Jaipur Engineering College & Research Centre, Jaipur

Session 2020-21

Notes - Unit IV

Electromagnetic Fields (3EE4-08)

Name of Faculty Ritu Soni
Designation Asst. Profe
Department Electrical

Ritu Soni Asst. Professor Electrical Engineering

Vision and Mission of Institute

Vision of institute

To become a renowned centre of outcome based learning, and work towards, professional, cultural and social enrichment of the lives of individuals and communities.

Mission of institute

19

A.

M1. Focus on evaluation of learning outcomes and motivate students to inculcate research aptitude by project based learning.

M2. Identify, based on informed perception of Indian, regional and global needs, the areas of focus and provide platform to gain knowledge and solutions.

M3.Offer opportunities for interaction between academia and industry.

M4. Develop human potential to its fullest extent so that intellectually capable and imaginatively gifted leaders may emerge in a range of professions

Vision and Mission of Electrical Engineering Department

Vision of department

The Electrical Engineering department strives to recognized globally for outcome based technical knowledge and produce quality human being who can manage the advance technologies and contribute to society.

Mission Of department

M1. To impart quality technical knowledge to the learners to make them globally competitive Electrical Engineers.

M2. To provide the learners ethical guidelines along with excellent academic environment for a long productive career.

M3. To promote industry- institute relationship.

Syllabus of Electromagnetic fields

unit 1- Review of Vector Calculus

Vector algebra- addition, subtraction, components of vectors, scalar and vector multiplications, triple products, three orthogonal coordinate systems (rectangular, cylindrical and spherical). Vector calculus differentiation, partial differentiation, integration, vector operator del, gradient, divergence and curl; integral theorems of vectors. Conversion of a vector from one coordinate system to another.

Unit 2- Static Electric Field

Coulomb's law, Electric field intensity, Electrical field due to point charges. Line, Surface and Volume charge distributions. Gauss law and its applications. Absolute Electric potential, Potential difference, Calculation of potential differences for different configurations. Electric dipole, Electrostatic Energy and Energy density.

Unit 3- Conductors, Dielectrics and Capacitance

Current and current density, Ohms Law in Point form, Continuity of current, Boundary conditions of perfect dielectric materials. Permittivity of dielectric materials, Capacitance, Capacitance of a two wire line, Poisson's equation, Laplace's equation, Solution of Laplace and Poisson's equation, Application of Laplace's and Poisson's equations.

unit 4- Static Magnetic Fields

Biot-Savart Law, Ampere Law, Magnetic flux and magnetic flux density, Scalar and Vector Magnetic potentials. Steady magnetic fields produced by current carrying conductors.

Unit5- Magnetic Forces, Materials and Inductance

Force on a moving charge, Force on a differential current element, Force between differential current elements, Nature of magnetic materials, Magnetization and permeability, Magnetic boundary conditions, Magnetic circuits, inductances and mutual inductances.

Unit 6- Time Varying Fields and Maxwell's Equations

Faraday's law for Electromagnetic induction, Displacement current, Point form of Maxwell's equation, Integral form of Maxwell's equations, Motional Electromotive forces. Boundary Conditions

Unit 7- Electromagnetic Waves

Derivation of Wave Equation, Uniform Plane Waves, Maxwell's equation in Phasor form, Wave equation in Phasor form, Plane waves in free space and in a homogenous material. Wave equation for a conducting medium, Plane waves in lossy dielectrics, Propagation in good conductors, Skin effect. Poynting theorem.

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE DEPARTMENT OF ELECTRICAL ENGINEERING

Course outcomes for Electromagnetic fields

4

CO1- Acquire basic understanding of vectors, their representation and conversion in different coordinate systems.

CO2- Able to compute the force, fields & energy of the electrostatic & magneto static fields. Able to analyze the materials, conductors, dielectrics, inductances and capacitances.

CO3- Understand the concept of time varying field and able to solve electromagnetic relation using Maxwell equations. Also able to analyze the electromagnetic waves.

	Cinit - 4 Date Page
	1000 0000 0000
	Magnetostatic fields =>
	There are similarities and dissimilarities
	blu electric and magnetic fields.
	As E and D are related to according to
	As E and D are related to according to D= E E for linear, isotropic material
	Fland B are related according to B= UF
	There is a second of the secon
A STATE OF THE PARTY OF THE PAR	

where are in a unit vector Pointing founts
differential element of corrers to the Point of interest. Field due to a straight Current carrying silamentary conductor of finite length consider a straight current carrying filamentary conductor of fihite length AB. Filhto the Page fig - Field at Point P due to 9 straight til Conductor. we assume that the conductor is along the zame with it, upper and lower ends, respectively. Subtending angles of and x, att, the Point as to be determined. note that current flows from Point A, when X=X, to Poinc B, where d=x2. if

Page
we consider the contribution dH at P due to an element dl at lo, 0, 2),
df = IdIXR -D
4× R3
Our di = dz az and R = Sag - za, so
$d\bar{l} \times \bar{R} = \beta dz \bar{a}_{\phi}$
hence, $\overline{H} = \int \frac{1}{4} \int \frac{1}{8} dz = 0$
Lening z = f Cot d. dz = -f Cosec2 dx
$H = \frac{1}{4\pi} \int_{A_{1}}^{A_{2}} \int_{A_{2}}^{B_{2}} \frac{1}{2} \int_{A_{2}}^{A_{2}} \frac{1}{2} \int_{A_{2}}^{$
$\overline{H} = -\frac{1}{4x^{\frac{1}{3}}} \overline{q}_{y} \int_{-\infty}^{\pi/2} \sin \alpha d\alpha$
$\overline{H} = \frac{I}{4\pi g} \left(\cos x_2 - \cos x_1 \right) \overline{a_y} - \overline{b}$
This enforcession is generally applicable for any straight planentary Conductor of Smite

Date
The Conductor need not lie on the 2 ands, but it must be straight form eq. (11) it is clear that H is always along the unit vector ay (i.e along, concentaric circular Path) irrespliction we of the length by the write or the Point of wherest P. As a special case, when the conductor is beni - infinite with respect to P) so that Point A is now at 0 (0,0,0) while B is at (0,0,0), $x_1 = 95$, $x_2 = 0$ PL. becomes
$\overline{H} = \frac{\overline{I}}{4 \pi g} \overline{q}_{\phi} - \overline{Q}$
Another special case - when conductor is injuste an length for this case- $A \to (0,0,-0) \text{ and } B(0,0,0), x_1-180',$ $x_2=0'$ $H = \frac{1}{27} \frac{1}{9} a_{\phi}$
To find unit vector a_{ϕ} in eq. (II) -(V) is not always early $[\overline{a}_{\phi} = \overline{a}_{e} \times \overline{a}_{g}] - (V)$
when at is the unit vector along the line current and and a unit vector along the Perpendicular line jewin the line current to the field Point.

