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6.1 Introduction

The Z-transform is a powerful method for solving difference equations and, in general, to represent
discrete systems. Although applications of Z-transforms are relatively new, the essential features of this
mathematical technique date back to the early 1730s when DeMoivre introduced the concept of a
generating function that is identical with that for the Z-transform. Recently, the development and
extensive applications of the Z-transform are much enhanced as a result of the use of digital computers.

A. One-Sided Z-Transform

6.2 The Z-Transform and Discrete Functions

Let f() be defined for ¢t > 0. The Z-transform of the sequence {f(nT)} is given by

2 s(nr} = H(2)= Z f{nr)e (62.1

where T, the sampling time, is a positive number.!
To find the values of z for which the series converges, we use the ratio test or the root test. The ratio
test states that a series of complex numbers

Z a
n
n=0
with limit

D) = 4 (6.2.2)
an

lim

no

converges absolutely if A < 1 and diverges if A > 1 the series may or may not converge.
The root test states that if

i g

a,=A (6.2.3)

then the series converges absolutely if A < 1, and diverges if A > 1, and may converge or diverge if A = 1.
More generally, the series converges absolutely if

i

a, <1 (6.2.4)

where lim denotes the greatest limit points of lim |f(nT)|V7, and diverges if

The symbol = means equal by definition.
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lim i

n-»oo ]

‘ >1 (6.2.5)

If we apply the root test in (2.1) we obtain the convergence condition

(el

Eﬁimmx f(nT) —E "<l

or

f(n) =R (6.2.6)

noo \

where R is known as the radius of convergence for the series. Therefore, the series will converge absolutely
for all points in the z-plane that lie outside the circle of radius R, and is centered at the origin (with the
possible exception of the point at infinity). This region is called the region of convergence (ROC).

Example

The radius of convergence of f(nT) = e*"Tu(nT), a positive number, is
z7leaT| <1 orlz|>eaT

The Z-transform of finT) = e=*"Tu(nT) is

Ifa=0

Example

The function f(nT) = a"T cos nTw u(nT) has the Z-transform

F(Z): Za”T ginTw +e_jrtTw B lz( T, iT® —1) lz(aTe—ijZ—l)n
2 2 L, 2

_1 1 1 1 _ 1-a"z"'cos Tw

T 21-a"eT97 21-gTe 9 1-247 7 cos Tw+a 27

The ROC is given by the relations

laTeiToz-1| < 1 0 2| > |aT|

—

laTe-iToz-1 < 1 or 2| > |a"|

Therefore, the ROC is | z| > |aT|.
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6.3 Properties of the Z-Transform

Linearity

If there exists transforms of sequences Z{c;f;(nT)} = ¢;F;(z), ¢; are complex constants, with radii of
convergence R, > 0 for i =0, 1, 2, ..., €(€ finite), then

l H 4
van SiAnT)O= g > R, (6.3.1)
EZ (=Y o) e

Shifting Property

Z{f(nT - kT)} = z7*F(=2), f(=nT) =0 n=1,2,... (6.3.2)
z{f(nT—kT)} :z"kF(z)+if(—nT)z_(k_") (6.3.3)

Z{f(nT+ kT} = sz(z)— 2 f(nT)zk_" (6.3.4)

Z{f(nT + T)} = z[F(2) - f(0)] (6.3.4a)

Example
To find the Z-transform of y(nT) we proceed as follows:

d;ytgt) (1) ¥(nT)- Zy(nT;zT) +y(nT-27)

v(2)- 2[z‘1Y(z) + y(—T)z‘O] +27Y(2) +y(-T) 27 +y(2T) 20 = X() T2

= x(n7),

or

v(z)= »(-7) ‘y(‘lT_);- +y£—2 T)+ x(2) 12

Time Scaling

o

Ha f(nr} = Ha7"2)= > f(nr)(a2) " (6.3.5)

n=0

© 2000 by CRC PressLLC



Example

Z{sina)nTu(nT} :% ‘Z‘>1,
z-—2zcoswT +1

+ s

n . T _

Z{e ”sma)nTu(nT} =5 ¢ Zflmw ‘z‘>e !

e "z-—2e zcoswT +1
Periodic Sequence
ZN zN
Z{f(nT} = N _lz{f](nT} = N E(z), fl(nT) =first period

N is the number of time units in a period, |z| > R

where R is the radius of convergence of F,(z).

Proof

Z{f(nT} :Z{fl(nT} +Z{f1(nT—NT} +Z{f1(nT—2NT} +...

FI(Z)"'Z_NFI(Z)+Z_2NFI(2)+~-

1 N

el

For finite sequence of K terms

_ ,~N(K)
He)=5(z) 7
Multiplication by n and nT
R is the radius of convergence of F(z)
Z{ Hf(nT} =-z dl;gz)
dF(z)

© 2000 by CRC PressLLC
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Proof

inT(nT)z =Tzif(nT)|j-z E:—Tz;zmm f(nT)Z é
:_TZdF(Z)
dz
Example
Z{u(n} 22% Z{nu(n} =—Z%EZ%§= (Z_Zl)z
O O 2
2uln __iD 4 D:Z(Z _1)
A e
Convolution

If Z{f(nT)} = F(2) ‘z‘ > R, and z{h(nT)} = H(z) ‘v > R,, then

Z{f(nT) Dh(nT} :Zi f(mT) h(nT—mT)gz F(Z)H(Z) 'z| > max(R,, R,) (6.3.8)

Proof
A (ot) oot} - Z S-Z f(m) h(nT-mT)éz—n
- if(mT)i h(nT =mT)z"

= 2 f(m7) imh(ﬁ) 2’z
=S A} S Hem) = = () m(2).

m=0 =0

The value of h(nT) for n < 0 is zero.
Additional relations of convolution are

Z{f(nT) * h(nT)} = F(z2) H(z) = z{h(nT) * f(nT)} = F(z) H(z)  (6.3.8a)
z{f(nT) + h(nT)} * {g(nT)}} = Z{f(nT) * g(nT)} + Z{h(nT) * g(nT)}

= F(z) G(2) + H(z) G(2) (6.3.8b)
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z{{f(nT) * h(nT)} * g(nT)} = Z{f(nT) * {h(nT) * g(nT)}} = F(z) H(z) G(2) (6.3.8¢)
Example

1 1
The Z-transform of the output of the discrete system y(n) = 3 y(n—1) + 3 x(n), when the input is the

unit step function u(n) given by Y(z) = H(z) U(z). The Z-transform of the difference equation with a
delta function input 6(n) is

1 _ 1 1 1 1 =z
H(Z)_EZIH(Z):E or H(z)=5 1 _1=5 1
1-—z zZ——
2 2
Therefore, the output is given by
1 z z
=
g——
2
Example
Find the f(n) if
ZZ
F(z) = - " a, b are constants.
z—e ‘|z—e
From this equation we obtain
a g
fl(n)_Z—ID Z_a D:e—an) fz(n):Z_IB Z_b @:e—hn
k—e O z=e'|H
Therefore,
= os)= S eetelzem Ao
o 1- e—(a—b)(nﬂ)
1- e—(u—b)
Initial Value
£(0)=1im F(2) (6.3.9)

The above value is obtained from the definition of the Z-transform. If f(0) = 0, we obtain f(1) as the limit

lim zF(z) (6.3.9a)

z- 0
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Final Value
Li{l}of(n)Ilziilll(z—l)F(z) if floo) exists (6.3.10)

Proof

{ (k+1)-

#(2)-=1(0) - F(2) = (==1) F) - (o)

By taking the limit as z — 1, the above equation becomes

lim(z-1) 11mZ[f[ k1)) - (x)

=tim{ (1)~ 1(0)+ () (1)
()= (1) 5{r1) (o)
—hm{ (0)+f(n+1)}
==(0)+1()

which is the required result.

Example
If F(z) = 1/[(1 — z7)(1 — e'z)] with | 2| > 1 then

f(o)zlzif?oF(z):D IEIDI ot
H el ¢
) e 1 . 2z _ 1
L e e e g

Multiplication by (nT)*

Z{nkaf(nT} = —Tz%ZﬁnT)k_lf(nT)H k > 0 and is an integer (6.3.11)

As a corollary to this theorem, we can deduce

Z{n(k)f(nj =z* a F(Z) , n(k) = n(n—l)(n—Z)-u(n— k+1) (6.3.11a)
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The following relations are also true:

zﬁ—l)kn(k)f(n—kﬂ)@:z L (6.3.11b)
k dkF(z)
z{n(n+1)(n+2)...(n+k—1)f(n)} =(—1)"2 = (6.3.11c)
Example
__dbz0 2z
A== B oF (1)
A1 _ d _ d _z(z+1)
Z{n} = ZZZ{V} = ZdZ(Z_Zl)Z_ (2_1)3 >
1 d zlz+1 _ZZZ+42+1
{) __zdz(i_l)}_ ((2_1)4 )
Initial Value of f(nT)
Z{f(nT)} = f(OT) + f(T)z' + f2T)z2 + --- = F(2)
f(OT)=£i£1;10F(z) z| >R (6.3.12)

Final Value for f(nT)

Li{r}of(nT)=lzi£rll(z—1)F(z) flooT) exists (6.3.13)

Example
For the function

we obtain

Li_rg f(nT) =lim (z —1)

z-1 z-11-¢7 1-¢
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Complex Conjugate Signal

o o

(=S slr) ko He)= S )]

n=0 n=0

or
B ()= Y 5 (rr)e =2+ (o)

Hence,

Z{f(nT)} = F*(z¥) z| >R (6.3.14)
Transform of Product
If

Z{f(nT)} = F(2) z| > R,

Z{h(nT)} = H(z) z| > R,
then

z{ g(nT)} :z{ f(n7) h(nT)}

DdeT
ZﬂJf Hr z| > RR, (6.3.15)

where C is a simple contour encircling counterclockwise the origin with (see Figure 6.3.1)

R <t <H (6.3.15a)
! Rh

Proof

The integration is performed in the positive sense along the circle, inside which lie all the singular points
of the function F(7) and outside which lie all the singular points of the function H(z/7). From (6.3.15),
we write

Dzl] dT
Zm_fF Z nT E?E (6.3.16)

which converges uniformly for some choice of contour C and values of z From (6.3.16), we must have
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Im{z}

ROC F(z) and H(z/7)

FIGURE 6.3.1

4

>R, or ‘T‘ <-—
T R,

z (6.3.17)

-1
RDZI:J <1 or
*HrH

so that the sum in (6.3.16) converges. Because ‘z‘ >R, and 7 takes the place of z, then (6.3.16) implies that

7| >R, (6.3.18)
R <|f < (6.3.19)
’ R 3.
and also
RR, < |z|.

Figure 6.3.1 shows the region of convergence.
The integral is solved with the aid of the residue theorem, which yields in this case

): X BF(T)H(Z/T)H

res OO0 (6320)

AT 8 T B

where K is the number of different poles 7;,(i = 1, 2, ..., K) of the function F(7)/t. For the residue at the
pole 7; of multiplicity m of the function F(7)/t, we have

B(r) (=) -8 g
res . [ 0= ! lim d — %1’—@.)”17D (6.3.21)

B T & (m—l)!“fialr’”lD T B

] B

Hence, for a simple pole, m = 1, we obtain
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ELF(T)HDZDB
res,_, EFME: liilgi(r —Ti)%%lgaé (6.3.22)

0
H H
Example

See Figure 6.3.2 for graphical representation of the complex integration.

jImt

AN

—

FIGURE 6.3.2

1} = H(z)= Z1 T 4>1, z{e‘"T}:F(z): * |d>e

Hence,

Z{nTe“"T} = %ﬂijT z = dr.

T(T —e_T) %? —IH

The contour must have a radius |r‘ of the value e~ < |z| < |z| = 1 and we have from (6.3.22)

-T
ze
=T

)

I o

O
Z{nTef"T} =res _ _; gT —eiT) T(T _e-TZ)T(Z_T)Z

From (6.3.11)

ze T

ee]

_ dd 1
Z{nTe "T} =—Tz—
Hi-e

. T
dz T H_

and verifies the complex integration approach.
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Parseval’s Theorem
If Z{f(nT)} = F(2), |z

(nT)} = H(2), |z

Z o)) =5 #le) ()

where the contour is taken counterclockwise.

with [z =1 > R(R;, then

Proof
From (6.3.15) set z = 1 and change the dummy variable 7 to z.

