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 The analysis of the single phase motor can be made on the basis of two theories: 

i. Double revolving field theory, and 

ii. Cross field theory. 

1.51 DOUBLE REVOLVING FIELD THEORY: 

 This theory makes use of the idea that an alternating uni-axial quantity can be 

represented by two oppositely-rotating vectors of half magnitude. Accordingly, an alternating 

sinusoidal flux can be represented by two revolving fluxes, each equal to half the value of the 

alternating flux and each rotating synchronously (𝑁𝑠=
120 𝑓

𝑃
) in opposite direction. 

 As shown in figure: (a) let the alternating flux have a maximum value of 𝜙𝑚. Its 

component fluxes A and B will each equal to 𝜙𝑚/2 revolving in anti-clockwise and clockwise 

directions respectively. 

 After some time, when A and B would have rotated through angle +Ɵ and – Ɵ, as in 

figure: (b), the resultant flux would be 

       = 2*
ϕm

2
 cos

2Ɵ

2
 = ϕm cos Ɵ  

 After a quarter cycle of rotation, fluxes A and B will be oppositely-directed as shown 

in figure: (c) so that the resultant flux would be zero. 
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 After half a cycle, fluxes A and B will have a resultant of -2*
ϕm

2
 = -ϕm. After three 

quarters of a cycle, again the resultant is zero, as shown in figure: (e) and so on. If we plot the 

values of resultant flux against Ɵ between limits Ɵ=00 to Ɵ=3600, then a curve similar to the 

one shown in figure: (f) is obtained. That is why an alternating flux can be looked upon as  

 

 

composed of two revolving fluxes, each of half the value and revolving synchronously in 

opposite directions. 

                                                 

Fig: 1.51(f) 

 It may be noted that if the slip of the rotor is S with respect to the forward rotating flux 

(i.e. one which rotates in the same direction as rotor) then its slip with respect to the backward 

rotating flux is (2-S). 



 Each of the two component fluxes, while revolving round the stator, cuts the rotor, 

induces an e.m.f. and this produces its own torque. Obviously, the two torques (called forward 

and backward torques ) are oppositely-directed, so that the net or resultant torques is equal to 

their difference as shown in fig: (g) 

          

Fig: 1.51(g) Torque-Speed characteristics 

Now, power developed by a rotor is Pg = (
1−S

S
) I2

2 R2 

If N is the rotor r.p.s., then torque is given by , Tg = 
1

2ΠN
 (

1−S

S
) I2

2 R2 

Now, N = Ns (1-S) 

Therefore,  Tg = 
1

2ΠNs
  

I2
2 R2

S
 = k   

I2
2 R2

S
 

Hence, the forward and backward torques are given by 

             Tf = k   
I2

2 R2

S
                     and     Tb = -k 

I2
2 R2

(2−S)
 

or                       Tf = 
I2

2 R2

S
 synch. Watt       and      Tb = - 

I2
2 R2

(2−S)
  synch. Watt 

Total torque        T = Tf + Tb 



Fig: (g) shows both torques and the resultant torque for slips between zero and +2. At standstill, 

S=1 and (2-S) =1. Hence, Tf and  Tb are numerically equal but, being oppositely directed, 

produce no resultant torque. That explains why there is no starting torque in a single-phase 

induction motor. 

 However, if the rotor is started somehow, say, in the clockwise direction, the 

clockwise torque starts increasing and, at the same time, the anticlockwise torque starts 

decreasing. Hence, there is a certain amount of net torque in the clockwise direction which 

accelerates the motor to full speed. 

1.6 EQUIVALENT CIRCUIT: 

 The equivalent circuit of a single phase induction motor can be developed on the basis 

of two revolving field theory. To develop the equivalent circuit it is necessary to consider 

standstill or blocked rotor conditions. 

 The motor with a blocked rotor merely acts like a transformer with its secondary short 

circuited and its equivalent circuit will be as shown in fig: 1.6 (a), Em being e.m.f. induced in the 

stator. 

       

          

    

Fig:1.6 (a)   Equivalent Circuit of a Single Phase Induction Motor 

 The motor may now be viewed from the point of view of the two revolving field 

theory. The two flux components induce e.m.f. Emf  and Emb in the respective stator winding. 

Since at standstill the two oppositely rotating fields are of same strength, the magnetizing and 

rotor impedances are divided into two equals halves connected in series as shown in figure:1.6(b) 



            

 

UNIT-I 

PULSATING AND REVOLVING MAGNETIC FIELDS 

 

The Rotating Magnetic Field  

The principle of operation of the induction machine is based on the generation of a rotating magnetic field. 

Let us understand this idea better. 

Click on the following steps in sequence to get a graphical picture. It is suggested that the reader read the 

text before clicking the link. 