	Page
	and ich Ampere's
	through P. This Path, on which Ampere's
	law is to be applied, is known as an
->	surface). We thouse chouse of
	as the Amberian Path in View of Et.
	as the Amberian Path in View of the Har- H = 278 ap, which shows that
	= 0 ilal lie Constant.
	His Constant Pewidle of is constant.
	since this Path encloses the whole Current
-	I, according to Amfere's law-
	I = H + 9 + Sd + a = H + Spd + 2
	1= 170 94 504 7
	I = Hø-279 Amlerian Pan
	$H = \frac{T}{2\pi \rho} - Q_{\rho}$
	279 9
1	as enfected: Amperely law applied to gitamen
	Amperel law applied to gitament
0	Infinite Sheet of Current =)
	The state of the s
5 14	Consider an infinite sheet of Current
	in the Z=0 Plane. The surgice Current
	alwhite is K. The Correct is the in
	Robitive of airection hence K = Ky au
	Consider 9 (1854) 1944 1-2-3, -4-1 as shown
	en ng.
	The current ylaving across the distance b
	is given by Ky b:

Maxwell's equation = Magnetic flun density The Magnetic flun density B is similar to the electric flun density D. A.S. D = E.O.E. In Juse space, The magnesic flun density of is related to magnetic field intensity H according to B= 110 F - D Where lle is a constant known as Plumeability of free Mace. The constant is 10 = 4 x x 10-7 +1/m - (1) The magnetic fluer though the surface S is given by Ψ= ∫ B. ds, -(11) and the magnetic flun y is in webers (who and the magnetic flun density in in white or teslas (T).

A magnetic flun lines is a Path to which B is tangential at every point on the line. cit is a line orling which the needle of a magnetic compan coll orient itself is placed in the Peresence of magnetic field. tor en- A the magnetic flum lines due to a Straight long were are shown in Jig. The flem lines are determined by using the Same Painciple followed for the electric frem lines The direction B is taken as that undicated as north by the needle of the magnetic compan. notic that each flew line is closed and has no beginning or end. This fig as is for a straight, current corre - Jing conductor, is is generally true that magnetic fluir lines are closed and do not Cown each other regardless of the corrent distribution. magnetic flun lines fig - magnetic flun lines due to a straight wine with arrent comming our of Page. fig (a) . In an electrostatic field, the flum Passing the--ough a closed Surgace is the same as the charge enclosed; i.e. $\Psi = $ \bar{0} \cdot d\bar{s} = 8$

Thus it is Possible to have an isolated electric Charge as shown in pig 2 (a), which also reveals that the electric fluir lines are not necessarily closed. Unlike electric ylun lives, magnetic flun lines always close upon themselves as in pig 24 closed surjue, 4=8 closed Surjuce, 4=0 fig2-flux leaving a closed surface due to (9) isolated electric charge 4= & D. ds= &. (t) magnetic Charge Ψ= \$ B. ds =0 This is because - it is not Possible to have isolated magnetic Poles los magnetis charges). for en- if we desire to have an isolated magnetic Pale by dividing a magnetic bar successively arts two, we endur with Pieces each having both end with Bites as illustrated in Jig (3) we fing it impossible to seperate the north Pale from the south Pale. "An isolated magnetic charge does not enist"

T NI	S	N al	g.s. Successive division of a ban magnestresults na Pieces with north
15		64	nat magnetic Polus Can't L
Sunga	the total ce in magn [§ B. d5 = c	flun thought field	must be zero, then
This	equation is	regrered	to as the law of
Jan Jordan	for magneto = = q is q : fields: Alt	static of aux's I hough the	n or Gauss's ield. Just as aw for electro magnetostatic magnetic plum is
1,000	elying the day	ergence t	heorem to eq D
	\$ 13 ·as =	MAN AN YOU	
This	equation is	the jo	inth manwell's
eq. (MILLAND OC ATT	their mag	etostatic field have

	DatePage
Jakes	Manwell's equations por static fields =
Die	
DIA	form Integral form Remarks
	$\nabla \cdot \vec{D} = \vec{J}_{V}$ $\vec{J}_{S}\vec{D} \cdot d\vec{s} = \vec{J}_{V}dV$ Gausis law
	$\nabla \cdot \vec{B} = 0$ $\vec{G} \cdot \vec{G} = 0$ None nistance of
	VXE =0 g. E.d. =0 Conservative nature of
1000	$\nabla X H = \overline{J}$ $\oint_{L} \overline{H} \cdot d\overline{L} = \int_{S} \overline{J} \cdot d\overline{S}$ Amperels law.
	Sold Fee War Shall all the state of the stat
11.00	Magnetic Scalar and vector Potentials 3
Os	In plactica it is soon to be one
	a Scalar Electric Potential V which is related to the Plectric field intensity E
	as $E = -\nabla V$.
6(3)	3 Case of magnetic fields there are two types of Potentials which can be defined
1-2.	The Scalar magnetic Potential denoted as A. The vector magnetic Potential denoted as A.
	To define scalar and vector magnetic Potentialson Let us use two vector identities which are

listed as the Powlerties of Culd, earlier-, V= sadar - 0 YXYV FO , A= vector -(1) 7. (TXA) =0 Scalar magnetic Potential & ely Vm in the Potential then it must battagy the equation But the Scalar magnetic Potential its related to the magnetic field intensity Has, using in eq. 3 (11), TX (-H) = 0 ie TXH = 0 - (V)

Thus Scalar magnetic Potastial Von Con be
defined for source free signin where I
ie current density is zero. FI = 57 Vm only for J=0 - (DI)

Similar to the relation b/o E and electric

Scalar Potential, magnetic g calar Potential can
be emperosed unternes by FI as Vm = - ffi dl -- - specified Path

	Date_Page
	Thus Curley vector magnetic Potential is
	Now $\nabla X \vec{H} = \vec{J}$ $\nabla X \vec{D} = \vec{J}$
	VXB - U.J VXVXA = LOJ - (XIII)
10	lide we can write. $\nabla [\nabla \cdot \hat{A}] - D^2 A = U_0 \hat{J}$
	$\overline{J} = \frac{1}{\text{Lip}} \left[\nabla \times \nabla \times \overline{A} \right] = \frac{1}{\text{Lip}} \left[\nabla (\nabla \cdot \overline{A}) - \nabla^2 \overline{A} \right] - \langle V \rangle$
	Thus is vector magnetic Potential is known then the current donsity I can be obtained for deshing A the current density weed not be zono.
(9)	Poisson's Equation for magnetic field =
	in a vector algebra, a vector can be fully defined if it's and and divergence one defined.
	for a vector magnetic Potential A i it's curl is defined as $\nabla XA = B$ which is known But to Completely define
	A is divergence must be known. Assume that $\nabla \cdot \bar{R} = 0$. This consistent with some other conditions to be studied later in time varying magnetic fields using in eq. (XIV) $\bar{J} = tl_0 \left[- \nabla^2 \bar{A} \right]$