Example
f(nT) = e"Tu(nT) has the following Z-transform:

F(z):% 2> et

-T_-1
-—e Zz

From (6.3.23) and with Ca unit circle (R, = e" < 1)

0

n=0

27T e’ 1
TN residues = =
21 e —e 1-e

Correlation

1 1 1 dz 1 1
nT)finT|=— —=
§ f( )f( ) 2miJc 1-e"z 1=e"z 2z 27)c z=eT" ' -2

(6.3.23)

Let the Z-transform of the two consequences Z{f(nT)} = F(z) and Z{h(nT)} = H(z) exist for ‘z‘ =1.

Then the cross correlation is given by

g(nT) = f(nT) O R(nT)= S f(m mT—nT):£i$if(mT)h(mT—nT)z"m
=lim z{ f(mT)h(mT—nT)}

But Zz{h(mT - nT)} = z-"H(z) and, therefore, (see [6.3.15])

Dz 0" Dz Odr

sfr)=tim sl OGS ME
:ZlmeF(T)HE:TET"_]dt n>1

This relation is the inverse Z-transform of g(nT) and, hence,

(6.3.24)

z{g(nT)} iZ{f(nT)D h(nT)} =z )H%E for |z = 1 (6.3.25)
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If f(nT) = h(nT) for n > 0 the autocorrelation sequence is

g(nT) = f(nT) 0 1(nT)

=3 sl (=)

(6.3.26)
:;meF(r)F%ET”*dT
and, hence,
6(e)=2{alnr} =2{ s(r)0n{r} = K(z) e (6.3.27)

If we set n = 0, we obtain the Parseval’s theorem in the same form it was developed above.

Example

The sequence f(t) = e™7, n > 0, has the Z-transform

Z{e_"T} = Z_T z|>eT

The autocorrelation is given by (6.3.26) in the form

6(2)=2{ f(n1) 0 17} S e 2 o

The function is regular in the region e-7 < |z| < ¢T. Using the residue theorem from (6.3.24), we obtain

g(nT)= iresr:TEF(T)H%%T"_I (6.3.28)

1=1

where T, are all poles of the integrand inside the circle |z | = 1. Similarly from (6.3.27)

g(nT) = iresrzriEF(T)F%D "”g (6.3.29)

where 7; are the poles included inside the unit circle.

Example

From the previous example we obtain (only the root inside the unit circle)

T T 2T
1 z e 8 ze e

-— = ﬁz”_ldz=—res o Tz"_1 = e "
2MjJcz—e" z—e e —e e’ —1

© 2000 by CRC PressLLC



which is equal to the autocorrelation of f(nT) = e™T u(nT). Using the summation definitions, we obtain

o

z e_mTu(mT) e_T(m_")u(mT— nT) =e™ i et

m=0 m=n

:eTn(e—ZnT +e—2nTe—2T +e—2nTe—4T +)

-nT 1 —_ —nT eZT
—e 1=e2T e T -1
Z-Transforms with Parameters
O O
Z%%f(nT, a)%=aaaF(z, a) (6.3.30)
Z@im f(n. a)@z lim F(z,a) (6.3.31)
— IZO a— 110

Zgl’ﬂI f(nT, a)dagz-rl F(z, a)da finite integral (6.3.32)

Table 1 in the Appendix contains the Z-transform properties for positive-time sequences.

6.4 Inverse Z-Transform

The inverse Z-transform provides the object function from its given transform. We use the symbolic
solution

f(nT) = Zz74{F(2)} (6.4.1)

To find the inverse transform, we may proceed as follows:

1. Use tables.

2. Decompose the expression into simpler partial forms, which are included in the tables.

3. If the transform is decomposed into a product of partial sums, the resulting object function is
obtained as the convolution of the partial object function.

4. Use the inversion integral.

Power Series Method

When F(z) is analytic for ‘z‘ > R (and at z = ), the value of f(nT) is obtained as the coefficient of z"
in the power series expansion (Taylor’s series of F(z) as a function of z!). For example, if F(z) is the
ratio of two polynomials in z7!, the coefficients f(0T), ..., f(nT) are obtained as follows:

)= B T R ) ) e ) os)
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where

Py = f(OT)qo
n= f(lT)qo +f(0T)q1 (6.4.3)
P, = f(nT)q0 +f[(n-1)T] 4 +f[(n-2)T] 4, +-~+f(0T)qn
The same can be accomplished by synthetic division.
Example
F(z)= 1-:2_1 o= 2zz+z =1=z"=22 45,73 +... ‘Z‘ >\f/6
1+2z +3z z-+2z+3

From (6.4.3): 1 = f(0T)-1 or f(0T) =1,1=f(1T)-1 + 1-2 or f1T) =-1,0 = f(2T)-1 + f(1T)-2 + f(0T)-3
or fQT)=42-3=-1,0=f(3T7)-1 + f(2T)2 + f(1T)3 + f(0T)-0 or f(3T) =2 + 3 = 5, and so forth.

Partial Fraction Expansion

If F(z) is a rational function of z and analytic at infinity, it can be expressed as follows:

F(z) = F(2) + F,(2) + F;(2) + - (6.4.4)
and therefore,
f(nT) = Z7YF,(2)} + Zz7Y{F,(2)} + Z7YF(2)} + -- (6.4.5)
For an expansion of the form
E
F(z)= {§ = A A A (6.4.6)

the constants A; are given by

z=p (6.4.7)
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Example

Let
1+2z7' +27 P+2z+1 7 .23 _
F(z)= 2 72 % & =1+ + 27 4 ‘z‘ >1
3 .,1 , 3 .1 2
l1-—z +—-2z zZi——z+—
2 2 2 2
Also,

from which we find that

and
D_ll][vz_'_l
FoEH
- O 10 )
S isags
z=1/2
Hence,

z=1 2 1
z—
2
:1+z_1—82 22—1 z
z=1 2 1

n—1

o d
and, therefore, its inverse transform is f(nT) = 6 (nT) + 8u(nT-T) — %g% u(nT-T) withROC \z\ > 1.

Example

(a) If

_ +1 B C
F(Z)_ (z—zl)(z—z) _A+z—zl ¥ z—ZZ ‘Z‘>2
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then we obtain

p=l 7+l =,
Z(z—Z) .
and
12241 _5
C_;(z—l) :2_5
Hence,

(b) If

then we obtain

_ z+l1 _
A_(z—z) :1_ 2
and
_ z+l —
) 7
Hence,
1 1
Fz)= 2(2—1)+3(z—2)
and

f(nT) = 22u(nT-T) + 3Q2)"'u(nT-T)

with ROC |z| > 2.
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Example

2 +1 A B
fFRz)=— -~ =" 424

( )( )2 1 . ( )2withz>1,thenweﬁnd
z+1){z-1 z z- z—1

241 1
A= =2
-1
(=) ._,
2+1
c=? =1.
z+1

z=

To find B we set any value of z (small for convenience) in the equality. Hence, with say z = 2, we obtain

1 1 1 1 1
or B = 1/2. Therefore, F(z) = ——+——+
2z+1 2z-1 ( )2

.. . 1
and its inverse transform is f(nT) = E (=1)™1
z—1

u(nT-T) + % u(nT-T) + (nT-T)u(nT - T) with ROC ‘z‘ > 1.

Example
3 —_
The function F(z) = 22/(z — 1)? with \z\ > 1 can be expanded as follows: F(z) = z + 2 + z - or F(z2)
z—1
2
37,-2 A B 3z=2)|z-1
2+ 2 Therefore, we obtain B = w = 1. Set any value

(=) ) =),

of z (e.g., z= 2) in the above equality we obtain

32-2 L, ., 1,

;= 5.1 5 or A=3
(2—1) (2—1)

2+2+

Hence,

and its inverse transform is
f(nT) = 6(nT + T) +26(nT) + 3u(nT-T) + (nT - TNu(nT - T)

with ROC 2| > 1.
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Tables 3 and 4 in the Appendix are useful for finding the inverse transforms.

Inverse Transform by Integration

If F(z) is a regular function in the region ‘z‘ > R, then there exists a single sequence {f(nT)} for which
Z{f(nT)} = F(z), namely

K

f(nT):ZmeCF(z)z”_]dz: Zreszzzi{F(z)z"_l} n=0,1,2,... (6.4.8)

1=1

The contour C encloses all the singularities of F(z) as shown in Figure 6.4.1 and it is taken
in a counterclockwise direction.

jImz

z-plane
ROC
[ ]
[ ]

Rez
[ ]
™ Contour of
Poles of F(z) integration C

If F(z) = H(z)/G(2), then the residue at the singularity z = a is given by

FIGURE 6.4.1

Simple Poles

z-a

lziirl(z—a)F(z)z"_1 =lim @z—a) H(Z) Z'HE (6.4.9)

Multiple Poles

The residue at the pole z; with multiplicity m of the function F(z)z"! is given by
m—1

res Zzzi{F(z)z”_l} = (ml—l)'ggdz""' gz— zi)m F(z)z”_lg (6.4.10)

Simple Poles Not Factorable

The residue at the singularity a,, is
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= H(Z) = (6.4.11)

F(2) is Irrational Function of z

Let F(z) = [(z + 1)/z]%, where « is a real noninteger. By (6.4.8) we write.

0 d’
nT f AL TS
2m;j

where the closed contour C is that shown in Figure 6.4.2.

Jy
z-plane

7 = xei™ Branch cut
oK

A B XC o
Branch point

FIGURE 6.4.2

It can easily be shown that at the limit as z— 0 the integral around the small circle BCD is zero (set
z = re/? and take the limit r — 0). Also, the integral along EA is also zero. Because along AB z = xe /"
and along DE z = xe/”, which implies that x is positive, we obtain

O O
f( ) 21-[] 0 DExe m):lg e dx+j1 Dxe’ +1 x" 1ej"”alxé
= 2;}%— ( ) x”_l_”e_jn(n_a)dx+‘[: (1 —x)ax”_l_“ejn(n_a)dxg (6.4.12)
_ sin| (n—a)n J_1 oria (1 _x)a 0
T 0
But the beta function is given by
B(m, k) :m:ﬁl xm-1(1 —x)“dx (6.4.13)

and, hence,
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sin[(n - a)n] r(n-a)r(a+1)

f(nT) = n r(n+1) (6.4.14)
But,
F(m)l'(l—m):sin:[_[m (6.4.15)
and, therefore,
f(nT): F(n—a)r(a +1) 1 _ F(a+1) (6.4.16)

r(n+l) r(n—a)r(a—n+1) r(n+1)r(a—n+l)
The Taylor’s expansion of F(z) is given as follows:
d"(l + z_l)a

100 2\ e »
F(Z)=§715 =(1+7) :;; (4] z

“ y
- Z’”a(a -1)(a -2)-fa - n+1)z (6.4.17)
But,
Fa+ 1) =ala-)(a-2)(a-n+1)I'(a-n+1), I(n+1)=nl (6.4.18)

and, therefore, (6.4.17) becomes

= F(a+1)

=2 e famns) (6:4.19)

The above equation is a Z-transform expansion and, hence, the function F(nT) is that given in (6.4.16).

Example

To find the inverse of the transform

- 2]

we proceed with the following approaches:

1. By fraction expansion
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g g
B E o 1od”
)= s e
g 1

2. By integration

O O 0 O
0 0 0
f(nT) =res__, Hz+ 2) 251 Dz"“1 E+ res | %—ID Z_Dl DZ’HE
0 (z42) R (z+2) 1o 0
A H2H g = H2H g
6y oy 1od”
=32 558 w1
3. By power expansion
z-1 L5 519 4 805 519, O
= —z t—z +. =z —z +—z  +-
RS 2 4 E‘ 2 4 %
.1 . . . . 0 519 O
The multiplier z™! indicates one time-unit shift and, hence, { f(nT)} = [, _? v En =12,
O

Example

1. By expansion
By F(2) has the region of convergence |z| > 5, then

5z 5z

S =527 450272 437527 +---
(2—5) z*—10z+25

F(z)=

=03%°+108z" +2 (%22 +3 327 +--

Hence, f(nT) = n5" n=0, 1, 2, ..., which sometimes is difficult to recognize using the expansion
method.
2. By fraction expansion
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Hence,

- 2
z=5 (2—5)
and f(nT) = -(5)"+ (n+ 1)5" = n5", n > 0.
3. By integration
0
1 a7 2 5 -
(2 1)'d 2-1 %Z_S) : zzﬂ1 =5nz"" =n5", n20
=1l dz - z=5
g (2-3)

Figure 6.4.3 shows the relation between pole location and type of poles and the behavior of causal
signals; m stands for pole multiplicity. Table 5 (Appendix) gives the Z-transform of a number of
sequences.

