex serial port.
Three special function registers support serial communication.

1. SBUF Register: Serial Buffer (SBUF) register is an B-bit register. It has separate SBUF
registers for data transmission and for data reception. For a byte of data to be transferred
via the TXD line, it must be placed in SBUF register. Similarly, SBUF holds the 8-bit data
received by the RXD pin and read to accept the received data.

2. SCON register: The contents of the Serial Control [SCON] register are shown below. This
register contains mode selection bits, serial port interrupt bit (T] and RI) and also the ninth
data bit for transmission and reception (TB8 and RE8).

41

Microcontrollers

Serial Port Contral (SCON) Register
7 4 2
SMO0 |SM1 |SM2 REN (TBE RBE |TI RI

= SMO (SCON.T) : Serial commumication mode selection bit
= SM1 [(SCON.E): Serial communication mode selection bit

SHMD | SM1 | Mode Desoriphion Baud rate
[1]] Mode 0 | 8-bit shift register | Fosc / 12
mode

[1] 1 Mode 1 | 8-bit UART variable (set by timer
1)

1 o Mode 2 | 9-bit LART Fosc/ 32 or Fosc/64

i 1 Mode 3 | 3-bit UART variable (set by timer
1)

s SM2 (SCON.S): Multiprocessor communication bt In
mades 2 and 3, If set this will enable ﬂ'llJltiFlI'QCESE'Df
communication.

= REN {SCOMN.4): Enable serial reception

= TB& (SCOM.3) @ This is 9 bit that is transmitted in mode 2
B 3.

> RBA (SCON.2): 9 data bit is received in modes 2 & 3,

o TI(SCOM.1) : Transmit interrupt flag, &t by hardware
must be cleared by software,

= RI[SCON.0) : Receive interrupt flag, set by hardware
miust be cleared by software,

3. PCON register: The SMOD bit [bit 7) of PCON register controls the baud rate in

asynchronous mode transmission.
Power mode Control (PCON) Register

o7] DS [D4 D3 D2 01 []s]
SMOD | == == == GF1 | GFD PD IDL

SMD (PCON.7): Serial rate modify bit. Set to 1 by program
te double baud rate using timer 1 for modes 1, 2, and 3.
cleared by program to use timer 1 baud rate.

GF1 (PCON.3) : General Purpose user flag bit.

GFO (PCON.2) ;| General Purpose user flag bit.

PD (PCOMN.1) : Power down bit. Set to 1 by program to
enter power down configuration for CHMOS processors,

IDL (PCON.D) : Idle mode bit. Set to 1 by program to
enter idle mode configuration for CHMOS processors.

6.1.4. SERIAL COMMUNICATION MODES
1. Mode 0

In this mode serial port runs in synchronous mode. The data is transmitted and received
through EXD pin and TXD is used for clock output. In this mode the baud rate is 1/12 of
clock frequency.

Mode 1

In this mode SBUF becomes a 10 bit full duplex transceiver. The ten bits are 1 start bit, 8
data bit and 1 stop bit. The interrupt flag TI/RI will be set once transmission or reception is
over. In this mode the baud rate is variable and is determined by the timer 1 overflow rate.
Baud rate = [2smed f32] x Timer 1 overflow Rate

[2emed f32] x [Oscillator Clock Frequency] / [12 x [256 - [TH1]]]

Mode 2

This is similar to mode 1 except 11 bits are transmitted or received. The 11 bits are, 1 start
bit, 8 data bit, a programmable 9t data bit, 1 stop bit.

Baud rate = [2smed f64] x Oscillator Clock Frequency

42

Microcontrollers

4. Mode 3
This is similar to mode 2 except baud rate is calculated as in mode 1

6.1.5. CONNECTIONS TO R5-232

RS5-232 standards:

To allow compatibility among data communication equipment made by various
manufactures, an interfacing standard called RS5232 was set by the Electronics Industries
Association (EIA) in 1960. Since the standard was set long before the advent of logic family, its
input and output voltage levels are not TTL compatible.

In RS232, a logic one (1) is represented by -3 to -25V and referred as MARK while logic zero
(0] is represented by +3 to +25V and referred as SPACE. For this reason to connect any R5232 to a
microcontroller system we must use voltage converters such as MAX232 to convert the TTL logic
level to R5232 woltage levels and vice-versa. MAX232 IC chips are commonly referred as line
drivers.

In RS232 standard we use two types of connectors. DB9 connector or DB25 connector.

7l 12’47578?'"3“;12“?
AR 0161610101D1DI0IONTITIEIE
LE N N] ‘ .
~ = = IESEREIRISIE
iF bk
DE9 Male Connector DEB25 Male Connector

The pin description of DB and DB25 Connectors are as follows

|DB-25 Pin No. |DB-9 Pin No. |Abbreviation|Full Name

Pin 2 Pin 3 o Transmit Data

Pim 3 Pim 2 RD Receive Data

Fin 4 |Pin 7 TS Reguest To Send

Pin 5 |Fin 8 icTS Clear To Send

Pin & |Pin & DsR Data Set Ready

Pin 7 Pin 5 sG Signal Ground

Pin B Pin 1 icD (Carrier Detect

Pin 20 Pin 4 ot .E'::j'f' Temnirag
Pim 22 Pin 9 RI Ring Indicator

The 8051 connection to MAX232 is as follows.

