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(a) (b)
Figure 6.8 (a) circular current loop, (b) flux lines due to the current loop.

By symmetry, the contributions along a, add up to zero because the radial components
- produced by current element pairs 180° apart cancel. This may also be shown mathemat-
, ically by writing a, in rectangular coordinate systems (i.e., 8 = cos ¢ a, + singa,)
CEESAN | M cos ¢ or SIn Q over 0 = ¢ < 27 gives zero, thereby showing that H, = 0.

- -

£ Ip’dpa, _  Ip2ma,
“m’““ 4«[,»2 TR T dalp? + R

i ~ = 0.36a, A/m

law that if h is replaced by —h, th¢
3 ponentsulladdsuptozemduew
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Hence,
s B dH, = —%!sinOdO
c.;f-:fh .
‘».r’*;‘ | or
b
N 0,
H¢=-E—1J sin 0 df
A 2 :

nl
H = 7 (€080, = cos 0))a,

& as required. Substituting n = N/¢ gives

NI
H = 2 (cos 6, — cos 0))a,

il )

sl e i

|
[@® + €441

=cos 0,
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* Figure 6.14 For Example 6.5: parallel
infinite current sheets.

m H,, and Hy are the contributions due to the current sheets z = 0 and z = 4, respec-
tively. We make use of eq. (6.23).

(a) At(1, 1, 1), which is between the plates (0 < z = 1 < 4),
H, = 12K X a, = 1/2(-10a,) X a, = 5a, A/m
H, = 12K X a, = 1/2(10a,) X (-a,) = 5a, A/m

Hence,

H = 10a, A/m
| (b) At(0, -3, 10), which is above the two sheets (z = 10 > 4 > 0),
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Figure 6.15 For Example 6.6: a toroid with a circular cross

mmummmum Hence,

| w‘ﬂx ‘l »dl = I, H- 2xp = NI

for p, —a<p<p,+a

:J_ id as shown in Figure 6.15. An approximate value of

NI NI

-]
ula obtained for H for points well inside a very 107
a-mlq "'w-':opemnlwroxdaICOl | for
g” t enclosed by an Amperian path "
ER

b .,__y
v e R
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the magnetic vector potential A = —p°/4 a_ Wh/m, calculate the total magnetic flux
methesufaccd = . 1 <p=2m0=z=5m

Solution:
We can solve this problem in two different ways: using eq. (6.32) or eg. (6.51).

Method 1:
A, P
B=VXA=—a,=_2a, dS HAdp dza,
cp VA
Hence,
i TR 1:"§)_15
P=Jn-ds=5j | odod=30t| ®=1
z =1
¥Y=375Wb
Methed 2:
‘We use
= .ﬂ.—-,; A r={A'dl=Y1+P2+P3+?4
L

1&5%#]!-&1%“8 ¥,. ¥-. ¥;, and ¥; are, respectively, the evalua-

Segm of L labeled 1 to 4 in Figure 6.20. Since A has only a
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Lol d — -—TETET T WmTw W —

- A charged particle moves with @ uniform velocity 4w, mM/s in & region whep
Ko= 200, Vimand B = U, Whim’. Determine B, such that the velocity of the particle
remaing constant,

Solution:
If the particle moves with a constant velocity,
other words, the particle experiences no net force. Hence,

it Is implied that its acceleration is zero, 1y

()-l'~ma-*0(lt+u>fll)
(= Q(20m, + dn, % Ba)

o 2‘).y - - 48"'

|

| Thus B, = 5. | |
LagtE This example illustrates an important principle employed in a velocity filter shown in
e | Figure 7.3, In this application, K, B, and u are mutually perpendicular so that Qu % B s

directed opposite to QK regardless of the sign of the charge, When the magnitudes of the

‘w"'i,‘"_ 1'—i-wl‘ ‘__ -I.I b i
g IS . (Y
R s e i e i B ) Qub = QF
i 0¥ b adely: ﬂ*l.ry,_fm_-fm’ﬁjl» d
B oo

umt
H

1o balance out the two parts of the Lorentz force. Parti-
§ by the fields; they are “filtered” through the apertur™
cted down or up, depending on whether their speeds a6

.&‘ e o B0F WS 2.