CHAPTER 6 MAGNETOSTATIC FIELDS

Table 6.1 Analogy between Electric and Magnetic Fields*

Term	Electric	Magnetic
Basic laws	$\mathbf{F} = \frac{Q_1 Q_2}{4\pi \varepsilon_r^2} \mathbf{a}_r$	$d\mathbf{B} = \frac{\mu_0 I d1 \times \mathbf{a}_R}{4\pi R^2}$
	$ \oint \mathbf{D} \cdot d\mathbf{S} = Q_{\text{enc}} $	$ \oint \mathbf{H} \cdot d\mathbf{l} = I_{\text{enc}} $
Force law	$\mathbf{F} = Q\mathbf{E}$	$\mathbf{F} = Q\mathbf{u} \times \mathbf{B}$
Source element	dQ	$Q\mathbf{u} = I d\mathbf{I}$
Field intensity	$E = \frac{V}{\ell} (V/m)$	$H = \frac{I}{\ell} (A/m)$
Flux density	$\mathbf{D} = \frac{\Psi}{S} \left(\mathbf{C}/\mathbf{m}^2 \right)$	$\mathbf{B} = \frac{\Psi}{S} \left(\underline{\mathbf{Wb/m}^2} \right)$
Relationship between fields	$D = \varepsilon E$	$\mathbf{B} = \mu \mathbf{H}$
Potentials	$\mathbf{E} = -\nabla V$	$\mathbf{H} = -\nabla V_m \left(\mathbf{J} = 0 \right)$
	$V = \int \frac{\rho_L dl}{4\pi \varepsilon r}$	$\mathbf{A} = \int \frac{\mu I d\mathbf{I}}{4\pi R}$
Flux	$\Psi = \int \mathbf{D} \cdot d\mathbf{S}$	$\Psi = \int \mathbf{B} \cdot d\mathbf{S}$
Curto ablas Sussenin Sanor	$\Psi = Q = CV$	$\Psi = LI$
in landes on were electric di	$I = C \frac{dV}{dt}$	$V = L \frac{dI}{dt}$
Energy density	$w_E = \frac{1}{2} \mathbf{D} \cdot \mathbf{E}$	$w_m = \frac{1}{2} \mathbf{B} \cdot \mathbf{H}$
Poisson's equation	$\nabla^2 V = -\frac{\rho_{\nu}}{\varepsilon}$	$\nabla^2 \mathbf{A} = -\mu \mathbf{J}$

^{*}A similar analogy can be found in R. S. Elliot, "Electromagnetic theory: a simplified representation,"

Let us consider an incremental closed Path by sides An and Ay. and Chan castesian coordinate system. Assume that some current Producer a reference value of H at the center of this small rectangle. Ho = Hno an + Hyo ay + Hzo az The closed line integral of Fi about this Park is then apperonimately the sum of the your value of F. AI on each side. we choose the direction by travelse as 1-2-3-4-1, which Corresponds to a current whithe of direction and the first contribution is therefore (F. OI) - = Hy 11-2 AY Hy1-2 = Hy + 2Hy (-1 An) (H. DL) 1-2 = (Hy + 1 -their

Date
Along the next section of the Path we have
(Fi·ΔΕ) 2-3 = H ₂ , 2-3 (-Δη) = - (Hη+ ½ 3Hη 19)
$(\overline{H} \cdot \Delta \overline{L})_{2-3} = -\left(H_{n_0} + \frac{1}{2} \frac{\partial H_n}{\partial y} \Delta y\right) \Delta n$
Continuing for the remaining two segments and adding the ensults, $ \oint \overline{H} \cdot d\overline{l} = \left(\frac{3Hy}{3\pi} - \frac{3Hn}{3y}\right) D \cdot n D \cdot y $
By Ampere's circuital law, this smult must be equal to the current enclosed by the Path. if we assume a general current density J, the enclosed current is then DI = Jz An Ay, and
\$ H. al = () Hy - oHn) Anny = Jz Anay
$\frac{\int \overline{A} \cdot di}{A \cdot A \cdot A} = \frac{\partial Hy}{\partial x} - \frac{\partial Hy}{\partial y} - \frac{\partial J}{\partial y} = \frac{1}{2}$
As we cause the closed Path to Shrink, the above enforcesion becomes more nearly emact, and in the limit we have the equality. Lim SHIDE - DHY DHN - JZ An, Ay->0 Anay - DN DY - DY -0
THE RESERVE OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AN

of we choose closed Path which are oriente	4
Persendicularly to each of the emande	THIO
Coordinates anes, analogous 1900	eua_
to enferesion for y and z Comfonents of	the
Current density.	
lim \$ H. al = 34 - 37 = Jn -	-(1)
Jim & H. dí _ dHz _ dHy = Jn -	
and lis to it all all all - co	
17.00 - 07.00 - 32 - 30 - July)
and lim & H·d[DHn DHZ - Jy -(I)] ΔZ, Δη - O DZ Δη - DZ Dη - Dη	
Company eq. () (1) 2(11) we see that a	, to
clinit at the auntient on the closed line	
limit of the quotient of the closed line integral of H about a small Path in a P	lane
normal to that component and of the area	
enclosed as the Path showings to zono.	
This defined as cust.	
The mathematical from of depinition is	
Lim GHID	
(CURLY) = lim g. H. dī ASNO ASN - (V)	
33N	-
1194	
by the Classe lin Discoulant with	4
Subscript indicates that the component a	
the Cust is that Component which is norms	ad
to the surface enclosed by the Closed	Parke
is carlesian conordinates definition (10) Shours	that
to the surface enclosed by the Closed in cartesian and dinates definition (v) shows the n, y, and zcomponents of the curl IT are	

Date Page
given by O, O and O and therefore
Cood H = (3Hz - 3Hy) an + (3Hn 3Hz) ay +
(3Hy 3Hn) Q2
a determinant.
Curl H = 3n ay az - (1) Hn Hy Hz - (1)
vector operators de weitten abternis of
Cust H = AXH = I - (11)
T SHE - () SHE - SHE) as + (SHE - SHE) 2+ + () S(SHE) - SHE
Johns Que - Cylinderical - (VIII)
$\nabla x H = \frac{1}{r \sin \theta} \left(\frac{\partial \left(H_{\theta} \sin \theta \right)}{\partial \theta} - \frac{\partial H_{\theta}}{\partial \theta} \right) \frac{\partial}{\partial r} + \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial H_{r}}{\partial r} - \frac{\partial \left(\frac{r}{r} H_{\theta} \right)}{\partial r} \right)$
$\overline{a}_{\theta} + \frac{1}{r} \left(\frac{\delta(rH\theta)}{3r} - \frac{3Hr}{3\theta} \right) \overline{a}_{r}$ (SPherical)

gokes theorem => Analogous to divergence theorem in electrostatics, there enists stoke's theorem in magnetastatics. The stoke's theorem relates the line integral to 9 surgue integeral - Basically int is a mathematical meorem which is to be applied un magnetostatice, Stoke's theorem states that-"The line integral of a vector A around 9 closed Path L is Equal to the integral of curl of A overhappen surface s enclosed the closed both L" The theorem is applicable only when A and VXA are continuous on surjace s. Powof of Stoke's theorem => consider a surgace Studich is splitted into no. of interementa surfaces. Each incremental surjuce is having area as as shown in Jig (a) Total Junjace fig (6) applying deposition of the curl to any of these & H. dias (VXH)

where N= Normal to As according to sight hand tille dlys = Perimeter of the incremental surjuce As Now the curl by II is the normal direction is The dot Peroduct by chall by FI with an surface As (VXH)N = (VXH)· an using eq. 0 & FI. dLAS = (VXF). an AS : \$ F. di = (TXF) . DS To obtain the total cued for every inchemental surface, aid the closed like integerals for each As. Four Jig. (cet can be seen treat at a common boundary blow the two sheremental surfaces. The line integral is getting concelled as the boundary is getting traced on tur opposite directions. This happens for all the interior boundaries only at the Outside boundary concellation does not enist. Hence summation of all closed line integrals for each and every As ends up in a single closed line megeral to be obtained for the older boundary by the total surface s. Hence the eq. (11) become 19, HODE = [(VXH) .ds

The conducting triangular loop in Figure 6.6(a) carries a current of 10 A. Find H at (0, 0, 5) due to side 1 of the loop.