B. Two-Sided Z-Transform

6.5 The Z-Transform

If a function f(z) is defined by —0 < t < oo, then the Z-transform of its discrete representation f(nT) is
given by

0

Z”{f(nT} = F(z) = Z f(nT)Z_" R, >‘Z‘ <R (6.5.1)

n=-o

where R, is the radius of convergence for the positive time of the sequence, and R_ is the radius of
convergence for the negative time of the sequence.

Example

-1 0 0 Y
—|nT) - - - - - -
F(Z):ZH{e ‘n } — ZenTZ n +Ze nTZ n — ZenTZ " +Ze nTZ n

n=-oo n=0 n=-oo n=0

0 0

- —nT - 1 1
- e nTZn -1+ e nTZ no— —~ -1+ ——
£ £ l-e 'z 1-e 'z

The first sum (negative time) converges if | e-7z| < 1 or | z| < eT. The second sum (positive time) converges
if ez < 1 or eT < | z. Hence, the region of convergence is R, = e7 < |z| < R_= ¢T. The two poles of
F(z)arez=eTand z= ¢ T.
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Single Real Poles—Causal Signals
z-plane




z-plane

.

dAhWwahwah
N

N

z-plane

NI

z-plane

NI

z-plane

3
Il
(3]

L
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NI

FIGURE 6.4.3 (continued)

Example

Double Real Poles—Causal Signals

f)

TTNTTTT??

f(n)

9TTTT

o
OO

sl

fn)

L

The Z-transform of the functions of u(nT) and —u(—nT — T) are
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Complex-Conjugate Poles—Causal Signals

z-plane fn)

z-plane J( _f _( '_')_ ______ ' _ =_ 1_ _______
= am = 1

;:3200 T? ?Tﬁ‘i’ n
VL T IR

z_pim;z fn) /,S"///

wo - TR ? ’T T 7

—a0 | 5139 J’l

z-plane fn)

r=1am =2 ,/”// TT
@0 DD < ?T gt

J=wof | e fl’lj’

AN N AN 1

FIGURE 6.4.3 (continued)

Z”{u(nT} = iu(nT)z_” =1 - :Z—il ‘z‘ >1

2, {~u(-n1 -7}

I
|
=
|
2
H
|
=
N

=1—Zz":1—1=2 4<1
4 -z z-1

Although their Z-transform is identical their ROC is different. Therefore, to find the inverse Z-transform

the region of convergence must also be given.
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Figure 6.5.1 shows signal characteristics and their corresponding region of convergence.
Assuming that the algebraic expression for the Z-transform F(z) is a rational function and that f(nT)
has finite amplitude, except possibly at infinities, the properties of the region of convergence are

1. The ROC is a ring or disc in the z-plane and centered at the origin, and 0 < R, < |z| < R_ < 0.

2. The Fourier transform converges also absolutely if and only if the ROC of the Z-transform of
f(nT) includes the unit circle.

3. No poles exist in the ROC.

4. The ROC of a finite sequence {f(nT)} is the entire z-plane except possibly for z= 0 or z = .

5. If f(nT) is right handed, 0 < # < o, the ROC extends outward from the outermost pole of F(z)
to infinity.

6. If f(nT) is left handed, —0 < 1 < 0, the ROC extends inward from the innermost pole of F(z) to zero.

7. An infinite-duration two-sided sequence {f(nT)} has a ring as its ROC, bounded on the interior
and exterior by a pole., The ring contains no poles.

8. The ROC must be a connected region.

6.6 Properties

Linearity

The proof is similar to the one-sided Z-transform.

Shifting
Zdf(nT £ kT)} = z**F(2) (6.6.1)
Proof
ZH{f(nT—kT} = if(nT—kT)z_” =z* if(mT)z_’”

The last step results from setting m = n — k. Proceed similarly for the positive sign. The ROC of the
shifted functions is the same as that of the unfinished function except at z= 0 for k> 0 and z= oo for k< 0.

Example

To find the transfer function of the system y(nT) — y(nT—T) + 2y(nT—-2T) = x(nT) + 4x(nT - T), we
take the Z-transform of both sides of the equation. Hence, we find

Y(z) — z2'Y(2) + 2z272Y(2) = X(2) + 4z7'X(2)

or

Example

Consider the Z-transform

© 2000 by CRC PressLLC



Finite-Duration Signals

Causal Entire z-plane
except z =0
O—0—0—0— T 0—0—0—> Rez
Anticausal Entire z-plane
except z = 00
o ° o n Rez

jIm

Two-sided Jame Entire z-plane
exceptz =0
and z = 0o

—O+T T Rez
Causal l
o
O0—O0—0—0
Anticausal

Two-sided
R, <|z| < R_

Rez

FIGURE 6.5.1
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Ha)=— .
z—— 2
2

Because the pole is inside the ROG, it implies that the function is causal. We next write the function in
the form

F(z):z_1 z =z ‘z‘>%

which indicates that it is a shifted function (because of the multiplier z!). Hence, the inverse transform

0 0 O 0
is f(n) = %E u(n — 1) because the inverse transform of 1 % —%z'l Eis equal to Eég .

Scaling
If
Zylf(nD} = F(z) R, <|z[ <R
then
z{a"T f(nT)} = F(aTz) |a"|R, <|z| < |a”|R_ (6.6.2)
Proof
2o s} = @ (om)er = S plor)(a "= (e

Because the ROC of F(z) is R, < ‘z‘ < R, the ROC of F(aTz2) is
R,<|aTz|<R or RJa"|<|z|<|aTR

Example
If the Z-transform of f(nT) = exp(—‘ nT‘) is

1 1
Ho)= s eT<ld <ot
l1-e™z 1-e "z
then the Z-transform of g(nT) = a"T f(nT) is
1 1
G(Z): T 51 ale-T < |z| < ela”
l1-e™a'z 1-e™a'z
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Time Reversal

If
2 {f(nT)} = F(2) R, < |z|< R
then
Zn{f(—nT} = F(z‘l) RL< | zI <RL (6.6.3)
Proof
z,,{ f(—nT)} = i f(n1)2 = _«, f(nT)(z 1)-n :F(Z_l)
and

.

R <‘z_1

<R or ‘z‘ >L and ‘z‘ <L
R R,

The above means that if z, belongs to the ROC of F(z) then 1/z, is in the ROC of F(z!). The reflection
in the time domain corresponds to inversion in the z-domain.

Example

The Z-transform of f(n) = u(n) is z/(z— 1) for ‘z‘ > 1. Therefore, the Z-transform of f(-n) = u(-n) is

_ 1

1-z

N

1
—-1
z

Also, from the definition of the Z-transform, we write

Y

A} =y o=yt

n=-oco

Multiplication by nT

If
2 {f(nT)} = F(2) R, < |z| <R
then
dF(z)
Z”{an(nT} = —2T7 R, <‘z‘ <R (6.6.4)
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Proof
A Laurent series can be differentiated term-by-term in its ROC and the resulting series has the same
ROC. Therefore, we have

I R A

n=-oo n=-—oo

Multiply both sides by —zT

—szZiZ) = i an(nT)z_” = Z{an(nT} for R, < ‘z‘ <R

n

Example
If F(z) = log(1 + az) |z| > |al, then

dF(z) gz dfz)
e e T T & T )

4>l

The z! implies a time shift, and the inverse transform of the fraction is (—a) ". Hence, the inverse transform
is a(—a) ™! u(n — 1). From the differentiation property (with T = 1), we obtain

Example
If finT) = au(nT) then its Z-transform is F(z) = a/(1 — z7!) for ‘z‘ > 1. Therefore,

Z{nTau(nT} =—zTa dF(Z) =aT z S ‘z‘ >1
dz (z—l)
Convolution
If
Z{fi(nT)} = Fi(z2) and Z,{f,(nT)} = F,(2)
then

F(z) = 2, {fi(nT) * f,(nT)} = F,(2) F,(2) (6.6.5)

The ROC of F(z) is, at least, the intersection of that for F,(z) and F,(z).
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Proof

W)= )= 3 éz (1) fz(nT-mT)éz—n

mimyy-.

- iﬁ(m:r)éifz(nT—mT)z‘"

- 5 )=l
where the shifting property was invoked.

Example

The Z-transform of the convolution of e-"u(n) and u(n) is

2ol o) gz(m)% e efufo ===

H

Also, from the convolution, definition we find

[u—

0 Lz

= —-e O
l—e_1H2—1 z—e_IH
2

-1
zZ—e )

()

N

— N

which verifies the convolution property. The ROC for e-"u(#) is |z| > e~! and the ROC of u(n) is |2 >
1. The ROC of e"u(n) * u(n) is the intersection of these two ROCs and, hence, the ROC is \z\ > 1.

Example
The convolution of f;(n) = {2,1,-3} for n=10, 1, and 2, and f,(n) = {1, 1,1, 1} forn=10,1,2,and 3 is

G(z2)=F(2)F(z) =2+ z'-3z2)(1+z'+2z2+2z3)=2+3z"-2z"*-3z"

which indicates that the outputis g(#) = {2, 3,0, 0,—2,-3} which can easily be found by simply convoluting
fi(n) and f,(n).
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Correlation
If

Zy{i(nT)} = F(z) and Z,{ f,(nT)} = F,(2)

then

1

zdn (et} =2, {f(nr)O 1 (7} = 2, gimfl(nT)fz(nT—ﬁT)g

H  (6.6.6)
= Rflfz(z) = FI(Z)FZ(Z_I)

The ROC of R, (,(2) is at least the intersection of that for F,(z) and F,(z™).

Proof

But r; f2(€ T) = f,(€T) * f,(-=T¢€) and, hence, from the convolution property and the time-reversal property
Rflfz(z) = F(2)Fy(z7).

Example

The transform of the autocorrelation sequencing f(nT) = a"T u(n), -1 < a<1is

Ry (2)= ZH{ ’ff(”} = F(2) F(Z_l)

But,
F(z) = ﬁ ‘z‘ >‘a‘T causal signal
and
F(z“l) = I—LTZ ‘z‘ <;T anticausal signal
Hence,
1 1
Rff(z)zl—aT(z+z_l)+a2T ROCGT<Z<aT

Because the ROC of Rff(z) is a ring, it implies that rff(f T) is a two-sided signal.
We proceed to find the autocorrelation first

0 0 n-1
rff(nT) - Zamra("l‘")T =a—nTZa2Tm _a—nTZQZTm
m=n m= m=
R 1 g 1_a2Tn B anT 0
=a 1—a?" a 1—g?" _l_azr n=
- - s 1
r (nT)= a™” (m )T=a nT n<0
ff 1-a2T
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and then compare by inverting the function F(z)F(z!).

Multiplication by e -

If
ZAf(nT)} = F(z) R, <|z| <R
then
ZyleTf(nT)} = Fle=aT 2) |eaT|R, < |z| < [e~T|R_ (6.6.7)
Proof
2 e s} = i forer) "= H(es)  R<erd<r

Frequency Translation
If the region of convergence of F(z) includes the unit circle and g(nT) = e/*0"T f(nT), then
G(w) = Flo - o,) (6.6.8)

Proof
From (6.6.7) G(z) = F(e7/®0T z) and has the same region of convergence as F(z) because ‘exp(ja)OT)‘ =
1. Therefore,

Glw) = G(Z)‘z:eij = F(ei(o-®0T) = F(o — ,)

Product
If
Zy{f(nT)} = F(z) R,<|z| <R, (6.6.9)
Zyih(nT)} = H(z) R,,<|z|<R, (6.6.10)
§(nT) = f(nT) h(nT)
then

0

2,{ f(n7) (T} = 6(2) = > f(n)n(nT)2

n=-oo

(6.6.11)
D O
Z dT R+f +;,<H<R R
27'[]
where C is any simple closed curve encircling the origin counterclockwise with

0 o, oo i
max —-— <‘T‘<m1n f,— (6.6.12)

‘R h IL%
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Proof
The series in (6.6.11) will converge to an analytic function G(z) for R,, < 1z| < R . Using the root test
(see Section 6.2), we obtain

)l/n

R, =lim (\ f(n7)n{nT)

n— o0

(6.6.13)
st (o) i o)) =
for positive n. However,
0 w
F\z]= T)z"= -nT)z" (6.6.14)
({3 A== 3 o)
and this series converges if
< ! =R, (6.6.15)
im ((#(-n))
Hence,
1
R =
() o)
> 1
i (o)) i (o))
2R (R, (6.6.16)

Replacing f(nT) in the summation of (6.6.11) by its inversion formula (6.4.8), we find

Elzl] dar
sz )T —h m]j;F ZhnT 90 T (6.6.17)

The interchange of the sum and integral is justified if the integrand converges uniformly for some choice
of Cand z The contour must be chosen so that