The 8051 has two pins that are used specifically for transferring and receiving data serially. These
two pins are called TXD, RXD. Pin 11 of the 8051 (P3.1) assigned to TXD and pin 10 (P3.0) is
designated as RXD. These pins TTL compatible; therefore they require line driver (MAX 232) to
make them R5232 compatible. MAX 232 converts RS232 voltage levels to TTL voltage levels and
vice versa. One advantage of the MAX232 is that it uses a +5V power source which is the same as
the source voltage for the B051. The typical connection diagram between MAX 232 and 8051 is
shown below.

43

Microcontrollers

=0
3

e

—c

(=]

-

o

by
o

prmnm

Do

6.1.6. SERIAL COMMUNICATION PROGRAMMING IN ASSEMBLY AND C.

Steps to programming the 8051 to transfer data serially

1.

=

8.

The TMOD register is loaded with the value 20H, indicating the use of the Timer 1 in
mode 2 [8-bit auto reload) to set the baud rate.

The TH1 is loaded with one of the values in table 5.1 to set the baud rate for serial
data transfer.

The SCON register is loaded with the value 50H, indicating serial mode 1, where an
8-bit data is framed with start and stop bits.

TR1 is set to 1 start timer 1.

Tl is cleared by the “CLR T1" instruction.

The character byte to be transferred serially is written into the SBUF register.

The TI flag bit is monitored with the use of the instruction [NB TI, target to see if the
character has been transferred completely.

To transfer the next character, go to step 5.

Example 1. Write a program for the 8051 to transfer letter ‘A’ serially at 4800- baud rate, 8 bit data,
1 stop bit continuously.

ORG 0000H
L]MP START
ORG 0030H
START: MOV TMOD, #20H ; select timer 1 mode 2
MOV TH1, #0FAH ; load count to get baud rate of 4800
MOV SCON, #50H ; initialize UART in mode 2
; B bitdata and 1 stop bit
SETB TR1 : start timer

AGAIN: MOV SBUF, #'A’ ; load char "A" in SBUF
BACK: |JNB TIL, BACK ; Check for transmit interrupt flag

CLRTI

; Clear transmit interrupt flag

S|MP AGAIN

END

Example 2. Write a program for the 8051 to transfer the message "EARTH’ serially at 9600 baud, 8
bit data, 1 stop bit continuously.

ORG 0000H
LJMF START

bt

Microcontrollers

ORG 0030H

START: MOV TMOD, #20H s select timer 1 mode 2

MOV TH1, #0FDH ; load count to get reqd. baud rate of 9600

MOV SCON, #50H ; initialise nart in mode 2
; B bit data and 1 stop bit

SETE TR1 : start timer

LOOP: MOV A, #'E' :load 1st letter ‘E' ina

ACALL LOAD : call load subroutine

MOV A, #'A' :load 2nd letter ‘A’ ina

ACALL LOAD : call load subroutine

MOV A, #'R' :load 3rd letter ‘R’ in a

ACALL LOAD : call load subroutine

MOV A, #'T : load 4th letter 'T" ina

ACALL LOAD : call load subroutine

MOV A, #'H' : load 4th letter ‘H in a

ACALL LOAD : call load subroutine

S|MP LOOFP ; repeat steps

LOAD: MOV SEUF, A
HERE: JNE TI, HERE ; Check for transmit interrupt flag

CLRTI ; Clear transmit interrupt flag
RET

END

6.2 8255A PROGRAMMARELE PERIPHERAL INTERFACE
Introduction

The 8255A programmable peripheral interface [PPI) implements a general-purpose 1/0 interface to
connect peripheral equipment to a microcomputer system bus.

Features
Three 8-bit Peripheral Ports - Ports A, B, and C
Three programming modes for Peripheral Ports: Mode 0 (Basic Input/Output), Mode 1
(Strobed Input/Output), and Mode 2 [Bidirectional)
= Total of 24 programmable 1/0 lines

» B-bit bidirectional system data bus with standard microprocessor interface controls
6.2.1. ARCHITECTURE OF B255A

45

Microcontrollers

T N LV m:p
Supphies | ——— GND) A——1 ot "o
M control f———1 | oA PAZ - PAD
®)
|]
Group A
D For © (R Vo
Bi-directional| Upper (414 PC7 . PC4
data bus Data
bus [o
07 . DO butter 8 bi -
intemal
FonC [KTTD 1o
1 i ()l PC3 - PCO
- |
—
Read/! Group
ﬂ E— Wit e Gﬂ;* {.l_ B
Al —9 w e | e (=D 0o
) ————— B PR7 - PRD
Reset ——# | ifvr]

s 1

Read/Write Control Logic has six connections.

Read, Write: This control signal enables the Read /Write operation. When the signal is low, the
controller reads /writes data from/to a selected [/0 Port of the 8255.

RESET: This is an active high signal; it clears the control register and sets all ports in the input
mode.