Solution:

This example illustrates how eq. (6.12) is applied to any straight, thin, current-carrying conductor. The key point to keep in mind in applying eq. (6.12) is figuring out α_1 , α_2 , ρ , and \mathbf{a}_{ϕ} . To find **H** at (0, 0, 5) due to side 1 of the loop in Figure 6.6(a), consider Figure 6.6(b), where side 1 is treated as a straight conductor. Notice that we join the point of interest (0, 0, 5) to the beginning and end of the line current. Observe that α_1 , α_2 , and ρ are assigned in the same manner as in Figure 6.5 on which eq. (6.12) is based:

$$\cos \alpha_1 = \cos 90^\circ = 0, \qquad \cos \alpha_2 = \frac{2}{\sqrt{29}}, \qquad \rho = 5$$

To determine \mathbf{a}_{ϕ} is often the hardest part of applying eq. (6.12). According to eq. (6.15), $\mathbf{a}_{\ell} = \mathbf{a}_{x}$ and $\mathbf{a}_{\rho} = \mathbf{a}_{z}$, so

$$\mathbf{a}_{\phi} = \mathbf{a}_{x} \times \mathbf{a}_{z} = -\mathbf{a}_{y}$$

Figure 6.6 For Example 6.1: (a) conducting triangular loop, (b) side 1 of the loop.

Hence,

$$\mathbf{H}_{1} = \frac{\mathbf{I}}{4\pi\rho} \cos \alpha = \cos \alpha_{1} \mathbf{a}_{\phi} = \frac{10}{4\pi(5)} \left(\frac{2}{\sqrt{29}} - 0 \right) (-\mathbf{a}_{y})$$

$$= -59.1 \mathbf{a}_{y} \text{ mA/m}$$

PRACTICE EXERCISE 6.1

Find H at (0, 0, 5) due to side 3 of the triangular loop in Figure 6.6(a).

Answer: $-30.63a_x + 30.63a_y \text{ mA/m}$.

EXAMPLE 6.3

A circular loop located on $x^2 + y^2 = 9$, z = 0 carries a direct current of 10 A along \mathbf{a}_{ϕ} . Determine **H** at (0, 0, 4) and (0, 0, -4).

Solution:

Consider the circular loop shown in Figure 6.8(a). The magnetic field intensity $d\mathbf{H}$ at point P(0, 0, h) contributed by current element $Id\mathbf{l}$ is given by Biot-Savart's law:

$$d\mathbf{H} = \frac{Id\mathbf{l} \times \mathbf{R}}{4\pi R^3}$$

where $d\mathbf{l} = \rho d\phi \mathbf{a}_{\phi}$, $\mathbf{R} = (0, 0, h) - (x, y, 0) = -\rho \mathbf{a}_{\rho} + h \mathbf{a}_{z}$, and

$$d\mathbf{l} \times \mathbf{R} = \begin{vmatrix} \mathbf{a}_{\rho} & \mathbf{a}_{\phi} & \mathbf{a}_{z} \\ 0 & \rho \, d\phi & 0 \\ -\rho & 0 & h \end{vmatrix} = \rho h \, d\phi \, \mathbf{a}_{\rho} + \rho^{2} \, d\phi \, \mathbf{a}_{z}$$

Hence.

$$d\mathbf{H} = \frac{I}{4\pi[\rho^2 + h^2]^{3/2}} (\rho h \, d\phi \, \mathbf{a}_{\rho} + \rho^2 \, d\phi \, \mathbf{a}_{z}) = dH_{\rho} \, \mathbf{a}_{\rho} + dH_{z} \, \mathbf{a}_{z}$$

Figure 6.8 (a) circular current loop, (b) flux lines due to the current loop.

By symmetry, the contributions along \mathbf{a}_{ρ} add up to zero because the radial components produced by current element pairs 180° apart cancel. This may also be shown mathematically by writing \mathbf{a}_{ρ} in rectangular coordinate systems (i.e., $\mathbf{a}_{\rho} = \cos \phi \, \mathbf{a}_x + \sin \phi \, \mathbf{a}_y$). Integrating $\cos \phi$ or $\sin \phi$ over $0 \le \phi \le 2\pi$ gives zero, thereby showing that $\mathbf{H}_{\rho} = 0$. Thus

$$\mathbf{H} = \int dH_z \, \mathbf{a}_z = \int_0^{2\pi} \frac{I\rho^2 \, d\phi \, \mathbf{a}_z}{4\pi [\rho^2 + h^2]^{3/2}} = \frac{I\rho^2 2\pi \mathbf{a}_z}{4\pi [\rho^2 + h^2]^{3/2}}$$

OF

$$\mathbf{H} = \frac{I\rho^2 \mathbf{a}_z}{2[\rho^2 + h^2]^{3/2}}$$

(a) Substituting I = 10 A, $\rho = 3$, h = 4 gives

$$\mathbf{H}(0,0,4) = \frac{10(3)^2 \mathbf{a}_z}{2[9+16]^{3/2}} = 0.36\mathbf{a}_z \text{ A/m}$$

(b) Notice from $d\mathbf{l} \times \mathbf{R}$ in the Biot-Savart law that if h is replaced by -h, the z-component of $d\mathbf{H}$ remains the same while the ρ -component still adds up to zero due to the axial symmetry of the loop. Hence

$$\mathbf{H}(0, 0, -4) = \mathbf{H}(0, 0, 4) = 0.36\mathbf{a}_z \, \text{A/m}$$

The flux lines due to the circular current loop are sketched in Figure 6.8(b).

A solenoid of length ℓ and radius a consists of N turns of wire carrying current I. Show that at point P along its axis,

$$\mathbf{H} = \frac{nI}{2}(\cos\theta_2 - \cos\theta_1)\mathbf{a}_z$$

where $n = N/\ell$, θ_1 and θ_2 are the angles subtended at P by the end turns as illustrated in Figure 6.9. Also show that if $\ell \gg a$, at the center of the solenoid,

$$\mathbf{H} = nI\mathbf{a}_z$$

Solution:

Consider the cross section of the solenoid as shown in Figure 6.9. Since the solenoid consists of circular loops, we apply the result of Example 6.3. The contribution to the magnetic field H at P by an element of the solenoid of length dz is

$$dH_z = \frac{I \, dl \, a^2}{2[a^2 + z^2]^{3/2}} = \frac{I a^2 n \, dz}{2[a^2 + z^2]^{3/2}}$$

where $dl = n dz = (N/\ell) dz$. From Figure 6.9, $\tan \theta = a/z$; that is,

$$dz = -a \csc^2 \theta \, d\theta = -\frac{\left[z^2 + a^2\right]^{3/2}}{a^2} \sin \theta \, d\theta$$

Figure 6.9 For Example 6.4; cross section of a solenoid.