R, <|t| <R, (6.6.18)

If

z

R.<|Z<R, or L <f]< (6.6.19)
l N R—h R+h o
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jIm{t}
lt| = R_y

i

FIGURE 6.6.1

the series in the integrand of (6.17) will converge uniformly to H(z/7), and otherwise will diverge. Figure
6.6.1 shows the region of convergence for F(r) and H(z/t). From (6.6.18) and (6.6.19) we obtain

ﬂ <R, or ‘z‘ <R R
R, ' -f5h
ﬂ >R or ‘z‘ >R, R
R+h + f +
or equivalently
R, R,, <|z| <R, R, (6.6.20)

When z satisfies the above equation, the intersection of the domain identified by (6.6.18) and (6.6.19) is

(Rf<r<Rf)m§Ri<r HD axD Z<r<mianZ§(6621)
: - ~h Rh %R_’Rarh o

The contour must be located inside the intersection.
When signals are causal, R ;= R, = o and the conditions (6.6.20) and (6.6.21) reduce to

R R,, < |z| (6.6.22)
<\r\ <RZ
+h

(6.6.23)

Hence, all of the poles of F(7) lie inside the contour and all the poles of H(z/7) lie outside the contour.
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Example
The Z-transform of u(nT) is

F(z) = 1_12_1 ‘z‘ >1=R,, R,
and the Z-transform of h(nT) = exp(—| nT|) is
1=¢2T )
ey R

But R ;= o0 and, hence, from (6.11) 1- exp(-T) < ‘z‘ < oo. The contour must lie in the region max

(1, z‘e - < “L" < min( -T) as given by (6.6.21). The pole-zero configuration and the contour
are shown in Figure 6.6.2.
J Im{t}
-T
T| =
o 7] = Iele
]
T
ze
/ y lt| =1
%ﬂg -
c | = |zleT

FIGURE 6.6.2

If we choose |z| > e7, then the contour is that shown in the figure. Therefore, (6.6.11) becomes

-2T

ZH{M(nT)h(nT)}:G(Z):ZLm T D _szdf

g _,rid
g-¢ 2H~° B

The poles of H(z/t) are at 7 = z exp(-T) and 7 = z exp(T). Hence, the contour encloses the poles 7 =
1 and 7 = z exp(-T). Applying the residue theorem next we obtain

6= L 4>e

which has the inverse function g(nT) = e~*Tu(nT), as expected.
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Parseval’s Theorem

If
ZAfinT)} = F(2) R < \z\ <R;
zAh(nT)} = H(z) R,,<|z| <R, (6.6.24)
with
R R, <|zl=1<R,R, (6.6.25)

then we have

o

> f(nT)H(nT) :ZlmeF(z)H(z_')dZZ (6.6.26)

n=-o0

where the contour encircles the origin with

O LD<H< e LD (6.6.27)
maxBR+f, R_;,H Z| mlnHR_f,R H .6.

+h

Proof
In (6.6.11) and (6.6.12) set z= 1 and replace the dummy variable 7 and z to obtain (6.6.26) and (6.6.27).
For complex signals Parseval’s relation (6.6.26) is modified as follows:

0

S s{wr)e(u7) =;mch(z)H*§ZL*§§ (6:6.28)

n=—co
If f{nT) and h(nT) converge on the unit circle, we can use the unit circle as the contour. We then obtain

S f(nT)h*(nT)zal)J’w”/; F(ej“’T)H*(ej“’T)dw w =" (6629
s J-w,/2

n=-—oo

where we set z= e/ If f(nT) = h(nT) then

F(eij) 2

daw (6.6.30)

d | /2
Z‘f (1) _5.[%/2

n=—00 s

Example
The Z-transform of f(nT) = exp(-nT)u(nT) is F(z) = 1/(1 — e Tz!) for ‘z‘ > e~T, From (6.6.26) we obtain

o 0

X R ]

n=-oo n=0
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From (6.6.27) we see that max(e~7, 0) < ‘z‘ < min(eo, e7). The contour encircles the pole at z= e~T so that

Also we find directly

w -nT ~nT — . o2t =§+e—zr +(e_2T)2+ Q: 1

L L 1= 2T
Complex Conjugate Signal
If

Z{f(nD} = F(z)  R,< z| < R
then
Z,Af*(nT)} = F*(2*) R, <|z[ <R, (6.6.31)

Proof

By definition we have
F(z) = i f(nT)z_”

n=-oo

Replacing z with z* and taking the conjugate of both sides of the above equation, we obtain (6.6.31).

6.7 Inverse Z-Transform

Power Series Expansion

The inverse Z-transform in operational form is given by

7(n7)=27{ ¥(}

If F(z) corresponds to a causal signal, then the signal can be found by dividing the denominator into
the numerator to generate a power series in z™! and recognizing that f(nT) is the coefficient of z"
Similarly, if it is known that f(nT) is zero for positive time (# positive), the value of f(nT) can be found
by dividing the denominator into the numerator to generate a power series in z.

Example
If F(z) = [z(z+ 1)]/(Z=2z+ 1) = (1 + z1)/(1 = 2z7' + z2) and the ROC is ‘z > 1, then
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14327 +5272 +72”
1-2z7"+z7 1+

1-2z7" 427
3z7'-27

3z7'-6z72+327

5z2-327

and by continuing the division we recognize that

=) n<o0
f(nT):aZrHl) 120

If f(nT) is known to be zero for positive n, that the ROC is |z| < 1, then
z+32° +52° 4.
z7=2z"+1 2z +1

z'=2+z
3-2z
3-6z+32

5z-327°

This series is recognized as

()= @(2%1) Z:g

Example

If F(2) = log(1 + 2z1), |z > 2, then using power series expansion for log(1 + x), with | x| < 1, we obtain

F(2)= i (_1)n+;2"2_"

n=1

which indicates that

(R Qﬂ)"”%” n>0
E) n<0

In general, any improper rational function (M > N) can be expressed as
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o D(2) (6.7.1)

where the inverse Z-transform of the polynomial can easily be found by inspection.
A proper function (M < N) is of the form

F(z): N(Z) _ bo +b12_1 +... +bMZ—M

D(z) 1+az+taz

ay#0,M <N

or

F(Z) _ N(Z) - bOZN +blzN—1 F... +bMZN—M

= (6.7.2)
D(z) N+a "+t
Because N > M, the function
F(Z) B bOZN—l +blzN—2 +... +bMZN—M—1 673)
z N4a N+ ray o

is always a proper function.

Partial Fraction Expansion

Distinct Poles
If the poles p,, p,, ..., py of a proper function F(z) are all different, then we expand it in the form

Fl\z
(): A LA L M (6.7.4)
z Z_pl Z_pz Z_pl\]

where all A; are unknown constants to be determined.
The inverse Z-transform of the kth term of (6.7.4) is given by

Z‘lg 1 . %: gpk)nun(nT) if ROC:‘Z‘ >‘pk‘(causal signal) (67.5)
H-pnz H E»(pk) u(—nT—T) if ROC:‘Z‘ <‘pk‘(anticausa1 signal)

If the signal is causal, the ROC is |z| > p,..., where p,.. = max{|p, pul}. In this case, all terms

in (6.7.4) result in causal signal components.

2

5 3 eees

Example

(a) If F(z) = z(z + 3)/(2 — 3z + 2) with |z > 2 then
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Therefore,

F(Z):5Zf2_4il or f(nT)=5(2)"-4(1)" n=z0

z—

(b) If F(z) = z(z + 3)/(z> = 3z + 2) with 1 < ‘z‘ > 2, then following exactly the same procedure

F(z):szfz—zxz—fl

However, the pole at z = 2 belongs to the negative-time sequence and the pole at z = 1 belongs
to the positive-time sequence. Hence,

Example

To detrmine the inverse Z-transform of F(z) = 1/(1 — 1.5z + 0.5z72) if (a) ROC: ‘z‘ > 1, (b) ROC: ‘z‘
< 0.5, and (c) ROC: 0.5 < z‘ < 1, we proceed as follows:

F(Z)Z ZZ = ZZ = A+ Bz + Cz
z*=1.5z+0.5 (Z_l)gz_lg z—1 Z_l
2 2

or

1
2

(a) f(nT) = 2(1)" — (1/2)", n 2 0 because both poles are outside the region of convergence ‘z‘ > 1
(inside the unit circle).

(b) f(nT) ==2(1)" u(-nT -T) + (1/2)" u(—nT -T), n < -1 because both poles are outside the region
of convergence (outside the circle |z| = 0.5).

(c) Pole at 1/2 provides the causal part and the pole at 1 provides the anticausal. Hence,

1) = 20wl 1)~ ELE ufo) <o
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Multiple Poles
If F(z) has repeated poles, we must modify the form of the expansion. Suppose F(z) has a pole of
multiplicity m at z = p;. Then one form of expansion is of the form

X +A tootbA —Z (6.7.6)

The following example shows how to find A}s.

Example

Let the transfer function of each of two cascade systems be 1/(1 — (1/2)z7!). If the input to this system
is the unit step function 1/(1 — z'), then its output is

1 1 _ z’
)= 1 .0 _1D_1D2
4278 (=)g38
Az + Az + A3z2 ‘z‘>l
¢ z-1 =
2 H2H

If we set z= 0 in both sides, we find that A; = 0. Next we find A, by multiplying both sides by (z— 1/2)?
and setting z = 1/2. Hence,

z3D _lDZ 1
H ™ 2H S
A, = = =-1
2( _1)|:| _lDZ l—l
SUETUHTRH L 2
=3
and then we write
z :Alz Az z2
(—I)D _lDz z-1 l D_lDz
I LH 2 H,H
O o 10
_Alzgz——g +Azz(z—l) - B_Z (z—l)
10
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Equating coefficients of equal powers, we obtain the system

A+A-1=1, 1-A4 —%Az =0, A =4, and A, ==
Hence,

3 2

i z—1 1
0535 2

and the output is
flor) =) =28 ~(r+ ) n20

Another form of expansion of a proper function (the degree of the denominator is one less than the
numerator) is of the form

1

S )

A, Az +A3z(z+p,.) (6.7.7)

and the following example explains its use (see Table 4 in the Appendix).

Example

Using the previous example for F(z) with ‘z‘ > 1, we obtain

Hence,
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where A, was found by setting an arbitrary value of z that is, z = —1, in both sides of the equation.
Therefore, the inverse Z-transform is given by

g(n) n=0
S R

Example

Now let us assume the same example but with |z| < 1/2. This indicates that the output signal is anticausal.
Hence, from

Similarly from
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Integral inversion formula

Theorem 7.1
If

o

F(z)= Z f(mT)z (6.7.8)

m=—oo

converges to an analytic function in the annular domain R, < |z < R, then

f(nT)=21njch(z)z"iZ (6.7.9)

where Cis any simple closed curve separating | z| = R, from |z| = R_and it is traced in the counterclockwise
direction.

Proof

Multiply (6.7.8) by z"~! and integrate around C. Then
Lf F(z)z"% = Z f(mT)l‘fz”_de (6.7.10)
21 Jc z L 215 )c z

Set z= Re/®with R, < R < R_to obtain

L Z""”@:L ZnR"-m—leje(”_m'l)Rjejgde
27'[j C z 27‘5 0

1 21
=—RkJ’ L

21T 0
_ El k=0
0 elsewhere (6.7.11)

Hence, the summation on the right-hand side of (6.7.10) reduces to f(nT).
Let {a,} be the set of poles of F(z)z"! inside the contour C and {b,} be the set of poles of F(z)z"!
outside C in a finite region of the z-plane. By Cauchy’s residue theorem

f(nT):ZRes{F(z)z”_l,ak} n=0 (6.7.12)
f(nT)Z—ZRes{F(z)z”_l,bk} n<0 (6.7.13)

Example
Let

z‘>1

g ey v B
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The function F(z)z"! = z"*!/(z— 1)(z— a”) has two poles enclosed by C for n > 0. Hence,

f(n)= Res{ F(z)2", 1} + Res{ F(z)2", a}

1 a(nﬂ)T

Example
Let

1-0.8°
1—0.82)(1 —o.8z‘1)

0.8 <‘z‘ <0.87!