:;_-l.' I-—‘;_ -

» - )
PRy 7] v
i

T -
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Solution:
The equation of a plane is given by Ax+By+Cz+_D=0, where p _
~(A” + B* + C*). Since points (2,0,0), (0,2,0), and (0,0, 2) lic on the plane g,
poﬁnnmusaisfydxeqwionofﬂnpm,mdﬂnconamt&&amdbcanbc%_
mined. Doing this gives x + y + z = 2 as the plane on which the loop lies. Thy ,_
can usc

m = [Sa,
where

$ = loop area = 7 X base X height = 5 (2V/2)2V/ 2)sin 60°
= 4 sin 60°
If we define the plane surface by a function
fxy,)=x+y+2z2-2=0

an=+vf=+(a‘+a7+az)
ol T A3

Wedaooumephsdgninviewofdndirecﬁonofﬂwcuncminﬂwloop(usingtherigln-
hand rule, m is directed as in Figure 7.9). Hence

m = 5(4sin607) 2 " % * 2

it ) | V3

ment 5a, A - m’ is located at the origin #hi°
¢ moment 3a, A - m” is located at (4, —3 10/




Since my for loop £, is along a,, we find By using eq. (7.22):

B = E'—’!-n—{ (2 cos fm, + sin 0 ay)

durr

Using eq. (1.23), we transform my from Cartesian to spherical coordinates:
m, = 3a, = 3(sin O sin pa, + cos Osin g ay + cos pay)

At (4, =3, 10),

r= &+ (-3 + 10° = 5V5

tan0=£=—5--———>qma=__l_.. co.,a._.i
Sl /A i IouRE 61/
t"¢‘z"——3—*|n¢=—_— cos¢=-‘-‘-
| Al R AT ) r
Hence,
41r><10‘7x5(4 | )
B a t
SR T JT ; l 4r625V5 \\Vs 5
ey ¥ : X 10-7
e | L )
f gas (18- T 8)
tﬁmm W#W‘ Win AL I L 3" 6a 4a
R ’,j“ = | ,,‘..__.,..mz=3[ 0 JJ

- - 1
/s 5

- _ﬁa, + 4\V/5a,) X (4a, + a,)

da, + 35_77730 + 2la¢)
.+ 0.9015a4 nN - m
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(b) H,, = (H, - a,) {( 2.6, 4) (—1.1.0)](—1,1,0)
s * Ay, = -2, 6, .
I | \/5 V2
- -—4a‘ +4a\'

But
H, = H,, + H,,
Hence,

H,=H, -H,=(-2,64) — (-4,4,0)
= 2a, + 2a, + 4a,

Using the boundary conditions, we have

H, = H, = 2a, + 2a, + 4a,
B,, = By, = wHy, = pHy,

— # 5
; Hz,. = ;;H -2-( 4a, + 4a,) = —10a, + 10a,
Thus

H; = Hy, + H,, = —8a, + 12a, + 4a, A/m

o Hy = (4 X 1077)(2)(—8, 12, 4)
a, + 30.16a, + 10.05a, p Wb/m®

z<°)

is filled with a matena'
FV BZ s‘x + 8a, mwum
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Solution:

trated in Figure 7.15. Let B, = (B,, B,, B.) in mWb/m?.
B, =B, =8B =8

But
B 1
H,=—2= (5a, + 8a,) mA/m
M2 dp,
and
B, I
H, = —=—(B,a, + B,a, + B.a) mA/m
ki 6, o

(Hy — Hy) Xa,, =K
or
T p il : | H, X a,,=H, Xa,, +K

| Substituting egs. (7.9.2) and (7.9.3) into eq. (7.9.4) gives

.L(B,ax + Ba, + Ba) X a, =
Bt @&y 048 T3 LI O MA 4

Ty 2t

1 |
= (5a, +8a,) Xa, +—a
4“0( ax ") 2 ‘LO y

Scanne d with CamScanner

In Example 7.7, K = 0, so eq. (7.46) was appropriate. In this example, however, K # 0,
and we must resort to eq. (7.45) in addition to eq. (7.41). Consider the problem as illus-

(7.9.1)

(7.9.2)

(7.9.3)

Having found the normal components, we can find the tangential components by using

(7.9.4)

(7.9.5)
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Determine the self-i :
nductance of a coaxial cable of inner radius @ and outer radius b.

Solution:

The self-i :
e ivlnd'uctanc?, of the inductor can be found in two different ways: by taking the four
ps given in Section 7.8 or by using egs. (7.54) and (7.66).

own in Figure 7.19. We recall from

Method 1: Consider the cross section of the cable as sh
0=<p=a,

eq. (6.29) that by applying Ampere’s circuit law, we obtained for region 1 (

_ Hp
e 2ra’ i
and for region 2 (a = p = b),
wl
B,=—
2 2mp i

linkages due to the inner

pe '_We. first find the internal inductance Ly, by considering the flux
~ conductor. From Figure 7.22(a), the flux leaving a differential shell of thickness dp 18

sh

1,
AP, = By dp dz = 255 dp dz
2ma

linkage is d¥'; multiplied by the ratio of the area within the path enclosing the flux

Jene mp’
dh = d¥y == ap s

1e cross section for dc excitation. Thus, the total
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