Hence,

$$dH_z = -\frac{nI}{2}\sin\theta \ d\theta$$

or

$$H_z = -\frac{nI}{2} \int_{\theta_1}^{\theta_2} \sin \theta \ d\theta$$

Thus

$$\mathbf{H} = \frac{nI}{2} (\cos \theta_2 - \cos \theta_1) \mathbf{a}_z$$

as required. Substituting $n = N/\ell$ gives

$$\mathbf{H} = \frac{NI}{2\ell} (\cos \theta_2 - \cos \theta_1) \mathbf{a}_z$$

At the center of the solenoid,

$$\cos \theta_2 = \frac{\ell/2}{[a^2 + \ell^2/4]^{1/2}} = -\cos \theta_1$$

and

$$\mathbf{H} = \frac{In\ell}{2[a^2 + \ell^2/4]^{1/2}} \,\mathbf{a}_z$$

If $\ell \gg a$ or $\theta_2 \approx 0^\circ$, $\theta_1 \approx 180^\circ$,

$$\mathbf{H} = nI\mathbf{a}_z = \frac{NI}{\ell}\mathbf{a}_z$$

PRACTICE EXERCISE 6.4

The solenoid of Figure 6.9 has 2000 turns, a length of 75 cm, and a radius of 5 cm. If it carries a current of 50 mA along \mathbf{a}_{ϕ} , find \mathbf{H} at

- (a) (0, 0, 0)
- (b) (0, 0, 75 cm)
- (c) (0, 0, 50 cm)

Answer: (a) 66.52a_z A/m, (b) 66.52a_z A/m, (c) 131.7a_z A/m.

Manes z = 0 and z = 4 carry current $K = -10a_x$ A/m and $K = 10a_x$ A/m, respectively. Determine H at

Solution:

The parallel current sheets are shown in Figure 6.14. Let

$$H = H_o + H_4$$

where H_0 and H_4 are the contributions due to the current sheets z = 0 and z = 4, respectively. We make use of eq. (6.23).

(a) At (1, 1, 1), which is between the plates (0 < z = 1 < 4),

$$\mathbf{H}_{o} = 1/2 \,\mathbf{K} \times \mathbf{a}_{n} = 1/2 \,(-10\mathbf{a}_{x}) \times \mathbf{a}_{z} = 5\mathbf{a}_{y} \,\mathrm{A/m}$$

$$\mathbf{H}_4 = 1/2 \mathbf{K} \times \mathbf{a}_n = 1/2 (10\mathbf{a}_x) \times (-\mathbf{a}_z) = 5\mathbf{a}_y \, \text{A/m}$$

Hence,

$$\mathbf{H} = 10\mathbf{a}_{y} \,\mathrm{A/m}$$

(b) At (0, -3, 10), which is above the two sheets (z = 10 > 4 > 0),

$$H_0 = 1/2 (-10a_x) \times a_z = 5a_y A/m$$

$$\mathbf{H}_4 = 1/2 (10\mathbf{a}_x) \times \mathbf{a}_z = -5\mathbf{a}_y \, \text{A/m}$$

Hence,

$$\mathbf{H} = 0 \, \text{A/m}$$

PRACTICE EXERCISE 6.5

Plane y = 1 carries current K = 50a, mA/m. Find H at

(0, 0, 0)

(6) (1, 5, -3)

Answer: (a) $25a_x \text{ mA/m}$, (b) $-25a_x \text{ mA/m}$.

A toroid whose dimensions are shown in Figure 6.15 has N turns and carries current I. Determine H inside and outside the toroid.

Solution:

We apply Ampère's circuit law to the Amperian path, which is a circle of radius ρ shown dashed in Figure 6.15. Since N wires cut through this path each carrying current I, the net

Figure 6.15 For Example 6.6: a toroid with a circular cross section.

current enclosed by the Amperian path is NI. Hence,

$$\oint \mathbf{H} \cdot d\mathbf{I} = I_{enc} \to H \cdot 2\pi\rho = NI$$

or

$$H = \frac{NI}{2\pi\rho}, \quad \text{for } \rho_0 - a < \rho < \rho_0 + a$$

where ρ_0 is the mean radius of the toroid as shown in Figure 6.15. An approximate value of H is

$$H_{\rm approx} = \frac{NI}{2\pi\rho_{\rm o}} = \frac{NI}{\ell}$$

Notice that this is the same as the formula obtained for H for points well inside a very long solenoid $(\ell \gg a)$. Thus a straight solenoid may be regarded as a special toroidal coil for which $\rho \to \infty$. Outside the toroid, the current enclosed by an Amperian path is NI - NI = 0 and hence H = 0.

PRACTICE EXERCISE 6.6

A toroid of circular cross section whose center is at the origin and axis the same as the z-axis has 1000 turns with $\rho_0 = 10$ cm, a = 1 cm. If the toroid carries a 100 mA current, find |H| at

(3 cm, -4 cm, 0)

(b) (6 cm, 9 cm, 0)

Answer: (2) 0, (b) 147.1 A/m

Given the magnetic vector potential $A = -\rho^2/4$ a_c Wb/m, calculate the total magnetic flux crossing the surface $\phi = \pi/2$, $1 \le \rho \le 2$ m, $0 \le z \le 5$ m.

Solution:

We can solve this problem in two different ways: using eq. (6.32) or eq. (6.51).

Method 1:

$$\mathbf{B} = \nabla \times \mathbf{A} = -\frac{\partial A_z}{\partial \rho} \mathbf{a}_{\phi} = \frac{\rho}{2} \mathbf{a}_{\phi}, \qquad d\mathbf{S} = d\rho \, dz \, \mathbf{a}_{\phi}$$

Hence,

$$\Psi = \int \mathbf{B} \cdot d\mathbf{S} = \frac{1}{2} \int_{z=0}^{5} \int_{\rho=1}^{2} \rho \, d\rho \, dz = \frac{1}{4} \rho^{2} \Big|_{z}^{1} (5) = \frac{15}{4}$$

$$\Psi = 3.75 \text{ Wb}$$

Method 2:

We use

$$\Psi = \oint_{L} \mathbf{A} \cdot d\mathbf{l} = \Psi_{1} + \Psi_{2} + \Psi_{3} + \Psi_{4}$$

where L is the path bounding surface S; Ψ_1 , Ψ_2 , Ψ_3 , and Ψ_4 are, respectively, the evaluations of $\int \mathbf{A} \cdot d\mathbf{l}$ along the segments of L labeled 1 to 4 in Figure 6.20. Since A has only a z-component,

$$\Psi_1 = 0 = \Psi_3$$

Figure 6.20 For Example 6.7.

That is,

$$\Psi = \Psi_2 + \Psi_4 = -\frac{1}{4} \left[(1)^2 \int_0^5 dz + (2)^2 \int_5^0 dz \right]$$
$$= -\frac{1}{4} (1 - 4)(5) = \frac{15}{4}$$
$$= 3.75 \text{ Wb}$$

as obtained by Method 1. Note that the direction of the path L must agree with that of dS.

PRACTICE EXERCISE 6.7

A current distribution gives rise to the vector magnetic potential $\mathbf{A} = x^2 y \mathbf{a}_x + y^2 x \mathbf{a}_y - 4xyz \mathbf{a}_z$ Wb/m. Calculate the following:

- (a) **B** at (-1, 2, 5)
- (b) The flux through the surface defined by $z = 1, 0 \le x \le 1, -1 \le y \le 4$

Answer: (a) $20a_x + 40a_y + 3a_z$ Wb/m², (b) 20 Wb.