44:(
For n > 0 the contour C encloses only the pole z = 0.8 of the function F(z)z"!. Therefore,

. (1—0.82)2"(2—0.8)‘ )

f(n)= Res{ F(z)z"“} ™ (=08 (e-o8) =0.8" n=0
z=0.8
For n < 0 only the pole z= 1/0.8 is outside C. Hence,
f(nT) = —Res{ F(z) z"'l} os
(1 —0.82)0.8_12"(2—0.8'1)
o —(1—0.8‘1)(z—0.8) o8 "=
2=087"
The residue for a multiple pole of order k at z, is given by
k-1
Res{ F(z) z”_l} . = ltrrzlu(l(il)' ﬁ gz - Zo)k F(z)z"_lg (6.7.14)

C. Applications

6.8 Solutions of Difference Equations with Constant Coefficients

Based on the relation

-1

z{ f(n- m)} = Z f(?) ) 2 2"H(2) (6.8.1)

(==m

where Z{f(n)} = F(z), we can solve a difference equation of the form
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iaky(n—k)= Zbkf(n—k) (6.8.2)

using the Z-transform approach.

Example
To find the solution to y(n) = y(n —1) + 2y(n — 2) with initial conditions y(0) = 1 and y(1) = 2, we
proceed as follows:

From the difference equation

y(0) = y(-1) + 2y(-2) = 1

y(1) =y(0) +2y(-1) =2

1 1
Hence, y(-1) = 5 and y(-2) = W The Z-transform of the difference equation is given by

1
=
—
L
SN—
+
N
~
—
L
+
[\®}
—_—
=
—_
S
SN—
+
\<

Hence,

_ 1 z! _ z z

Y(Z)_ = 2+ -1 2 _ + _
1-z 2z 1-z 2z z°—z—-2 z'—-z-2

and

_ 48 2 B _,0 2z O

ZI{Y}: n:zlaziul

( y() 2—2—25 2°—z-2[]

Example

The solution of the difference equation y(1n) — ay(n — 1) = u(n) with initial condition y(~1) = 2 and | a|
< 1 proceeds as follows:

v(2)-ay(-1)-az'¥(2) = Z—il

_ 2a z 1 _ 2a z
Y(Z)_ 1-az™ +Z—1 l-az' 1-az? +(z—1)(z—a)
_ 2a + 1 1 + 9 1
l1-az' l-al-z a-ll-az
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Hence, the inverse Z-transform gives

1 a 1 2a-1
)’(n)ZZaE" +—u(n)+ a" = u(n)+ a™ n=0
— 1l-a a—1 1—a a—1
zero input
zero state steady state transient

6.9 Analysis of Linear Discrete Systems

Transfer Function

From (6.8.2) we obtain the transfer function by ignoring initial conditions. The result is

L ~k
H(Z) = %(3 = % =transfer function (6.9.1)

where H(z) is the transform of the impulse response of a discrete system.

Stability

Using the convolution relation between input and output of a discrete systems, we obtain

()= Zh(k)f(n—k) SMZh(k)«» (6.9.2)

where M is the maximum value of f(n). The above inequality specifies that a discrete system is stable if
to a finite input the absolute sum of its impulse response is finite. From the properties of the Z-transform,
the ROC of the impulse response satisfying (6.9.2) is |z| > 1. Hence, all the poles of H(z) of a stable
system lie inside the unit circle.

The modified Schur-Cohn criterion establishes if the zeros of the denominator of the rational transfer
function H(z) = N(z)/D(z) are inside or outside the unit circle.

The first step is to form the polynomial

D, (z) = zND(z™") = dyzN + -+ + dy,z + dy
where D(z7') = d, + --- + dy_, 2" + dyz". This D,,(2) is called the reciprocal polynomial associated
with D(z). The roots of D, ,(z) are the reciprocals of the roots of D(z) and ‘D,p(z)‘ = ‘D(z)‘ on the unit

circle. Next, we must divide D, (2) by D(z) starting at the high power and obtain the quotient o, = d,/d
and the remainder D,, (z) of degree N -1 or less, so that

D,(2) s D,,,(2)
p(z) " D

The division is repeated with D,, (2) and its reciprocal polynomial D,(z) and the sequence a, a, ...,
Oy, 1s generated according to the rule
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D) _ ., Plentl?)
Dz " D3

The zeros of D(z) are all inside the unit circle (stable system) if and only if the following three conditions
are satisfied:

fork=0,1,2,..,N-2

1. D(1) >0

(k0O Nodd
2. D(-1) O

[P0 Neven

3. lal<1 fork=0,1,..,N-2
Check conditions (1) and (2) before proceeding to (3). If they are not satisfied, the system is unstable.

Example

D(z) =22 -022z"+2-0.2, D,,(2)=-022"+2"-02z+1

022’ +2°-02z+1 _ 0.8z% +0.96 _0.962* +0.96 _
a,=—, . =02+ v, Q==
22 =022 +2-0.2 D(z) 0.962% +0.96

Because |o,| = 1, condition (3) is not satisfied and the system is unstable.
The transfer function of a feedback system with forward (open-loop) gain D(z) G(z) and unit feedback
gain is given by

D(z)c(2)
1= el

Assuming that all the individual systems are causal and have rational transfer function, the open-loop
gain D(z)G(z) can be written as

where
Al(z) =azt+ - +a,, Blz)=zM+ by ,zM '+ --+b, LM
Hence, the total transfer function becomes
A4)
H(2)=
B(z)+A(z)

which indicates that the system will be stable if B(z) + A(z) or 1 + D(z) G(z) has zeros inside the unit circle.
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Causality

A system is causal if h(n) = 0 for n < 0. From the properties of the Z-transform, H(z) is regular in the
ROC and at the infinity point. For rational functions the numerator polynomial has to be at most of the
same degree as the polynomial in the denominator.

The Paley-Wiener theorem provides the necessary and sufficient conditions that a frequency response
characteristic H(w) must satisfy in order for the resulting filter to be causal.

Paley-Wiener Theorem
If h(n) has finite energy and h(n) = 0 for n < 0, then

J’_:J(nH(w)dw< ®

Conversely, if |H(w)| is square integrable and if the above integral is finite, then we can associate with
‘H(a))‘ a phase response with @(w) so that the resulting filter with frequency response

H(w) = | Hw)|ei? @

is causal.
The relationship between the real and imaginary parts of an absolutely summable, causal, and real
sequence is given by the relation

Hl.(a)) = —;TJtZHr()\)cot w; A dA

which is known as the discrete Hilbert transform.
Summary of Causality

1. H(w) cannot be zero except at a finite set of points.

2. ‘H(a))‘ cannot be constant in any finite range of frequencies.

3. The transition from pass band to stop band cannot be infinitely sharp.

4. The real and imaginary parts of H(®) are independent and are related by the discrete Hilbert
transform.

. ‘H(a))‘ and ¢(w) cannot be chosen arbitrarily.

9)]

Frequency Characteristics

With input f(n) = e/*", the output is

0 0

y(n) = ; h(k)ejw("_k) = /on ; h(k)e‘jwk = ejw"H(ejw) (6.9.3)

where
H(el®) = H(2)|,_,jo = H,(e]?) + jH,(e]®) = A(®) ei?@) (6.9.4)
Alw) = [H? (/) + H?(e/”)]"? = amplitude response (6.9.5)
@(w) = tan'[H;(e/®)/H,(e/®)] = phase response (6.9.6)
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—_ d¢(w) __pBd _group delay
T(w) C dw Re%}zdzan(z)% o " characteristic (6:5.7)

Because H(e/®) = H(e/(®*2%h) it implies that the frequency characteristics of discrete systems are
periodic with period 27.

Z-Transform and Discrete Fourier Transform (DFT)

If x(n) has a finite duration of length N or less, the sequence can be recovered from its N-point DFT.
Hence, its Z-transform is uniquely determined by its N-point DFT. Hence, we find

N-1 N-1 |:|1 -1
X(Z) — z xln D— X ]2nkn/N Ek—n
n=0 n=0 HN H
;M N-1 W 1o N M X(k)
- X(k)z (ejzrrk/NZ—l) - z .
NG V4 N f1-ePmiNg (6.9.8)
Set z = e/ (evaluated on the unit circle) to find
. 1- -joN N1
X(ef“) = X( : (6.9.9)
N 1- e—] w- an/N

X(w) is the Fourier transform of the finite-duration sequence in terms of its DFT.

6.10 Digital Filters

Infinite Impulse Response (IIR) Filters

A discrete, linear, and time invariant system can be described by a higher-order difference equation of
the form

() iaky(n-k) - 2bkx(n-k) (6.10.1)

Taking the Z-transform of the above equation and solving for the ratio Y(z)/X(z), we obtain

M

bkz_k
H(z) = Y(z) = Z (6.10.2)

The block diagram representation of (6.10.1), in the form of the following pair of equations:

M

v(n)= Zbkx(n—k) (6.10.3)
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N

¥n)= Zaky(n—k)+u(n) (6.10.4)

is shown in Figure 6.10.1. Each appropriate rearrangement of the block diagram represents a different
computational algorithm for implementing the same system.
Figure 6.10.1 can be viewed as an implementation of H(z) through the decomposition

YN OB
x(n) > > y(n)
Ef N
z7! z7!
x(n—1) y(n—1)
) b, +<Z> CZ: + a1
+ +
7! 7!
x(n—z)l | Ly(n—z)
] by—i +<Z> ) an -1 _
+ +
7! 7!
x(n—M) y(n—N)
bM an

+
x(n) y(n)

(n) _
yin * e y(n) +x(n) y(n) y(n) ym [ ym =1 y(m) a ayn)

suming element pickoff point delay element product

FIGURE 6.10.1

O
H(z):HZ(Z)HI(Z):EN%ﬁiW—ké (6,103
H

or through the pair of equations

V()= () x{2) = bkz-kéx(z) (6,106
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1

Y|z)=H,|z|V|z =gN75VZ (6.10.7)

% - akz_k U

S H

If we arrange (6.10.5), we can create the following two equations:

g g

a a

_ _0O 1 a
W(z)—Hz(z)X(z)— DNiDX(Z) (6.10.8)

- Z akz_k U

= H

oM a
Y(Z)ZHI(Z)W(Z):%Zka_kEW(Z) (6.10.9)
=1
The last two equations are presented graphically in Figure 6.10.2 (M = N).
The time domain of Figure 6.10.2 is the pair of equations
N
w(n): Zakw(n—k)+x(n) (6.10.10)
=1
M
¥(n)= Zbkw(n—k) (6.10.11)
=
O w(n) b4/ Y@
&/

!
w(n —2),L
] by_1 4/
lwin—N+1) ) >
7!
wrn — N) w(n — N)
by

FIGURE 6.10.2
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Because the two internal branches of Figure 6.10.2 are identical, they can be combined in one branch so
that Figure 6.10.3. Figure 6.10.1 represents the direct form I of the general Nth-order system and Figure
6.10.3 is often referred to as the direct form II or canonical direct form implementation.

x(m) 42\ win) b /N y(n)
= 3

+ +

Z)j a b (s
+

+
Z_l
& |
+ aN-1 P by_1 +
> >
) +
7!
an bN

FIGURE 6.10.3

Finite Impulse Responses (FIR) Filters

For causal FIR systems, the difference equation describing such a system is given by

y(n): ibkx(n—k) (6.10.12)

which is recognized as the discrete convolution of x(#n) with the impulse response

h(n)=5”n n=01...M (6.10.13)
Kl otherwise

The direct form I and direct form II structures are shown in Figures 6.10.4 and 6.10.5. Because of the

chain of delay elements across the top of the diagram, this structure is also referred to as a tapped delay
line structure or a transversal filter structure.