 

• Consider a cosine wave from  0 to 360
◦
. This sine wave is plotted with unit 

amplitude.  

 

• Now allow the amplitude of the sine wave to vary with respect to time in a 

simisoidal fashion with a frequency of 50Hz.Let the maximum value of the 

amplitude is, say, 10 units. This waveform is a pulsating sine wave.  

iapk  = Im cos 2π.50.t (1) 

 

• Now consider a  second sine wave, which is displaced by 120
◦
 from the first 

(lagging). . .  

 

• And allow its amplitude to  vary in a similar manner, but with a 120
◦
time lag.  

ibpk  = Im cos(2π.50.t − 120
◦
) (2) 

 

• Similarly consider a  third sine wave, which is at 240
◦
 lag. . .  

 

• And allow its amplitude  to change as well with a 240
◦
 time lag. Now we have three 

pulsating sine waves.  

icpk  = Im cos(2π.50.t − 240
◦
) (3) 

 

Let us see what happens if we  sum up the values of these three sine waves at every angle. The result really 

speaks about Tesla‘s genius. What we get is a constant amplitude travelling sine wave! 

In a three phase induction machine, there are three sets of windings — phase A winding, phase B and phase 

C windings. These are excited by a balanced three-phase voltage supply. This would result in a balanced 

three phase current. Equations 1 — 3 represent the currents that flow in the three phase windings. Note that 

they have a 120
◦
 time lag between them. 

 

../animation/sinwave3-1.htm
../animation/sinwave3-2.htm
../animation/sinwave3-3.htm
../animation/sinwave3-4.htm
../animation/sinwave3-5.htm
../animation/sinwave3-6.htm


            

Further, in an induction machine, the windings are not all located in the same place. They are distributed in 

the machine 120
◦
 away from each other (more about this in the section on alternators). The correct 

terminology would be to say that the windings have 

their axes separated in space by 120
◦
. This is the reason for using the phase A, B and C since waves 

separated in space as well by 120
◦
. 

When currents flow through the coils, they generate MMFs. Since MMF is proportional to current, these 

waveforms also represent the MMF generated by the coils and the total MMF. Further, due to magnetic 

material in the machine (iron), these MMFs generate magnetic flux, which is proportional to the MMF (we 

may assume that iron is infinitely permeable and non-linear effects such as hysterisis are neglected). Thus 

the waveforms seen above would also represent the flux generated within the machine. The net result as we 

have seen is a travelling flux wave. The x-axis would represent the space angle in the machine as one 

travels around the air gap. The first pulsating waveform seen earlier would then represent the a-phase flux, 

the second represents the b-phase flux and the third represents the c-phase. 

 

This may be better visualized in a  polar plot. The angles of the polar plot represent the space angle in the 

machine, i.e., angle as one travels around the stator bore of the machine. Click on the links below to see the 

development on polar axes. 

 

 

• This plot shows the pulsating wave at the zero degree axes. The amplitude is 

maximum at zero degree axes and is zero at 90
◦
 axis. Positive parts of the waveform 

are shown in red while negative in blue. Note that the waveform is pulsating at the 0 

− 180
◦
 axis and red and blue alternate in any given side. This corresponds to the sine 

wave current changing polarity. Note that the maximum amplitude of the sine wave 

is reached only along the 0 − 180
◦
 axis. At all other angles, the amplitude does not 

reach a maximum of this value. It however reaches a maximum value which is less 

than that of the peak occuring at the 0 − 180
◦
 axis. More exactly, the maximum 

reached at any space angle θ would be equal to cosθ times the peak at the 0 − 180
◦
 

axis. Further, at any space angle θ, the time variation is sinusoidal with the frequency 

and phase lag being that of the excitation, and amplitude being that corresponding to 

the space angle. 

• This plot shows the pulsating waveforms of  all three cosines. Note that the first is 

pulsating about the 0 − 180
◦
 axis, the second about the120

◦
 − 300

◦
axis and the third at 

240
◦
 − 360

◦
axis.  

 

 

• This plot shows the travelling wave in a  circular trajectory. Note that while 

individual pulsating waves have maximum amplitude of 10, the resultant has 

../animation/sinwave3-7.htm
../animation/sinwave3-8.htm
../animation/sinwave3-9.htm


            

amplitude of 15.  

 

If f1 is the amplitude of the flux waveform in each phase, the travelling wave can then 

be represented as          

f (t)  = f1 cos ωt cos θ + f1 cos(ωt − 
2π 

) cos(θ − 
2π 

) + f1 cos(ωt − 
4π 

) cos(θ − 
4π 

) 
 

3 3 3 3 
 

  

3 

      

=  f1 cos(ωt − θ)       (4)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