XAMPLE 7.3

charged particle moves with a uniform velocity 4a, m/s in a region where $E = 20 a_y \text{ V/m}$ and $B = B_0 a_z \text{ Wb/m}^2$. Determine B_0 such that the velocity of the particle remains constant.

Solution:

If the particle moves with a constant velocity, it is implied that its acceleration is zero. In other words, the particle experiences no net force. Hence,

$$0 = \mathbf{F} = m\mathbf{a} = Q (\mathbf{E} + \mathbf{u} \times \mathbf{B})$$
$$0 = Q (20\mathbf{a}_y + 4\mathbf{a}_x \times B_o \mathbf{a}_z)$$

or

$$-20\mathbf{a}_y = -4B_o\mathbf{a}_y$$

Thus $B_0 = 5$.

This example illustrates an important principle employed in a velocity filter shown in Figure 7.3. In this application, E, B, and u are mutually perpendicular so that Qu × B is directed opposite to QE, regardless of the sign of the charge. When the magnitudes of the two vectors are equal,

$$QuB = QE$$

$$u = \frac{E}{B}$$

This is the required (critical) speed to balance out the two parts of the Lorentz force. Particles with this speed are undeflected by the fields; they are "filtered" through the aperture. Particles with other speeds are deflected down or up, depending on whether their speeds are greater or less than this critical speed.

Figure 7.3 A velocity filter for charged particles,

Solution:

The equation of a plane is given by Ax + By + Cz + D = 0, where $D = -(A^2 + B^2 + C^2)$. Since points (2, 0, 0), (0, 2, 0), and (0, 0, 2) lie on the plane, these points must satisfy the equation of the plane, and the constants A, B, C, and D can be determined. Doing this gives x + y + z = 2 as the plane on which the loop lies. Thus we can use

$$m = ISa_n$$

where

$$S = \text{loop area} = \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} (2\sqrt{2})(2\sqrt{2})\sin 60^{\circ}$$

= $4 \sin 60^{\circ}$

If we define the plane surface by a function

$$f(x, y, z) = x + y + z - 2 = 0$$

$$\mathbf{a}_n = \pm \frac{\nabla f}{|\nabla f|} = \pm \frac{(\mathbf{a}_x + \mathbf{a}_y + \mathbf{a}_z)}{\sqrt{3}}$$

We choose the plus sign in view of the direction of the current in the loop (using the right-hand rule, m is directed as in Figure 7.9). Hence

$$\mathbf{m} = 5(4 \sin 60^{\circ}) \frac{(\mathbf{a}_x + \mathbf{a}_y + \mathbf{a}_z)}{\sqrt{3}}$$
$$= 10(\mathbf{a}_x + \mathbf{a}_y + \mathbf{a}_z) \, \mathbf{A} \cdot \mathbf{m}^2$$

PRACTICE EXERCISE 7.5

A rectangular coil of area 10 cm^2 carrying current of 50 A lies on plane 2x + 6y - 3z = 7 such that the magnetic moment of the coil is directed away from the origin. Calculate its magnetic moment.

Answer: $(1.429a_x + 4.286a_y - 2.143a_z) \times 10^{-2} \text{ A} \cdot \text{m}^2$.

AMPLE 7.6

A small current loop L_1 with magnetic moment $5\mathbf{a}_z$ A · m² is located at the origin while another small loop current L_2 with magnetic moment $3\mathbf{a}_y$ A · m² is located at (4, -3, 10). Determine the torque on L_2 .

Solution:

The torque T_2 on the loop L_2 is due to the field B_1 produced by loop L_1 . Hence,

$$\mathbf{T}_2 = \mathbf{m}_2 \times \mathbf{B}_1$$

Since \mathbf{m}_1 for loop L_1 is along \mathbf{a}_2 , we find \mathbf{B}_1 using eq. (7.22):

$$\mathbf{B}_1 = \frac{\mu_0 m_1}{4\pi r^3} (2\cos\theta \, \mathbf{a}_r + \sin\theta \, \mathbf{a}_\theta)$$

Using eq. (1.23), we transform m_2 from Cartesian to spherical coordinates:

$$\mathbf{m}_2 = 3\mathbf{a}_y = 3(\sin\theta\sin\phi\,\mathbf{a}_r + \cos\theta\sin\phi\,\mathbf{a}_\theta + \cos\phi\,\mathbf{a}_\phi)$$

At (4, -3, 10),

$$r = \sqrt{4^2 + (-3)^2 + 10^2} = 5\sqrt{5}$$

$$\tan \theta = \frac{\rho}{z} = \frac{5}{10} = \frac{1}{2} \to \sin \theta = \frac{1}{\sqrt{5}}, \quad \cos \theta = \frac{2}{\sqrt{5}}$$

$$\tan \phi = \frac{y}{x} = \frac{-3}{4} \to \sin \phi = \frac{-3}{5}, \quad \cos \phi = \frac{4}{5}$$

Hence,

$$\mathbf{B}_{1} = \frac{4\pi \times 10^{-7} \times 5}{4\pi \cdot 625 \sqrt{5}} \left(\frac{4}{\sqrt{5}} \, \mathbf{a}_{r} + \frac{1}{\sqrt{5}} \, \mathbf{a}_{\theta} \right)$$
$$= \frac{10^{-7}}{625} (4\mathbf{a}_{r} + \mathbf{a}_{\theta})$$
$$\mathbf{m}_{2} = 3 \left[-\frac{3\mathbf{a}_{r}}{5\sqrt{5}} - \frac{6\mathbf{a}_{\theta}}{5\sqrt{5}} + \frac{4\mathbf{a}_{\phi}}{5} \right]$$

and

$$\mathbf{T} = \frac{10^{-7} (3)}{625 (5\sqrt{5})} (-3\mathbf{a}_r - 6\mathbf{a}_\theta + 4\sqrt{5}\mathbf{a}_\phi) \times (4\mathbf{a}_r + \mathbf{a}_\phi)$$

$$= 4.293 \times 10^{-11} (-8.944\mathbf{a}_r + 35.777\mathbf{a}_\theta + 21\mathbf{a}_\phi)$$

$$= -0.384\mathbf{a}_r + 1.536\mathbf{a}_\theta + 0.9015\mathbf{a}_\phi \text{ nN} \cdot \text{m}$$

PRACTICE EXERCISE 7.6

The coil of Practice Exercise 7.5 is surrounded by a uniform field $0.6a_x + 0.4a_y + 0.5a_z$ Wb/m².

- (a) Find the torque on the coil.
- (b) Show that the torque on the coil is maximum if placed on plane $2x 8y + 4z = \sqrt{84}$, Calculate the magnitude of the maximum torque.

Answer: (a) $0.03a_x - 0.02a_y - 0.02a_z N \cdot m$, (b) $0.0439 N \cdot m$.