6.11 Linear, Time-Invariant, Discrete-Time, Dynamical Systems

The mathematical models describing dynamical systems are almost always of finite-order difference
equations. If we know the initial conditions at ¢ = t,, their behavior can be uniquely determined for t >
t,. To see how to develop a dynamic, let us consider the example below.
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x(n)

Z Z W Z
h(0) h(1) h(2) h(M-1) h(M)
{ X X L ym
OO0

FIGURE 6.10.4

x(n)

FIGURE 6.10.5

Example

Let a discrete system with input v(n) and output y(n) be described by the difference equation
y(n) +2y(n—-1) + y(n-2) = v(n) (6.11.1)

If y(n,— 1) and y(n, — 2) are the initial conditions for n > n,, then y(n) can be found recursively from
(6.11.1). Let us take the pair y(n—1) and y(n—2) as the state of the system at time n. Let us call the vector

—%C‘(n)g: (n—Z)E 6.11.2
OR i el o112

the state vector for the system. From the definition above, we obtain

xx(n+1)=y(n+1-2)=y(n-1) (6.11.3)

and
x(n+1)=y(n) =ovn) - yn-2)-2y(n-1) (6.11.4)

or
x(n+ 1) = v(n) - x,(n) - 2x,(n) (6.11.5)

Equations (6.11.3) and (6.11.5) can be written in the form

@cl(n+1)[| do IDgcl(n)D o0
%Cz(”ﬂ)gz%l —2%%2(,1)585“(”) (6.11.6)
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or

x(n+1)=A x(n) + Bu(n) (6.11.7)

But (11.4) can be written in the form

) =ufo) ()2 (n)=[1 1 g:%’;%éu(n)

y(n) =C x+ v(n) (6.11.8)
Hence, the system can be described by vector-matrix difference equation (6.11.7) and an output equation

(6.11.8) rather than by the second-order difference equation (6.11.1).
A time-invariant, linear, and discrete dynamic system is described by the state equation

x(nT+ T)=A x(nT) + Bu(nT) (6.11.9)
and the output equation is of the form
X(nT) =C x(nT) + Dv(nT) (6.11.10)
where

g(nT) = N -dimensional column vector
g(nT) = M -dimensional column vector
4

(nT R-dimensional column vector

A= N x Nnonsingular matrix
B= N X M matrix

C = Rx N matrix

D = RXx M matrix

When the input is identically zero, (6.11.9) reduces to
x(nT+ T)=A x(nT) (6.11.11)

so that

x(nT+2T)=A x(nT+T)=A A x(nT) = A’x (nT)

and so on. In general we have

x(nT + kT) = A*x (nT) (6.11.12)

The state transition matrix from n, T to n,T (n, > n,) is given by
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Q(nzT, mT) = A™™" (6.11.13)

This is a function only of the time difference n,T — n, T. Therefore, it is customary to name the matrix

¢ (nT) = A" (6.11.14)

the state transition matrix with the understanding that n = n, — n,. It follows that the system states at
two times, #,T and n, T, are related by the relation

x(m,T) = ¢ (n,T, ;;T) x(n,T) (6.11.15)

when the input is zero. From (6.11.13) we obtain the following relationships:

(a) ? (nT, nT) = I = identity matrix (6.11.16)
(b) ¢ (T, mT)=¢ (n,T, n,T) (6.11.17)
(c) ?(”aT: nzT)Q(nzT, n,T) =$§(nﬂ“, n,T) (6.11.18)

If the input is not identically zero and x(nT) is known, then the progress (later states) of the system
can be found recursively from (6.11.9). Proceeding with the recursion, we obtain

x(nT+27)= Ax(nT+T)+ Bu(nT +7)
= AAx(nT)+ ABU(nT)+Bu(nT+T)
=¢(nT +2T, nT)x(nT) +¢(nT +2T, nT +T) Bu(nT) + Bu(nT +T)
In general, for k > 0 we have the solution
il

x(nT+kT) = @(nT + kT, nT)x(nT)+ Zg(nﬁ KT,iT+T)Bu(iT)  (6.11.19)

From (6.11.15), when the input is zero, we obtain the relation

-

x2(n,7)=¢(n, T =nT)x(nT) = A" " x(nT) (6.11.20)
According to (6.11.19), the solution to the dynamic system when the input is not zero is given by
x(nT+KkT) = @(nT+KT -nT)x(nT)+ Zqus[(n +k—i —I)T)] Bu(iT) (6.11.21)

or

n+tk-1

x(nT+kT) = ¢ (kT)x(nT)+ Z(B

(n+k—i—1)T)]Ijg(iT) k>0 (6.11.22)

© 2000 by CRC PressLLC



To find the solution using the Z-transform method, we define the one-sided Z-transform of an R x S
matrix function f(nT)as the R x S matrix

H(2)= Z f{nr)e (6.11.23)

The elements of F (z) are the transforms of the corresponding elements of f (nT) . Taking the Z-trans-
form of both sides of the state equation (6.11.9), we find

z2X(z)-zx(0)=A X(2) + BV (2)

or

X(2) =(z2I-A)"zx(0) + (zI-A)" BV (2) (6.11.24)

From the output equation (6.11.10), we see that

Y(z

~

=C X(2+DV(z

~

(6.11.25)

The state of the system x (n7T) and its output Z(”T) can be found for n > 0 by taking the inverse
Z-transform of (6.11.24) and (6.11.25).
For a zero input, (6.11.24) becomes

X(2) =(zI-A)" zx(0) (6.11.26)
so that

x(nT) = Z27{(z1- A)"'z} x(0) (6.11.27)

If we let n, = 0 and n, = n, then (6.11.20) becomes

x(nT) = ¢ (nT) x(0) = A"x (0) (6.11.28)

Comparing (6.11.27) and (6.11.28) we observe that

¢ (nT)=A"=z2Y(zI-A)'z n=0 (6.11.29)

or equivalently,

D(z)=z{ A"} =(zI-A)z (6.11.30)

The Z-transform provides a straightforward method for calculating the state transition matrix.
Next combine (6.11.30) and (6.11.24) to find

X(2) =@ (2) x(0) + P (2)z' B V (2) (6.11.31)

By applying the convolution theorem and the fact that

ZH P (2)z'} = ¢ (nT - TNu(nT - T) (6.11.32)

the inverse Z-transform of (6.11.31) is given by
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o~

-1

(1) =gli1)0) 3 o= (i)

1=

=

The above equation is identical to (6.11.22) with n = 0.
The behavior of the system with zero input depends on the location of the poles of

P(z)=(zI-A)"z
Because

adj(z1 - 4)

2] = )

(6.11.33)

(6.11.34)

(6.11.35)

where adj(-) denotes the regular adjoint in matrix theory, these poles can only occur at the roots of the

polynomial

D(z) = det(zI- A)

(6.11.36)

D(z) is known as the characteristic polynomial for A (for the system) and its roots are known as the
characteristic values or eigenvalues of A . If all roots are inside the unit circle, the system is stable. If

even one root is outside the unit circle, the system is unstable.

Example

Consider the system

For this system we have

_ Do 20 [d _
A= 02 2D B= e c-[o 22 2], D—[l]
The characteristic polynomial is
D(z) = det(zl —A) = det% ZE;— %22 i% det E—O%ZZ z_—22§

= z(z —2) ~0.44 = 22 =22 0.4 :(z —2.2)(z+0.2)

Hence, we obtain (see [6.11.34])
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0 zz 2) 2z
_ z -2 20 gz 22)(z+02)  (z-22)(z+02)
clJ(Z)_(z—z.z)(woz) 2 o o 0222 2
Hz-22)(z+02)  (2-22)(z+02)

o

Because D(z) has a root outside the unit circle at 2.2, the system is unstable. Taking the inverse transform
we find that

[l 1 n 11 5 n_i _ P
Q(nT) 51112(2 2)n 1121( 02) | 1?(2.2)n 61( 0.2) ng .
ézLO(z 2) —E(—o.z) E(2.2) +E(_0'2) 5

To check, set n=0to find ¢ (0) = Iand ¢ (T) = A.
Let x (0) = 0 and the input be, the unit impulse v(nT) = 8(nT) so that V(z) = 1. Hence, according
to (6.11.31)

—o() V()= & 22 0D
X(z)=o(z) " BV(2) (z—2.2)(z+0.2)%).22 200

_ 1 2O
~(2-22)(z+02) 5

The inverse Z-transform gives
g
0 n>0

and the output is given by
y(nT) = Qg(nT) +QU(nT)
n=0

s (2.2)"”—i(—0.2)"+1 n>0

H2 12

6.12 Z-Transform and Random Processes

Power Spectral Densities
The Z-transform of the autocorrelation function R, (7) = E{x(¢ + 7) x(#)} sampled uniformly at #T times

is given by

o

S.(2)= ZRm(nT)z_” (6.12.1)

n=—oo
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where the Fourier transform of R, (7) is designated by S, .(®). The sampled power spectral density for
x(nT) is defined to be

o

ot ZRXX("T)e'j‘""T (6.12.2)

sm(ef‘”) =5.(2)

However, from the sampling theorem we have

n=-oo

sm(ef‘*’T):% zsxx(w—nws), w=27T (6.12.3)

n=-oo

Because S, (®) is real, nonnegative, and even, it follows from (6.12.3) that S, (e/®T) is also real, nonne-
gative, and even. If the envelope of R, (1) decays exponentially for |z| > 0, then the region of convergence
for S,,(z) includes the unit circle. If R, (7) has undamped periodic components the series in (6.12.2)
converges in the distribution sense that contains impulse function.

The average power in x(nT) is

E{xZ(nT)} =R, (0) :zlnjffcsxx(z)iz (6.12.4)

where C is a simple, closed contour lying in the region of convergence and the integration is taken in
counterclockwise sense. If C is the unit circle, then

w,/2 .
R, (0) :LJ' Sxx(e""T)da) w =" (6.12.5)
W, J-w/2 T
Sxx(ej“T)i)—w = average power in dw (6.12.6)

s

S, (2) is called the cross power spectral density for two jointly wide-sense stationary processes x(#) and
y(1). It is defined by the relation

o

s,,(2)= Zny(nT)z_” (6.12.7)

Because R, (nT) = R, (—nT) it follows that
$.,(2) =8, (z),  S,.(2) =S,z (6.12.8)
Equivalently, we have
S.(e7) = S, (0T (6.12.9)

If S..(2) is a rational polynomial, it can be factored in the form
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where
L L
H (l—akz 1) Zakz k
_ k= =0
G(Z)— m m

y*>0, ‘ak‘<1, ‘bk‘<1, a, and b, are real

Linear Discrete-Time Filters

(6.12.10)

Let R (nT), Ryy(nT), and ny(nT) be known. Let two systems have transfer functions H,(z) and H,(z),
respectively. The output of these filters, when the inputs are x(nT) and y(nT) (see Figure 6.12.1), are

x(nT) H v(nT)
1\Z

y(nT) w(nT)
Hy(z)

FIGURE 6.12.1

v(nT)= z (KT)x(nT - kT)

w(nT) = Z hy(kT)y(nT - kT)

)

Let n=n+ min (6.12.11), multiply by y (nT), and take the ensemble average to find

Y

R, (mT)= Y (k) { (74 7 = k7) (T}

k=—o0

= i h(KT)R, (mT - kT)

k=—oc0

Hence, by taking the Z-transform we obtain

S, ,(2) = H,(2)S,,(2)
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Similarly from (6.12.12) we obtain

R, (mT)=" h(kT)R, (mT+kT) (6.12.15)

and
Sou(2) = Hy(z™)S,,(2) (6.12.16)
From (6.12.14) and (6.12.16), we obtain
Suu(2) = Hi(2)Hy(z71)S,, (2) (6.12.17)
Also, for x(nT) = y(nT) and h,(nT) = hy(nT) = h(nT), (6.12.17) becomes
S,0(2) = H(2) H(z™)S, (2) (6.12.18)

and

sl

o . (6.12.19)
bl )

Optimum Linear Filtering

Let y(nT) be an observed wide-sense stationary process and x(nT) be a desired wide-sense stationary
process. The process y(nT) could be the result of the desired signal x(nT) and a noise signal v(nT). It
is desired to find a system with transfer function H(z) such that the error e(nT) = x(nT) — x (nT) =
x(nT) — Z7'{Y(z) H(z)} is minimized. Referring to Figure 6.12.2 and to (6.12.18), we can write

S.(2)= Hl(z); = s,,(2)=y? (6.12.20)

where a(nT) is taken as white noise (uncorrelated process). We, therefore, can write
R,,(mT) = y256(mT) (6.12.21)
The signal a(nT) is known as the innovation process associated with y(#nT). From Figure 6.12.2, we obtain

o

x|nT)= kT)a|lnT - kT (6.12.22)
()= Y sfir)elor-11) :
y(nT) | a(nT) £(nT)
AG) G(2)

FIGURE 6.12.2
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The mean square error is given by

Ee*nT E%nT wnganT—kT
{er(r} = 59( )= > glkt)a(nr k)

k=—0

MO,
I o |

i (1) _zgé;g(m)x(ﬂ)a(ﬂ_kT)

IO

MmO,
I o

+E%ig(u)a(ﬁ-w)
=R zzng kT+y Zg kT
Z a/ g(kT)- D - ZRZ (k7)

To minimize the error we must set the quantity in the brackets equal to zero. Hence,

g(nT)=y12Rm(nT) —o<p <o

and its Z-transform is

but from (6.12.17) (because v(nT) = x(nT) implies that H,(z) = 1) we have

Sxy(z) = HL(Z’I)S”(Z) or Sxa(z) = ;I”(Zl) (6.12.23)
|z
6= S”(i) (6.12.24)
vz

”(Zg (6.12.25)
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The mean square error for an optimum filter is

fe(ur} =) | S &, (k1)

k=—o

Applying Parseval’s theorem in the above equation, we obtain

Hefor) =L 5.0 @)

2mjJe y b
B 0 S. (z)Sx (Z'I)Ddz
g
- g5l (] £

where C can be the unit circle.