CS, A0 and A1l: Theses are device select signals. Chip Select is connected to a decoded address, and
Al and A1 are generally connected to MPU address lines AQ and A1 respectively

=] Ay Ay Selected
0 0 0 |PortA

o o 1 PorlB

o 1 a PorlC

0 1 1 Control Register
1 X X Mol Selected

46

Microcontrollers

Control register is an 8 bit register. The contents of this register called control word. This register
can be accessed to write a control word when A0 and Al are at logic 1. This control register is not
accessible for a read operation.

Bit D7 of the control register specifies either 1/0 function or the Bit Set/Reset function. If bit
D7=1, bits D&-D0 determines 1/0 functions in various modes. If bit D7=0, Port C operates in the Bit
Set/Reset (BSR) mode. The B5R control word does not affect the functions of Port A and Port B.

CONTROL WORD

lw- D4|n?-|n2|n1|nn| i ————
e GROUP B

PORT C (LOWER)
+| 1=INPUT
0= 0UTPUT

PORT B
+1 1 =INPUT
0= OUTPUT

MODE SELECTION
1 0=MODE D
1 = MODE 1

GROUP A

PORT C (UPPER)
1 = INP
0=0UTPUT

PORT A
o1 1 =INPUT
0=0UTPUT

MODE SELECTION
| 00 =MODED
"1 01 = MODE 1
1X = MODE 2

o] MODE SET FLAG
" 1=ACTIVE

6.2.2.1/0 ADDRESSING
8051 can be interfaced with the processor by two methods
* Isolated 1/0, /0 mapped 1/0.
In this addressing method, IN,OUT instructions (microprocessors) are used to access the
input/output devices.
» Memory mapped /0.
The instructions used to access the memory itself will be used for accessing /0 devices. The
/0 devices are connected to the addresses where it can be accessed using simple memory
accessing mechanism.

ADDITIONAL NOTES

THEORY RELATED TO ADC

ADC Devices:

47

Microcontrollers

Analog to digital converters are among the most widely used devices for data acquisitions. Digital
computers use binary (discrete] value but in physical world everything is analog [continuous). A
physical

quantity is converted to electrical signals using device called transducer or also called as sensors.
Sensors and many other natural quantities produce an output that is voltage (or current). Therefore
we need an

analog - to - digital converter to translate the analog signal to digital numbers so that the
microcontroller can read and process them.

An ADC has an n bit resolution where n can be 8, 10, 16, Or even 24 bits. The higher resolution ADC
provides a smaller step size, where step size is smallest change that can be discerned by an ADC
This is shown below.

n = bit Number of steps | Step Size (mV)
] 256 5/256 = 19,53
10 1024 5/1024 = 4,88
12 4096 5f4096 = 1.2

16 65536 /65536 = 0.076

In addition to resolution, conversion time is another major factor in judging an ADC. Conversion
time is defined as the time it takes the ADC to convert the analog input to digital (binary) number.
The ADC chips are either parallel or serial. In parallel ADC, we have 8 or more pins dedicated to
bring out the binary data, but in serial ADC we have only one pin for data out.

ADC 0808
vee

P20 e Add_A
P21 »| Add_B
P22 » Add_C CH A |—=
Pi.0 = Start

8051 ro = ALE ADC GND
P02 | EOC -

UC rod - o 0808

T ||
Data
il

Clock

CLK =

Source

ADC0808, has 8 analog inputs. ADCOB08 allows us to monitor up to 8 different analog inputs using
only a single chip. ADCO808 has an B-bit data output. The 8 analog inputs channels are multiplexed
and selected according to table given below using three address pins, A, B, and C.

Select Analog Channel | C B A
ING i i] 0
IN1 0 0 1
INZ 0 |1 0
INZ 0 1 1
TN 1 |0 0
INS 1 |0 1
ING i |1 u]
IN7 1 1 |

48

Microcontrollers

In ADCOBOEB Vref (+) and Vref (-] set the reference voltage. If Vref (-] = Gnd and Vref (+) = 5V, the
step size is 5V/ 256 = 19.53 mV. Therefore,to get a 10 mV step size we need to set Vref (+) = 2.56V
and Vref(-) = Gnd. ALE is used to latch in the address. SC for start conversion. EOC is for end-of-
conversion, and OE is for output enable (READ). Table shows the step size relation to the Vref
Voltage.

Veer (V) Vin (V) Step Size (mV)
| Not connected |0to5 |5/256 = 19.53
4.0 0to4 |4/256=15.32 |
13.0 [0to3 [3/256=11.71 |
12.56 [0to2.56 |2.56/256 = 10
2.0 |0to2 |2/256 = 7.81

1 [0to1 [1/256 =3.90

Steps to access data from ADC0808

1.

2.
3.
4

Select an analog channel by providing bits to A, B, and C addresses according to table.
Activate the ALE (address latch enable) pin. It needs an L-to-H pulse to latch in the address.
Activate SC (start conversion) by an L-to-H pulse to initiate conversion.

Monitor EOC (end of conversion) to see whether conversion is finished. H-to-1 output
indicates that data is converted and ready to be picked up.