EXAMPLE 7.7

Given that $\mathbf{H}_1 = -2\mathbf{a}_x + 6\mathbf{a}_y + 4\mathbf{a}_z$ A/m in region $y - x - 2 \le 0$, where $\mu_1 = 5\mu_0$, calculate

- (a) M₁ and B₁
- (b) \mathbf{H}_2 and \mathbf{B}_2 in region $y x 2 \ge 0$, where $\mu_2 = 2\mu_0$

Solution:

Since y - x - 2 = 0 is a plane, $y - x \le 2$ or $y \le x + 2$ is region 1 in Figure 7.14. A point in this region may be used to confirm this. For example, the origin (0, 0) is in this region because 0 - 0 - 2 < 0. If we let the surface of the plane be described by f(x, y) = y - x - 2, a unit vector normal to the plane is given by

$$\mathbf{a}_n = \frac{\nabla f}{|\nabla f|} = \frac{\mathbf{a}_y - \mathbf{a}_x}{\sqrt{2}}$$

(a)
$$\mathbf{M}_{1} = \chi_{m1}\mathbf{H}_{1} = (\mu_{r1} - 1)\mathbf{H}_{1} = (5 - 1)(-2, 6, 4)$$

$$= -8\mathbf{a}_{x} + 24\mathbf{a}_{y} + 16\mathbf{a}_{z}\mathbf{A/m}$$

$$\mathbf{B}_{1} = \mu_{1}\mathbf{H}_{1} = \mu_{0}\mu_{r1}\mathbf{H}_{1} = 4\pi \times 10^{-7}(5)(-2, 6, 4)$$

$$= -12.57\mathbf{a}_{x} + 37.7\mathbf{a}_{y} + 25.13\mathbf{a}_{z}\mu\mathbf{Wb/m}^{2}$$

Figure 7.14 For Example 7.8.

(b)
$$\mathbf{H}_{1n} = (\mathbf{H}_1 \cdot \mathbf{a}_n) \mathbf{a}_n = \left[(-2, 6, 4) \cdot \frac{(-1, 1, 0)}{\sqrt{2}} \right] \frac{(-1, 1, 0)}{\sqrt{2}}$$

= $-4\mathbf{a}_x + 4\mathbf{a}_y$

But

$$\mathbf{H}_1 = \mathbf{H}_{1n} + \mathbf{H}_{1t}$$

Hence,

$$\mathbf{H}_{1t} = \mathbf{H}_1 - \mathbf{H}_{1n} = (-2, 6, 4) - (-4, 4, 0)$$

= $2\mathbf{a}_x + 2\mathbf{a}_y + 4\mathbf{a}_z$

Using the boundary conditions, we have

$$\mathbf{H}_{2t} = \mathbf{H}_{1t} = 2\mathbf{a}_x + 2\mathbf{a}_y + 4\mathbf{a}_z$$

 $\mathbf{B}_{2n} = \mathbf{B}_{1n} \to \mu_2 \mathbf{H}_{2n} = \mu_1 \mathbf{H}_{1n}$

or

$$\mathbf{H}_{2n} = \frac{\mu_1}{\mu_2} \mathbf{H}_{1n} = \frac{5}{2} (-4\mathbf{a}_x + 4\mathbf{a}_y) = -10\mathbf{a}_x + 10\mathbf{a}_y$$

Thus

$$\mathbf{H}_2 = \mathbf{H}_{2n} + \mathbf{H}_{2t} = -8\mathbf{a}_x + 12\mathbf{a}_y + 4\mathbf{a}_z \,\text{A/m}$$

and

$$\mathbf{B}_2 = \mu_2 \mathbf{H}_2 = \mu_0 \mu_{r2} \mathbf{H}_2 = (4\pi \times 10^{-7})(2)(-8, 12, 4)$$
$$= -20.11 \mathbf{a}_x + 30.16 \mathbf{a}_y + 10.05 \mathbf{a}_z \,\mu \,\text{Wb/m}^2$$

PRACTICE EXERCISE 7.7

Region 1, described by $3x + 4y \ge 10$, is free space, whereas region 2, described by $3x + 4y \le 10$, is a magnetic material for which $\mu \approx 10\mu_0$. Assuming that the boundary between the material and free space is current free, find B_2 if $B_1 = 0.1a_x + 0.4a_y + 0.2a_z$ Wb/m².

Answer: $-1.052a_x + 1.264a_y + 2a_z \text{ Wb/m}^2$.

EXAMPLE 7.8

The xy-plane serves as the interface between two different media. Medium 1 (z < 0) is filled with a material whose $\mu_r = 6$, and medium 2 (z > 0) is filled with a material whose $\mu_r = 4$. If the interface carries current ($1/\mu_0$) a_y mA/m, and $B_2 = 5a_x + 8a_z$ mWb/m, find H_1 and H_2 .

Solution:

In Example 7.7, $\mathbf{K} = 0$, so eq. (7.46) was appropriate. In this example, however, $\mathbf{K} \neq 0$, and we must resort to eq. (7.45) in addition to eq. (7.41). Consider the problem as illustrated in Figure 7.15. Let $\mathbf{B}_1 = (B_x, B_y, B_z)$ in mWb/m².

$$\mathbf{B}_{1n} = \mathbf{B}_{2n} = 8\mathbf{a}_z \to B_z = 8 \tag{7.9.1}$$

But

$$\mathbf{H}_2 = \frac{\mathbf{B}_2}{\mu_2} = \frac{1}{4\mu_0} (5\mathbf{a}_x + 8\mathbf{a}_z) \text{ mA/m}$$
 (7.9.2)

and

$$\mathbf{H}_{1} = \frac{\mathbf{B}_{1}}{\mu_{1}} = \frac{1}{6\mu_{0}} (B_{x}\mathbf{a}_{x} + B_{y}\mathbf{a}_{y} + B_{z}\mathbf{a}_{z}) \text{ mA/m}$$
 (7.9.3)

Having found the normal components, we can find the tangential components by using

$$(\mathbf{H}_1 - \mathbf{H}_2) \times \mathbf{a}_{n12} = \mathbf{K}$$

or

$$\mathbf{H}_1 \times \mathbf{a}_{n12} = \mathbf{H}_2 \times \mathbf{a}_{n12} + \mathbf{K}$$
 (7.9.4)

Substituting eqs. (7.9.2) and (7.9.3) into eq. (7.9.4) gives

$$\frac{1}{6\mu_o}(B_x\mathbf{a}_x + B_y\mathbf{a}_y + B_z\mathbf{a}_z) \times \mathbf{a}_z = \frac{1}{4\mu_o}(5\mathbf{a}_x + 8\mathbf{a}_z) \times \mathbf{a}_z + \frac{1}{\mu_o}\mathbf{a}_y$$

Equating components yields

$$B_y = 0$$
, $\frac{-B_x}{6} = \frac{-5}{4} + 1$, or $B_x = \frac{6}{4} = 1.5$ (7.9.5)

From eqs. (7.9.1) and (7.9.5), we have

$$\mathbf{B}_1 = 1.5\mathbf{a}_x + 8\mathbf{a}_z \text{ mWb/m}^2$$

$$\mathbf{H}_1 = \frac{\mathbf{B}_1}{\mu_1} = \frac{1}{\mu_0} (0.25\mathbf{a}_x + 1.33\mathbf{a}_z) \text{ mA/m}$$

Figure 7.15 For Example 7.9.

and

$$\mathbf{H}_2 = \frac{1}{\mu_0} (1.25\mathbf{a}_x + 2\mathbf{a}_z) \,\text{mA/m}$$

Note that H_{1x} is $1/\mu_0$ mA/m less than H_{2x} because of the current sheet and also that $B_{1n} = B_{2n}$.