6.13 Relationship Between the Laplace and Z-Transform

(6.12.26)

(6.12.27)

The one-sided Laplace transform and its inverse are given by the following two equations:

F(s) = 58{ f(t} :J: f(t)e‘“dt Re{s} >0,

f(t):a%_l{F(S} =2Lnj ;:OF(s)e”ds c>0,
where o, is the abscissa of convergence.
The Laplace transform of a sampled function
£0)= () 8(e-n1)= (1) comb,(1)= S f{n)ofi—n)

k=—o0 k=—o0

is given by
()=o) = S s(ar)e
==r"

because

0

8{5(1‘ - nT} =‘[w5(t —nT)e_”dt =e T
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From (6.13.4) we obtain
F(2) = F(9)| i 100 (6.13.6)

and, hence,

)

If the region of convergence for F(z) includes the unit circle,

Fs(w) = F(z)

zZ=e

s :FS(S)ii{fs(t} :Sf{f(t)combT(t} (6.13.7)

2| = 1, then

= if(nT)e_jw"T (6.13.8)

n=-oo

e=efoT

T
F(s+jw_ |=F|s)=periodic w =— 6.13.9
(s+jw.)=Efs)=p T (0139)
The knowledge of F,(s) in the strip —®,/2 < ® < ®,/2 determines F,(s) for all s. The transformation z =
e*T maps this strip uniquely onto the complex z-plane. Therefore, F(z) contains all the information in
F, (s) without redundancy. Letting o = s + jo , then

z=¢e TeioT (6.13.10)
Because |z| = 77, we obtain
Ekl 0<0
Z=[F1 0=0 (6.13.11)

Therefore, we have the following correspondence between the s- and z-planes:

Points in the left half of the s-plane are mapped inside the unit circle in the z-plane.

Points on the jo-axis are mapped onto the unit circle.

Points in the right half of the s-plane are mapped outside the unit circle.

Lines parallel to the jo-axis are mapped into circles with radius |z| = e 7.

Lines parallel to the o-axis are mapped into rays of the form arg z = ® T radians from z = 0.
The origin of the s-plane corresponds to z = 1.

The o-axis corresponds to the positive u = Re z-axis.

As o varies between —o, /2 and , /2, arg z= o T varies between —7 and 7« radians.

PN

Let f(#) and g(#) be causal functions with Laplace transforms F(s) and G(s) that converge absolutely
for Re s> o rand Re s > o, respectively; then

c+ joo

SE{f(t)g(t} =L F(p)G(s—p)dp (6.13.12)

27Tj c—joo
The contour is parallel to the imaginary axis in the complex p-plane with

c=Res>o,+0, and o,<c<o-o0, (6.13.13)
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With this choice the poles G(s — p) lie to the right of the integration path.
For causal f(#), its sampling form is given by

0 o

(6.13.14)

-
—_—
—

1

\H
—_
<

(Y]
—_
~
|
X
=

1

\H

-
O
)
8
o

S
—_
N

1
=
R
}\]

N—

PN
—

|
:
}\]
N—

If

g(r) = comb (1) = ZJ(t—nT) (6.13.15)

then its Laplace transform is

G(s):ﬁf{g(t} =ie_”“ zl—i_“ Res>0 (6.13.16)

n=0

Because o, = 0, then (6.13.12) becomes

Fs(s):%nj C+_jw1F_(2p)po 0>0,,0,<c<0 (6.13.17)
c— joo —e

The distance p in Figure 6.13.1 is given by

p = c+ Rel? w/2<0<371/2 (6.13.18)
jImp
/_B
P
R G
a/ 2
D E Re p
-— C —>
Poles of F(p) \
A

FIGURE 6.13.1

If the function F(p) is analytic for some |p| greater than a finite number R, and has a zero at infinity,
then in the limit as R — oo the integral along the path BDA is identically zero and the integral along the
path AEB averages to F,(s). The contour C, + C, encloses all the poles of F(p). Because of these
assumptions, F(p) must have a Laurent series expansion of the form
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F(p):%Jr%Jr_,, =% +Qp(§) ‘p‘>R0 (6.13.19)

Q(p) is analytic in this domain and

Qp)| <M< pl>R, (6.13.20)
Therefore, from (6.13.19)
a, :lggpF(p) (6.13.21)
From the initial value theorem
a = f(0+) (6.13.22)

Applying Cauchy’s residue theorem to (6.13.17), we obtain

E(s)= ZResgl% —}zifrizim, Czl_igfz_ﬂdp (6.13.23)
P= Pk

where {p,} are the poles of F(p) and o = Re{s} > o .
Introducing (6.13.22) and (6.13.19) into the above equation, it can be shown (see Jury, 1973)

& F(P) f(0+)
F(s]=") ResG— " - (6.13.24)
() Z S 3 5 6.13.24

By letting z = e°7, the above equation becomes

Hz)= Fs(s)s:;w - ZRGSEH% —f(ZJr), 4>e”" (6.13.25)
P= P

Example

The Laplace transform of f(£) = tu(t) is 1/s*. The integrand |te” ! e7¢!| < co for & > 0 implies that the
region of convergence is Re{s} > 0. Because f(#) has a double pole at s = 0, (6.13.25) becomes

F(z)=Res ot lpT - —%
Bpil-e”z

p=0

d P’ ‘ _ T

2
(-<7)
p=0
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Example
The Laplace transform of f(¢) = e=** u(¢) is 1/(s + a). The ROC is Res > — a and from (6.13.25) we obtain

N !
F(Z)_Resap+a)(l—eﬂz_l) Ty T e 2

p=-a

The inverse transform is

f(n1)= —%5(;1) +e " u{nT)

If we had proceeded to find the Z-transform from f(nT) = exp(—anT)u(nT), we would have found F(z)
=1/(1 - eT—z"). Hence, to make a causal signal f(#) consistent with F(s) and the inversion formula,
£(0) should be assigned the value f(0+)/2.

It is conventional in calculating with the Z-transform of causal signals to assign the value of f(0+) to
f(0). With this convention the formula for calculating F(z) from F(s) reduces to

F(z)= ZResgl% . |4z (6.13.26)
4 z
P= Py

6.14 Relationship to the Fourier Transform

The sampled signal can be represented by

£(1)= Zf(nT)é(t—nT) (6.14.1)

n=-—o0o0

with corresponding Laplace and Fourier transforms

F (s) = Z f(nT)e_”'T (6.14.2)

F(w)z f(nT)e_jw”T (6.14.3)

n=-—o0o0

If we set z= ¢ in the definition of the Z-transform, we see that

E(s)=F(g) __., (6.14.4)
If the region of convergence for F(z) includes the unit circle, ‘z‘ =1, then
Ew) =) _ .. (6.14.5)
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Because F(s) is periodic with period w, = 27 /T, we need only consider the strip —o, /2 < @ < @, /2,
which uniquely determines F,(s) for all s. The transformation z = exp(sT) maps this strip uniquely onto
the complex z-plane so that F(z) contains all the information in F(s) without the redundancy.
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Appendix: Tables

TABLE 1 Z-Transform Properties for Positive-Time Sequences

1. Linearity
2{ci fi(nT)} = ¢; Fi(2) |z] > R;, c; are constants

£ ¢
Z{Zc.-f,-(nr)] =) aF@  lzl>maxR,

i=0 i=0

2. Shifting Property

Z{f(nT —kT)} = z7*F(2), f(=nT)=0 forn=1,2,...

k
Z{f (T — kD)) = 2*F@) + »_ f(=nT)z" ¢

n=1
k-1
Z(f (T +KT)} = 2 F(@) = Y ()™
=0

Z{f(nT +T)} = z[F(2) — f(0)]

3. Time Scaling

2@ fT) = Fa T =) faD@ 9™ |z >a’
n=0

4. Periodic Sequence

ZN

A =

N = number of time units in a period

Fuy(2) |z > R

R = radius of convergence of F,(z)

F(1)(z) = Z-transform of the first period
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TABLE 1 Z-Transform Properties for Positive-Time Sequences (continued)

5. Multiplication by n and nT

2nf o) = —2LE g R
dz
ZnTf (T} = —zT”“;f) 2 > R

R = radius of convergence of F(z)

6. Convolution
2{f(nT)} = F(z) lz| > R

Zh(nT)}=H@) 121> Ry
Z{f(nT) *h(nT)} = F(2)H(z)  |z| > max(R,, Ry)

7. Initial Value . . .
f(OT) = lim F(z) |z]| > R if F(00) exists
=0

8. Final Value . . . .
lim f(nT) = lm}(z - 1F(2) if f(ooT) exists
n—0o0 —

9. Multiplication by (nT)*

Zn*T* f(nT)} = —Tzdiz{(nT)"—‘f(nT)} k > 0 and is an integer
Z

10. Complex Conjugate Signals
2Z{f(nT)}=F@) lzI>R

Z{f*(nT)} = F*(z")  lzI >R

11. Transform of Product
Z{f(nT)} = F(z) |z] > Ry

Z{h(nT)} = H(2) |z} > Ry
1
Z{f(nT)h(nT)} = Ef

c
counterclockwise integration

z\ dt |z
FrH(—)—, > R¢Ry, R T —
(T) 7)) |z| 7 Rn f<||<R;.

12. Parseval’s Theorem
2{f(nT)} = F(2) |z| > Ry

Zh(nT)} = H() |zl > Ry

o0

1 dz

Y faTh@T) = >— f FQH@ )=  lzd=1>R/R,

n=0 2rj Je 2
counterclockwise integration

13. Correlation

F(T) @ h(nT) = f(mT)h(mT —nT) = E}J f

m=0 C

1
F(t)H <;> " ldt n>1

Both f(nT) and h(nT) must exist for |z| > 1. The integration is taken in counterclockwise
direction.
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TABLE 1 Z-Transform Properties for Positive-Time Sequences (continued)

14. Transforms with Parameters

b 0
Z{af(nT,a)} = aF(z,a)

Z,{ lim f(nT, a)} = lim F(z,a)

a—agy

ay ay
Z{/ f(nT,a)da] =] F(z,a)da finite interval
ap

a0

TABLE 2 Z-Transform Properties for Positive- and Negative-Time Sequences

1. Linearity

¢ £
21 {Zc.-ﬁ(nr)} =Y aFi@  maxRy <lz| <min R,

i=0 i=0

2. Shifting Property
Zi{f(nT £kT)} = 2% F(2) R, < |zl < R_

3. Scaling
Zi{f(nT)} = F(z) Ry <lz] < R-

Zi{a"T f(nT)) = F(aT2) la’|R, < |z| < |aT|R_

4. Time Reversal
Zu{f(T)} =F@ Ry <lzl < R-

1 1
Zi{f(—nT)} = F(z™") re <lzl < R
- +

5. Multiplication by nT
Zi{f(nT)} = F(2) R, < |zl < R-
dF(z)

Z{nTf(nT)} = —zT
dz

R: < |zl < R_

6. Convolution
Zi{fitnT) * f(nT)} = Fi(2) F2(2)
ROC F;(z) UROC F;(z) max(Ry s, Ryp) < [zl <min(R_p, R_j,)
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TABLE 2 Z-Transform Properties for Positive- and Negative-Time Sequences (continued)

7. Correlation
Rji (@) = Zi{fi(nT) ® fo(nT)} = Fi(x)Fa(z™")

ROC F;(z) UROC F,(z 1) max(R.iy,, Ryp) < |zl <min(R_p, R_p)

—anT

8. Multiplication by e
Zi{f(nT)} = F(2) R, <|z| < R_

Zi{e™ T f(nT)} = F(e*T2) Ie_“T| R, <|z] < |e_“T| R_

9. Frequency Translation
G(w) = Zi (e’ f(nT)} = G(@)|,mpior = F (¢“™7) = F(@ — wp)

ROC of F(z) must include the unit circle

10. Product
Zi{f(nT)} = F(2) Rif <|z| < R_y

Ziith(nT)} = H(z) Ry <1zl < R_y

1 z\ dt
Zilf(THh(T)) = G(z) = Eyg FOH(2) S RugRoy <12l < R R,
C

Iz| . |z|
max{ R.r,— |} <|t| <min| R_f, —
( A " Ron

counterclockwise integration

11. Parseval’s Theorem
Zi{f(nT)} = F(z) Rif <zl < R_¢

Zy{h(nT)} = H(z) Rin < |zl < Ry

= 1 d
Y FaDhOT) = — ¢ FOHE S RigRu <lzl=1<R ;R
2nj Je Z

1 1
max <R+f, E—) < |z| < min <R_f, R—h)

counterclockwise integration

n=-00

12. Complex Conjugate Signals
Zu{f(T)) = F() Ry <lzl <Ry

Zp{f*(nT)} = F*(z") Rir <zl < R_y
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TABLE 3 Inverse Transforms of the Partial Fractions of F(z)