Activate OE (output enable) to read data out of ADC chip. An L-to-H pulse to the OE pin will
bring digital data out of the chip. Also notice that the OE is the same as the RD pin in other
ADC chip.

Motice that in ADCOB08 there is no self-clocking and the clock must be provided from an
external source to the CLK pin. Although the speed of conversion depends on the frequency
of the clock connected to the CLK pin, it cannot be faster than 100 microseconds.

49

Microcontrollers

UNIT 7: Motivation for MSP430microcontrollers
- Low Power embedded systems, On-chip
peripherals fanalog and digital), low-power RF
capabilities. Target applications (Single-chip, low
cost, low power, high performance system design). 2
Hrs

MEP430 RISC CPU architecture, Compiler-friendly
features, Instruction set, Clock system, Memory
subsystem. Key differentinting factors between
different M5P430 families. 2 Hrs.

Introduction to Code Composer Studio [CCS v4).
Understanding how to use CCS for Assembly, C
Assembly+C projects for MSP430 microcontrollers.
Interrupt programming. 3 Hrs

Digital /0 - I/0 ports programming using C and
assembly, Understanding the muxing scheme of the
MSP430 pins. 2 Hrs

UNIT 8: On-chip peripherals. Watchdog Timer,

Comparator, Op-Amp, Basic Timer, Real Time Clock
(RTC), ADC, DAC, 5D16, LCD, DMA. 2 Hrs

Using Low-power features of M5P430. Clock system,
low-power modes, Clock request feature, Low-
power programming and Interrupt. 2 Hrs

Interfacing LED, LCD, External memory. Seven
segment LED modules interfacing. Example - Real-
time clock. 2 Hrs

Case Studies of applications of MSP430 - Data
acquisition system, Wired Sensor network, Wireless
sensor network with Chipcon RF interfaces. 3 Hrs

LOW POWER EMBEDDED SYSTEMS

1. EMBEDDED SYSTEM DESIGN CYCLE

Market requirements > Functional Specification> Architecture > Component Design > System Integration =

Testing

2. NEED FOR LOW-POWER EMBEDDED SYSTEMS

a. Why Low-Power is important
Longer battery life

Smaller products

Simpler power supplies
Less EMI simplifies PCB
Permanent battery
Environmental Stewardship

b. Examples of low power applications

- RFID based forest monitoring
- Structural monitoring
- Wildlife habitat monitoring
3. POWER AWARE ARCHITECTURE
a. Sources of power consumption

o Dynamic power: Charging and discharging of capacitors and on switching activity

o Short circuit power

o Leakage - leaking diodes and transistors

b. Trade-off between power and speed.

o Power consumption of CMOS circuits {ignoring leakage), P = a Co.V254 f
Where, @ = parameter on switching activity, C = load capacitance, Vg = supply voltage, f=

[frequency

o Decreasing voltage reduces power consumption(quadratically)
a Higher supply voltages reduce delay but increase power consumption (due to quadratic

relation)
c. Power saving techniques

50

Microcontrollers

ju]

o

Trade-off performance to save power

o
o

Reduce power supply voltage
Reduce frequency

Structural power saving techniques

o

oooo oo

Disable peripheral when not in use (E.g. Clock Gating)

Disconnect modules from power supply when not in use (E.g. Power Gating)
Clock gating - Deactivate clocks to unused registers

Signal gating — Deactivate signals that cause activity if not in use

Power gating - Deactivate Vdd for unused HW blocks

51

Microcontrollers

Pin diagram of the M5P430F2003 and F2013

o

10.

11.

12,

13.

14.

Vece 10O 14 [T] Vss
P1.0/ TACLK/ACLK/A0+ [T 13 [T xiN/P2.6/TA
P1.1/TAD/AD—/Ad+ [T 12 [T] xouT/P2.7
P1.2/TA1/A1+/A4- [T] 11 [J] TEST/SBWTCK
P1.3/VREF/A1- [T} 10 1 RST /NMI/SBWTDIO
P1.4/SMCLK/A2+/TCK [T] 9 [T] P1.7/A3~/SDI/SDA/TDO/TDI
P1.5/TAD/A2—/SCLK/TMS [T] 8 1] P1.6/TA1/A3+/SDO/SCL/TDI/TCLK

= o L B W kS

VCC and V5S are the supply voltage and ground for the whole device (the analog and digital supplies
are separate in the 16-pin package).

P1.0-P1.7, P2.6, and P2.7 are for digital input and output, grouped into ports P1 and P2.

TACLK, TAD, and TA1 are associated with Timer_A; TACLK can be used as the clock input to the timer,
while TAD and TA1 can be either inputs or outputs. These can be used on several pins because of the
impaortance of the timer.

AQ-, A0+, and so on, up to Ad+, are inputs to the analog-to-digital converter. It has four differential
channels, each of which has negative and positive inputs. VREF is the reference voltage for the
converter.

ACLK and SMCLK are outputs for the microcontroller’s clock signals. These can be used to supply a
clock to external components or for diagnostic purposes.

SCLE, 5D0, and SCL are used for the universal serial interface, which communicates with external
devices using the serial peripheral interface (5P1) or inter-integrated circuit (12C) bus.

XIN and XOUT are the connections for a crystal, which can be used to provide an accurate, stable
clock frequency.

R5T is an active low reset signal. Active low means that it remains high near VCC for normal operation
and is brought low near V55 to reset the chip. Alternative notations to show the active low nature are
_R5T and fRST.

NMI is the non-maskable interrupt input, which allows an external signal to interrupt the normal
operation of the program.

TCK, TMS, TCLE, TDI, TDO, and TEST form the full JTAG interface, used to program and debug the
device.

SBWTDIO and SBWTCK provide the Spy-Bi-Wire interface, an alternative to the usual [TAG
connection that saves pins.

Architecture of MSP 430
Block diagram of the MSP430F2003 and F2013, taken from data sheet

The main features of the MSP RISC CPU architecture are,

1.

On the left is the CPU and its supporting hardware, including the clock generator. The emulation,
JTAG interface and Spy-Bi-Wire are used to communicate with a desktop computer when
downloading a program and for debugpging

Clock generator generates up to three different clocks (MCLK, ACLK & SMCLK) using four different
sources (VCO, DCO, LFXT1 and XT2).

The main blocks are linked by the memory address bus (MAB) and memory dota bus (MDB).
These devices have flash memory, 1KB in the F2003 or 2KB in the F2013, and 128 bytes of RAM.
Six blocks are shown for peripheral functions (there are many more in larger devices).
Input/output ports,

Timer_A,

Watchdog timer (resets the processor if program becomes stuck in the infinite loop).
The universal serial interface (USI) (5P, 12C, RS232, USE, CAN etc...]

Sigma-delta analog-to-digital converter (SD16_A)

L=

52

Vec

Vss

P2.x &
P1 x&_lTAG XIN,-"KDUT

h---’--.- Ly L K 1 1 X 1 & 1 K : K24 i Ed Y IR AR RSN ER LR RES T RED DR D

RST/NMI

I

' XIN + A xout

[]

: e L ACLK SD16_A Port P1 Port P2
asic Cloc Flach RAM .

[] 81/O 2110

. System-+ SMCLK 16-bit Interrupt Interrupt

: id 3 tg : gg g Sigm “: capability, capability,

[] MCLE Delta A/D pull-up/down il pull-up/down

: Converter resistors resistors

' F Y Fy

' 16 MHz MAB

(] CPU

v | inci6 Ja T v v Y ¥

: Registers MDB

[]

: ¥ ¥ ¥

: Emulation [jelfess

. (2BP) |g usl

: Watchdog| | Timer_A2 .

1 JTAG i —" Brownout WDT+ Universal

' Interface || Protection 2CC Serial

: 15/16-Bit Registers Interface

3 |sey-Biwire SPI, 12C

[]

[]

6. The brownout protection comes into action if the supply voltage drops to a dangerous level. Most
devices include this but not some of the MSP430x1:xx family.
7. There are ground and power supply connections. Ground is labeled V55 and is taken to define OV.
The supply connection is VCC which is mostly in the range of 1.8-3.6V.

REGISTERS OF MSP 430

MSP 430 has sixteen 16-bit registers. These registers do not have address in the main memory map.
First four registers have dedicated alternate functions and the remaining 12 registers are used as working

registers for general purposes.

RO/PC ([PROGRAM COUNTER])

R1/5P (STACK POINTER)

R2 /SR (STATUS REGISTER)

R3/CG (CONSTANT GENERATOR)

R4 [GENERAL PURPOSE]

RS [GENERAL PURPOSE]

R6 [GENERAL PURPOSE]

R7 [GENERAL PURPOSE]

R8 [GENERAL PURPOSE)

R9 [GENERAL PURPOSE)

R10 [GENERAL PURPOSE)

R11 [GENERAL PURPOSE)

R12 [GENERAL PURPODSE)

R13 [GENERAL PURPOSE)

R14 [GENERAL PURPOSE)

R15 [GENERAL PURPOSE)

53

Microcontrollers

Program counter, PC: This contains the address of the next instruction to be executed

Stack pointer, SP: MSP430 uses the top (high addresses) of the main RAM as stack memory. The stack
pointer holds the address of the most recently added word and is automatically adjusted as the stack grows
downward in memory or shrinks upward.

Status register, SR: This contains a set of flags (single bits), whose functions fall into three categories.

The most commonly used flags are C, Z, N, and V, which give information about the result of the last
arithmetic or logical operation. The Z flag is set if the result was zero and cleared if it was nonzero, for
instance. Setting the GIE bit enables maskable interrupts. The final group of bits is CPUOFF, OSCOFF, 5CGO,
and SCG1, which control the mode of operation of the MCUL All systems are active when all bits are clear.

Constant generator: This provides the six most frequently used values so that they need not be fetched from
memory whenever they are needed. It uses both R2 and R3 to provide a range of useful values by exploiting
the CPU's addressing modes.

General purpose registers: The remaining 12 registers, R4-R15, are general working registers. They may be
used for either data or addresses because both are 16-bit values, which simplify the operation significantly.