Partial Fraction Term Inverse Transform Term
If F(z) Converges Absolutely
for Some |z| > |a|

: a, k>0
zZ—a
22
(z—a)? (k+1Da*, k=0
2 1(k+1)(k+2)k k>0
(Z —a)3 2 a, -
" 1
(zja)n m(k+1)(k+2)"'(k+n—l)ak, k>0
Partial Fraction Term Inverse Transform Term
If F(z) Converges Absolutely
for Some |z| < |a|
- —ak, k<-1
Zz—za
(z—a)? —(k+ Da*, k<-1
3
Z 1
< I Nak 3
z—a)y Sk +Dk+2a", k<—1
z." 1 ’ .
(z —a) —m(k+1)(k+2)“~(k+n—l)a, k<-—1

TABLE 4 Inverse Transforms of the Partial Fractions of F,(z)*

Elementary Transform Term F;(z) Corresponding Time Sequence
(I) Fi(z) converges  (II) F;(z) converges
for |z] > R. for |z] < R,
1

L a*Mes1 —a" <o
z—a

2. =~ ka s, —ka* o
(z—a)? = =
2(z+a) _ _

3. —— kZak l|k2] _k2ak 1|k50
(z—a)
2(z* + 4az + a?) _ _

g LELAIHD) Ka s, —a* iz

(z—a)

“The function must be a proper function
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TABLE 5 Z-Transform Pairs®

z-Transform

Number  Discrete Time-Function F) =2[f ()]
f(n),n=0 =y, fmz"  zI>R
1, forn >0 z
! un) = 0, { otherwise z—1
2 e £ —
z—e®
z
3 n ———(Z 12
) 2(z+1)
4 n =1
5 3 22 +4z+1)
(z—=1)*
6 n4 2+ 1122+ 11z + 1)
(z—=1)
; 5 2(z* 4 262° + 6622 4 267 + 1)
(z—1)8
k 1Yk pk z . —_ _d_
8 " ( 1)D(z—l)’D_zdz
—k+1
9 umn—k z
z—1
10 e f(n) F(e“2)
Z
11 n®=nmn-1) 2(2_ g
® — _ _ 2
12 n® =nn—-1)n-2) 3!(1_ 1
Z
13 n(k)=n(n—1)(n—2)...(n—k+1) k'm
k
14 ¥ fm), M =nm+ 1D +2)...(n+k—-1) (—1)’°zkzi‘%[$(z)]
k
15 D= D@ =2 ... —k+ Dfiir’ 2T, FO@) = d%z?(z)
16 —(n—1)fau FD(2)
17 D —D(n—=2)...(n — k) faxk FB(2)
18 nf(n) —zF D (z)
19 n*f(n) 22FP(2) + zFV(2)

“Source: E. L. Jury, Theory and Application of the Z-Transform Method, New York, John Wiley & Sons, Inc.,
1964. With permission.

e may be noted that f, is the same as f(n)

© 2000 by CRC PressLLC



TABLE 5 Z-Transform Pairs® (continued)

z-Transform

Number  Discrete Time-Function F@) =2[fm)]
fn),n>0 =Y o fmz™  lzl> R
20 n’ f(n) —22F9(2) = 322FP(z) — :FV(z)
21 i gC/Z
n!
” (nc)" i
n!
k k k! k
23 ctak, =———n<k (_agi—i
n n (k —n)!n! z*
n+ k Zk+1
24 " S —
( k )C (z— C)k+1
5 S, 1=1,357,..) sinh(f)
n! z
26 <, n=0,2,46..) cosh (5)
n! z
27 sin(an) . tsme
72 —2zcosa + 1
28 cos(an) 2(z — cosa)

72 —2zcosa + 1

Z2siny + zsin(a — )
72 —2zcosa + 1

29 sin(an + )

z(z — cosh )

30 cosh(an) 22~ 27cosha + 1

zsinha

31 sinh(an) 7 2rcohatl

1
32 -, n>0 In £
n z—1
1] —e™@n 7—e
33 o+In———, a>0
n z—1
34 Smon o + tan™! e , a>0
n Z—cosa
35 Cosom, n>0 ln——z——
n V72 —2zcosa + 1
—k
mn+1DHn+2)...(n+k-=-1) 1
36 1—--), k=23,
k—1D! ( z)
" 1 2z z
37 — 1
;m z—lnz—l
n—1
1 1/z
38 — ¢
= m! z—1
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TABLE 5 Z-Transform Pairs® (continued)

z-Transform

Number Discrete Time-Function F@) =2[f(n)]
fm),n>0 =y fmz"  zl >R
(=D~ p)/2 " d ( 1)
39 Sy (N orn > pandn — p =even Jp(z~
2 (152) (45)!
=0, forn<porn— p=odd
(i )p™*, n=mk, (m=0,12..) F b\
40 X
= n # mk z
41 Py = 2 (4 ' 2 =1y <
a"P,(x) = — ) * = [ S—
x 2"n! \ dx V72 —2xaz + a?
n — N -1 Z(Z _ ax)
42 a"T,(x) =a" cos(ncos™ x) rart &
Ly(x) < (n)(=x) T —x/G-D)
43 n! _;(r) r! Z—le
“ Hn (x) _ [n/2] (_l)n—kxn—Zk e—x/z—]/Zzz
_ k
n! e k(n — 2k)!2
: d m ) (zm)y zm+1(1 _ x2)m/2am
n pm . n 2\m/2 _
45 a"P"(x) =a"(1 —x%) (E) P,(x), m = integer 2m! (@ = 2xaz + ad)y
Lrx)  (d\" L) . (=D"2 e
46 = (E) o m = integer ————(Z Ty
1_,]1.9@ 9@ F(2)
47 =27z — =_=7|, where F(z) and G(z) n——
n Fz)  S@ 5@2)
are rational polynomials in z of the same order
m—1
1 1
48 (m—1D1z" e =) —
mm+ 1) (m+2)...(m+n) kOk
49 sin(an) oo/ gin (sma)
n! z
50 cos(an) S5 oo (sina)
n! b4
SL ) figa F(2)SG(2)
k=0
n dg:Z
52 ) kfiga 5005, TV (@) = T2
k=0
3 Y K figns F2 (@5
k=0
54 a" + (—a)" 1 22
202 o 2—a?
o — g z
55 e ——
a—p (z—a)z—P)
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TABLE 5 Z-Transform Pairs® (continued)

Number Discrete Time-Function

z-Transform

F@) =zlf()

fn),n>0 =Yoo fmz™  lzl >R
56 (n+k)® b —2%
(Z — 1)k+1
— )k *__ %
57 (n—k) k'z P
53 (n :Fk)(m) ea(n~k) Zl;kem«x
m' (Z _ea)m-H
1 b4 b4 1
59 — sin = = +tan™' -
. sin 2n > -+ tan Z
60 cosa(2n — 1) n=0 1 1nz-}—Z\/Zcosot+1
2n—1 ~ 47 z-2Jzcosa + 1
y" n 1 z
61 + - —_—
-0 l1-y ((A-y)? Z=y)z—1)?
y +ag 1+ap 1 2(z +ao)
62 y" n+ -
(y — D? -y (1—)’ (l—y)2> @=y)z—1)?
63 a" cosmn i
z+a
64 e *" cosan 2z —e"cosa)

65 e " sinh(an + ¥)

yn (a® + B2)"%sin(nf + ¥)

72 —2ze ™ cosa + e 2

Z2sinh ¢ 4 ze~® sinh(a — ¥)
72 —2ze~*cosha + e~

Z
66
(y —a)* + 82 Bl(a —y)? + p2]'/2 (z— Yz —-a)?+p2]
0 = tan™! g
¥ =tan™! %
n—1 n
67 idd 3y ‘

-1 (y-1?

l[n(n—l)_ 4n N
21 -y (A—-yp)

k
K\ (1 +k—v)®
68 (—1)”(v)——("+ - O et

v=0
69 f(n)
n
70 fn+2 , fO =0
Vl+1 fl =

© 2000 by CRC PressLLC
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z(z — ¥

(Z - e(l)lH—l

/ p”‘S’(p)dp + lim M
Z n-0 n

z/ F(p)dp



TABLE 5 Z-Transform Pairs® (continued)

z-Transform

Number Discrete Time-Function F2) =21f(n)]
fm),n>0 =y, fmz"  z[>R
7 1 +ag z(z + ap)
(1 =y —a)? + 2] (z=Dz=pz—a)?+p%
(y +ao)y”
+ 2 2
(y = DIy —a)* + B%]
n [o? + B*1"[(ap + @)* + 2172
Bll@— D2 + B[ — y)? + B
X sin(nf + ¢ +A)
e ' P o
V=9 +v, ¥ =—tan ——, 0 =tan
a—1 o
A =tan™! L, ¥, = —tan™! p
ap+ o a—y
z—1 2
72 (n + e = 2ne*™) + 2@ D (n — 1) (z ea)
73 )22 450 P S—
n 72+ 2zcosa + 1
k)! d*
74 OER e f=0for0<n<k (= Dk ()]
n! dzk
75 L(fl, h>0 z"f p~ M F(p)dp
n+h .
R T 20222
76 —na CoS En m
L1 +cosmn 2a%7?
77 na T (12 — a2)2
78 .. ™ l+cosmn a’z?
a” sin 4n 2 g
79 . [ 1+cosmn i 2a%7?
a > cos 2n g
80 ff—('x—) e (/1 —x2z7Y)
n!
(m) ~
81 B7® oo, Pm =0, forn <m (=) I (v/1 = x2z71)
(n + m)!

82 m, a>0,Ref >0 &z}, a, B), where
®(1,B,0) =¢(B, @)
= generalized Rieman-Zeta function

. [ 1+cosmn T 274

83 a (T‘ + cos 57!) [4——¢14
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TABLE 5 Z-Transform Pairs® (continued)

z-Transform

Number Discrete Time-Function F) =2[f ()]
f).n=>0 =Y > fmz" 2 >R
C"
84 —, (n=1,2,3,4,..) Inz —In(z — ¢)
n
c" 1 2 2
85 —, n=2,4,6,8,... lnz—zln(z —c9)
26 e cz(z+¢)
(z—c¢)
2 2
87 nicr 2@ tdeztc)
(z—o)*
88 nker SBBEO  ggy = 2
dz
(n-2)/4 2
b4 n/2 : . z
89 _ - n=2-4i 4 b4 i
s Z:-:: (2i + 1)“ @ et
d
90 n* f(n), k > 0and integer —zd—fﬂ @), F1(2) = 2" F ()]
b4
n—1Dn-2)(n-3)...n—k+1) ,_, 1
91 a" D —
(k—1! (z —a)
k
kk —1 -2)...(k—
9 k—Dk=2)...¢k—n+1) (1+1>
n! z
3 _ 2
93 na” cos bn [(z/a)’ + z/alcosb — 2(z/a)
[(z/a)? — 2(z/a) cos b + 1]?
Yy .
94 na” sinbn (z/a)’sinb — (z/a) sinb
[(z/a)? — 2(z/a) cosb + 1]2
na" z(a —2z2) < a) 2
95 S et MY (I B
n+ D +2) PP ) " at
(—a)" _ z a
9% @ ——D ztl,/_-(—)
n+ D@En+ 1) Gatnva/z=oin{l+2
97 a" sinan zcosa tan-! asina
n+1 a z—acoso
zsina . z2 —2azcosa + a?
+ In
2a z2
98 a"cos(m/2)nsina(n + 1) 2 22+ 2azsina + a?
n+1 4a 72 —2azsina + a?
1 —172
99 @) cosh(z™'/%)
1
100 ( nz)(—a)" Vi/(z—a)
_1 - z
101 .2 )a"cos =n —
' B 2 —a?
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TABLE 5 Z-Transform Pairs® (continued)

z-Transform

Number Discrete Time-Function F) =2[f(n)]
f),n>0 =Yoo fmz™  lzl >R
B, . . ki
102 &) B, (x) are Bernoulli polynomials <
n! z(e'z = 1)
2
103 W, (x) = Tchebycheff polynomials of the second kind ————
2 —2xz+1
. I
104 [sin=|, m=12... Lsinm/m Tz
m 22 —2zcosm/m+11—z"m
b4
105 2(x) =si ! —_—
Q,(x) =sin(ncos™ " x) o ——
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