COMPILER FRIENDLY FEATURES

MSP430 stems from its recent introduction is that it is designed with compilers in mind. Most small
microcontrollers are now programmed in C, and it is important that a compiler can produce compact, efficient
code. The MSP430 has 16 registers in its CPU, which enhances efficiency because they can be used for local
variables, parameters passed to subroutines, and either addresses or data. This is a typical feature of a RISC,
but unlike a “pure” RISC, it can perform arithmetic directly on values in main memory. Microcontrollers
typically spend much of their time on such operations.

MEMORY ADDRESS SPACE
Arcess
:
FlashyRiOmM WordByla
100000
OFFFFh
Imemupt Vector Table WordByta
OFFE Oh
OFFDFR
Flash/ ROk WordByia

4

*

! .
0200h RAM we
O1FFh

16-Bit Peripharal Modulss Viard
01000
OFFh
£EE Pedipharal Mesdules Byte
1i0h
OFh .)
oh Special Function Registers Byta

» The M5P430 von Neumann architecture has one address space shared with
o special function registers (SFRs),
o peripherals,
o RAM, and
o Flash/ROM memory

* Code access are always performed on even addresses.

54

Microcontrollers

Data can be accessed as bytes or words.
The addressable memory space is 64 KB

Flash/ROM

Periph

The start address depends on the amount of Flash/ROM present and varies by device.

The end address is OFFFFh for devices with less than 60kE of Flash/ROM; otherwise, it is device
dependent.

Flash can be used for both code and data.

Word or byte tables can be stored and used without the need to copy the tables to RAM before using
them.

The interrupt vector table is mapped into the upper 16 words of address space, with the highest
priority interrupt vector at address (0FFFEh).

RAM starts at 0200h.
End address depends on the amount of RAM present and varies by device.
RAM can be used for both code and data.

eral Modules

0100 to 01FFh is reserved for 16-bit peripheral modules.

Accessed with word instructions.

If Byte instructions are used ,then high byte of the result is always 0.

010h to 0FFh is reserved for 8-bit peripheral modules.

These modules should be accessed with byte instructions.

Accessed using word instructions results in unpredictable data in the high byte.

If word data is written to a byte module only the low byte is written into the peripheral register,
ignoring the high byte.

Peripheral functions are configured in the SFRs.
Located in the lower 16 bytes of the address space and are organized by byte.
5FRs must be accessed using byte instructions only

ADDRESSING MODES

1.

Register addressing mode. The address is formed by adding a constant base address to the
contents of a CPU register; the value in the register is not changed.
Eg: MOV R10,R11
Length: One or two words
Operation: Move the content of R10 to R11. R10 is not affected.
Before: After:
R10 - 0A023h R10 - 0A023h
R11 -0FA15h R11-0A023h
PC -PCold PC -PCold+2

Indexed addressing mode. In this case the program counter PC is used as the base address, so the
constant is the offset to the data from the PC.
Eg: MOV Z(R5),6(R6)
Length: 2 or 3 words
Operation: Move the contents of the source address (contents of RS + 2] to the destination
address [contents of R6 + 6).

Symbuolic Mode (PC Relative)
In this case the program counter PC is used as the base address, so the constant is the offset to the
data from the PC

Eg: MOV EDE, TONI
Length: Two or three words

Operation: Move the contents of the source address EDE (contents of PC + X] to the
destination address TONI (contents of PC + Y).

55

Microcontrollers

4. Absolute Mode: The constant in this form of indexed addressing is the absolute address of the data.
This is already the complete address required so it should be added to a register that contains 0.
Absolute addressing is shown by the prefix & and should be used for special function and peripheral
registers, whose addresses are fixed in the memory map.

Eg: mov.b &P1IN R& ; copies the port 1 input register into register R&

5. Indirect Register Mode:
Eg: MOV @R10,0(R11)
Operation: Move the contents of the source whose address is in (R10] to the destination
address (R11]. Indirect addressing cannot be used for the destination.

6. Indirect Auto increment Mode: This is available only for the source and is shown by the
symbol @ in front of a register with a + sign after it, such as @R5+. It uses the value in R5 as a pointer
and automatically increments it afterward by 1 if a byte has been fetched or by 2 for a word.

Eg: MOV @R10+,0(R11)

7. Immediate Mode
Eg: MOV #45h, TONI: Operation: Move the immediate constant 45h, which is contained in the

word following the instruction, to destination address TONI. When fetching the source, the program
counter points to the word following the instruction and moves the contents to the destination.

CLOCK SYSTEM

Figure below shows a simplified diagram of the Basic Clock Module+ (BCM+) for the MSP430F2xx
family. The clock module provides three outputs:

» Master clock, MCLK is used by the CPU and a few peripherals.

* Sub-system master clock, SMCLK is distributed to peripherals.

» Auxiliary clock, ACLK is also distributed to peripherals.
Most peripherals can choose either SMCLE, which is often the same as MCLK and in the megahertz
range, or ACLK, which is typically much slower and usually 32 KHz. A few peripherals, such as
analog-to-digital converters, can also use MCLK and some, such as timers, have their own clock

inputs. The frequencies of all three clocks can be divided in the BCM+ as shown in figure.
oscillators selectors dividers clocks

VLO LFXT15x
E J1/2/4/8 ACIK
i DIVAx auxiliary n
N | LR _ o ;
=il \ SELS cloc g
— [1/2/4/8 SMCLK E
S XxT12 DIVSx sub-system
= |(if present) master ./
clock -
[/2/4/8}=» MCLK 5 3 3
DCOCLK SELM DIVMx master F m .2
RSELx, DCOx, MODx - dock 2 8§

Up to four sources are available for the clock, depending on the family and variant:

Low- or high-frequency crystal oscillator, LFXT1: Available in all devices. It is usually used with a
low-frequency crystal (32 KHz) but can also run with a high-frequency crystal (typically a few MHz)
in most devices. An external clock signal can be used instead of a crystal if it is important to
synchronize the MSP430 with other devices in the system.

56

Microcontrollers

High-frequency crystal oscillator, XT2: Similar to LFXT1 except that it is restricted to high
frequencies. It is available in only a few devices and LFXT1 (or VLO) is used instead if XT2 is missing.
Internal very low-power, low-frequency oscillator, VLO: Available in only the more recent
MSP430F2xx devices. It provides an alternative to LFXT1 when the accuracy of a crystal is not
needed.

Digitally controlled oscillator, DCO: Available in all devices and one of the highlights of the
MSP430. Itis basically a highly controllable RC oscillator that starts in less than 1ps in newer devices.

WATCH DOG TIMERS.

The main purpose of the watchdog timer is to protect the system against failure of the software, such
as the program becoming trapped in an unintended, infinite loop. Watchdog counts up and resets the
MSP430 when it reaches its limit. The code must therefore keep clearing the counter before the limit
is reached to prevent a reset. The operation of the watchdog is controlled by the 16-bit register

WDTCTL
SMCLE
: WDT CNT
clock i WDT IFG
ACLE — (16 bit) R b
up counter "
WDT CNTC Mode selection
[clear) WDT TMSEL
WDT SSEL
WDTIE & GIE =1
WDT CTL

Control Register

The watchdog counter is a 16-bit register WDTCNT, which is not visible to the user. It is clocked from
either SMCLK (default) or ACLE, according to the WDTSSEL bit. The watchdog is always active after
the MSP430 has been reset. By default the clock is SMCLE, which is in turn derived from the DCO at
about 1 MHz. The default period of the watchdog is the maximum value of 32,768 counts, which is
therefore around 32 ms. We must clear, stop, or reconfigure the watchdog before this time has
elapsed. If the watchdog is left running, the counter must be repeatedly cleared to prevent it counting
up as far as its limit. This is done by setting the WDTCNTCL bit in WDTCTL. The watchdog timer sets
the WDTIFG flag in the special function register [FG1. This is cleared by a power-on reset but its
value is preserved during a PUC. Thus a program can check this bit to find out whether a reset arose
from the watchdog.

BASIC TIMER.

Basic Timer1 is present in all MSP430xF4xx devices. It provides the clock for the LCD module and
generates periodic interrupts. A simplified block diagram of basic timer is shown in figure below.
Newer devices contain a real-time clock driven by a signal at 1Hz from Basic Timerl. The register
BTCTL controls most of the functions of Basic Timerl but there are also bits in the special function
registers IFG2 and IE2 for interrupts.

57

Microcontrollers

SMOLK ———— ™

ACLEK
at 3ZKHz BTCHTI

I BTFRQx
Clock te LCD module "
(not LOD_A) Interrupt of BTIE set

Simplified block diagram of Basic Timer1.

. -] 5 4 3 2 1 o

BTSSEL | BTHOLD | BTDWV | BTFRFCx | BTIPs

The Basic Timerl control register BTCTL.

REAL TIME CLOCK.

ADC10 SAR PERIPHERAL MODULE
Figure below shows a simplified block diagram of the ADC10 in the F20x2; there are more inputs in
larger devices.

external references ADC105R REF2_5V
| + -
analog E 5 L_“:EEEFH H '::_;h'x‘
inpurs o Vee 5 Ve g
IS INCHx a i REFON
= [,
:2’ D“:' SREF2] SREF0,1 ADC1005C
: EES LSS ADC10DIVx
: . sample 10:bic | divider — ACLK
AB O— and hold SAR core | f1../8 — MCLK
AT O— Y ADC10CLKE — SMCLK
A10 Ve Vieer+ ADC10SSELx
A1l
il [_ADC10MEM _|
= ER é ADCTOMEM ADCI0IFG | ADC108C
| "I"I SEAFT CONVErSIon ouTo
Viemp remperature [
1?: R P — OUT2
ol SHSx, IS5H

The ADC10 module of the MSP430F2274 supports fast 10 bit analogue-to-digital conversions;
The module contains:

10-bit SAR core; The ADC100N bit enables the core and a flag ADC10BUSY is set while
sampling and conversion is in progress. The result is written to ADC10MEM in a choice
of two formats, selected with the ADC10DF bit.

Clock; This can be taken from MCLE, SMCLE, ACLE, or the module’s internal oscillator
ADC1008C, selected with the ADC10SSELx bits.

Sample-and-Hold Unit: This is shown separately in the block diagram. The time is
chosen with the ADC105SHTx bits, which allow 4, 8, 16, or 64 cycles of ADC10CLK.

Input Selection: A multiplexer selects the input from eight external pins A0-A7 (more
in larger M5P4305s) and four internal connections.

Conversion Trigger; A conversion can be triggered in two ways provided that the ENC
bit is set. The first is by setting the ADC105C bit from software (it clears again
automatically).

58

Microcontrollers

DIGITAL I/0 PORTS

There are 10 to B0 input/output pins on different devices in the current portfolio of
MS5P430s; the F20xx has one complete 8-pin port and 2 pins on a second port, while the
largest devices have ten full ports. Almost all pins can be used either for digital input/output
or for other functions and their operation must be configured when the device starts up.

Up to eight registers are associated with the digital input/output functions for each pin. Here
are the registers for port P1 on a MSP430F2xx, which has the maximum number. Each pin
can be configured and controlled individually; thus some pins can be digital inputs, some
outputs, some used for analog functions, and so on.

Port P1 input, P1IN: reading returns the logical values on the inputs if they are
configured for digital input/output. This register is read-only and volatile. It does not
need to be initialized because its contents are determined by the external signals.

Port P1 output, P10UT: writing sends the value to be driven to each pin if it is
configured as a digital output. If the pin is not currently an output, the value is stored in
a buffer and appears on the pin if it is later switched to be an output. This register is not
initialized and you should therefore write to P10OUT before configuring the pin for
output.

Port P1 direction, P1DIR: clearing a bit to 0 configures a pin as an input, which is the
default in most cases. Writing a 1 switches the pin to become an output. This is for
digital input and output; the register works differently if other functions are selected
using P15EL.

Port P1 resistor enable, P1REN: setting a bit to 1 activates a pull-up or pull-down
resistor on a pin. Pull-ups are often used to connect a switch to an input as in the section
“Read Input from a Switch™ on page 80. The resistors are inactive by default (0). When
the resistor is enabled (1), the corresponding bit of the P10UT register selects whether
the resistor pulls the input up to VCC (1) or down to V55 (D).

Port P1 selection, P1SEL: selects either digital inputfoutput (0, default) or an
alternative function (1). Further registers may be needed to choose the particular
function.

Port P1 interrupt enable, P1IE: enables interrupts when the value on an input pin
changes. This feature is activated by setting appropriate bits of P11E to 1. Interrupts are
off (0] by default. The whole port shares a single interrupt vector although pins can be
enabled individually.

Port P1 interrupt edge select, P1IES: can generate interrupts either on a positive edge
(0], when the input goes from low to high, or on a negative edge from high to low (1). It
is not possible to select interrupts on both edges simultanecusly but this is not a
problem because the direction can be reversed after each transition. Care is needed if
the direction is changed while interrupts are enabled because a spurious interrupt may
be generated. This register is not initialized and should therefore be set up before
interrupts are enabled.

Port P1 interrupt flag, P1IFG: a bit is set when the selected transition has been
detected on the input. In addition, an interrupt is requested if it has been enabled. These
bits can also be set by software, which provides a mechanism for generating a software
interrupt SWI].

59

Microcontrollers

60

Additional Questions:
1. Explain the following instructions.

a) DADD: DECIMAL ADD source and carry to the destination.
(Destination) = (carry) + (source) + (destination)
b) BIC: BIC[.b or .w] src, dst: not sre and dst to dst.
c] CMP: CMP[.b or w) src, dst: compare source and destination.
d) SXT dst. Extend bit 7 to bit 8-bitl5 (sign extended destination.]
e] CALL (b or.w)] dst: SP-2 = 5P, PC+2 = @5P, dst = PC (subroutine call to destination)

Missing 8255 Notes

Eg: interface 8255A with 8051 microcontroller such that the control register is selected for the
address 1003H. find the address of port A,B and C

Solution

The control register is selected for the address 1003H. Address lines A15 to AD for ports and control register
is as follows.

AlS | A4 [A13 | A12 | A11 | A10 [A9 | AB | AT | A6 |AS [A4 | A3 [A2 | A1 | AD

0 0 0 1 0 0 0 [0 |0 |0 |0 |JO [0 |0 |0 |0 |PORTA
0 0 0 1 0 0 0 (0 |0 o |0 JO (0 JO |0 |1 |PORTE
0 0 0 1 0 0 0 (0 |J0 |0 |JO JO (0 D |1 |O |PORTC
0 0 0 1 0 0 0 (0 |0 jOo JO JOo (0 J0 |1 1 |CR

Address of Port A is 1000h, Port B is 1001h, port C is 1002h and control word is 1003h. RD and WR pins of
8051 is connected to RD and WR pins of 8255 as shown in fig. AD and Al from 8255 are directly connected to
address lines of 8051. Remaining address lines are connected to the decoder 74L5138 and the output of the
decoder is connected to the C5 pin of 8255. Data pins of 8255 is directly connected to the data bus of 8051
microcontroller.

61