PRACTICE EXERCISE 7.8

A unit normal vector from region 2 ($\mu = 2\mu_0$) to region 1 ($\mu = \mu_0$) is $\mathbf{a}_{x21} = (6\mathbf{a}_x + 2\mathbf{a}_y - 3\mathbf{a}_z)/7$. If $\mathbf{H}_1 = 10\mathbf{a}_x + \mathbf{a}_y + 12\mathbf{a}_z$ A/m and $\mathbf{H}_2 = H_{2x}\mathbf{a}_x - 5\mathbf{a}_y + 4\mathbf{a}_z$ A/m, determine

- (a) H_{2x}
- (b) The surface current density K on the interface
- (c) The angles B_1 and B_2 make with the normal to the interface

Answer: (a) 5.833, (b) $4.86a_x - 8.64a_y + 3.95a_z$ A/m, (c) 76.27° , 77.62° .

EXAMPLE 7.9

Calculate the self-inductance per unit length of an infinitely long solenoid.

Solution:

We recall from Example 6.4 that for an infinitely long solenoid, the magnetic flux inside the solenoid per unit length is

$$B = \mu H = \mu In$$

where $n = N/\ell =$ number of turns per unit length. If S is the cross-sectional area of the solenoid, the total flux through the cross section is

$$\Psi = BS = \mu InS$$

Since this flux is only for a unit length of the solenoid, the linkage per unit length is

$$\lambda' = \frac{\lambda}{\ell} = n\Psi = \mu n^2 IS$$

and thus the inductance per unit length is

$$L' = \frac{L}{\ell} = \frac{\lambda'}{I} = \mu n^2 S$$

$$L' = \mu n^2 S$$
 H/m

PRACTICE EXERCISE 7.9

A very long solenoid with 2 \times 2 cm cross section has an iron core ($\mu_r = 1000$) and 4000 turns per meter. It carries a current of 500 mA. Find the following:

- (a) Its self-inductance per meter
- (b) The energy per meter stored in its field

Answer: (a) 8.042 H/m, (b) 1.005 J/m.

Determine the self-inductance of a coaxial cable of inner radius a and outer radius b.

Solution:

The self-inductance of the inductor can be found in two different ways: by taking the four steps given in Section 7.8 or by using eqs. (7.54) and (7.66).

Method 1: Consider the cross section of the cable as shown in Figure 7.19. We recall from eq. (6.29) that by applying Ampère's circuit law, we obtained for region $1 (0 \le \rho \le a)$,

$$\mathbf{B}_1 = \frac{\mu I \rho}{2\pi a^2} \, \mathbf{a}_{\phi}$$

and for region 2 $(a \le \rho \le b)$,

$$\mathbf{B}_2 = \frac{\mu I}{2\pi\rho} \, \mathbf{a}_{\phi}$$

We first find the internal inductance L_{in} by considering the flux linkages due to the inner conductor. From Figure 7.22(a), the flux leaving a differential shell of thickness $d\rho$ is

$$d\Psi_1 = B_1 d\rho dz = \frac{\mu I \rho}{2\pi a^2} d\rho dz$$

The flux linkage is $d\Psi_1$ multiplied by the ratio of the area within the path enclosing the flux to the total area, that is,

$$d\lambda_1 = d\Psi_1 \cdot \frac{I_{\text{enc}}}{I} = d\Psi_1 \cdot \frac{\pi \rho^2}{\pi a^2}$$

because I is uniformly distributed over the cross section for dc excitation. Thus, the total flux linkages within the differential flux element are

$$d\lambda_1 = \frac{\mu I \rho \ d\rho \ dz}{2\pi a^2} \cdot \frac{\rho^2}{a^2}$$

Figure 7.19 Cross section of the coaxial cable: (a) for region 1, $0 < \rho < a$, (b) for region 2, $a < \rho < b$; for Example 7.10.

For length ℓ of the cable,

$$\lambda_{1} = \int_{\rho=0}^{a} \int_{z=0}^{\ell} \frac{\mu I \rho^{3} d\rho dz}{2\pi a^{4}} = \frac{\mu I \ell}{8\pi}$$

$$L_{\text{in}} = \frac{\lambda_{1}}{I} = \frac{\mu \ell}{8\pi}$$
(7.11.1)

The internal inductance per unit length, given by

$$L'_{\rm in} = \frac{L_{\rm in}}{\ell} = \frac{\mu}{8\pi}$$
 H/m (7.11.2)

is independent of the radius of the conductor or wire. Thus eqs. (7.11.1) and (7.11.2) are also applicable to finding the inductance of any infinitely long straight conductor of finite radius.

We now determine the external inductance L_{ext} by considering the flux linkages between the inner and the outer conductor as in Figure 7.19(b). For a differential shell of thickness $d\rho$,

$$d\Psi_2 = B_2 \, d\rho \, dz = \frac{\mu I}{2\pi\rho} \, d\rho \, dz$$

In this case, the total current I is enclosed within the path enclosing the flux. Hence,

$$\lambda_2 = \Psi_2 = \int_{\rho=a}^b \int_{z=0}^\ell \frac{\mu I \, d\rho \, dz}{2\pi \rho} = \frac{\mu I \ell}{2\pi} \ln \frac{b}{a}$$

$$L_{\text{ext}} = \frac{\lambda_2}{I} = \frac{\mu \ell}{2\pi} \ln \frac{b}{a}$$

Thus

$$L = L_{in} + L_{ext} = \frac{\mu \ell}{2\pi} \left[\frac{1}{4} + \ln \frac{b}{a} \right]$$

or the inductance per length is

$$L' = \frac{L}{\ell} = \frac{\mu}{2\pi} \left[\frac{1}{4} + \ln \frac{b}{a} \right]$$
 H/m

Method 2: It is easier to use eqs. (7.54) and (7.66) to determine L, that is,

where

$$W_m = \frac{1}{2} L I^2 \qquad \text{or} \qquad L = \frac{2W_m}{I^2}$$

$$W_m = \frac{1}{2} \int \mathbf{B} \cdot \mathbf{H} \, dv = \int \frac{B^2}{2\mu} \, dv$$

Hence

$$L_{\text{in}} = \frac{2}{I^2} \int \frac{B_1^2}{2\mu} dv = \frac{1}{I^2 \mu} \iiint \frac{\mu^2 I^2 \rho^2}{4\pi^2 a^4} \rho \, d\rho \, d\phi \, dz$$

$$= \frac{\mu}{4\pi^2 a^4} \int_0^{\ell} dz \int_0^{2\pi} d\phi \int_0^a \rho^3 \, d\rho = \frac{\mu \ell}{8\pi}$$

$$L_{\text{ext}} = \frac{2}{I^2} \int \frac{B_2^2}{2\mu} \, dv = \frac{1}{I^2 \mu} \iiint \frac{\mu^2 I^2}{4\pi^2 \rho^2} \rho \, d\rho \, d\phi \, dz$$

$$= \frac{\mu}{4\pi^2} \int_0^{\ell} dz \int_0^{2\pi} d\phi \int_a^b \frac{d\rho}{\rho} = \frac{\mu \ell}{2\pi} \ln \frac{b}{a}$$

and

$$L = L_{\rm in} + L_{\rm ext} = \frac{\mu\ell}{2\pi} \left[\frac{1}{4} + \ln\frac{b}{a} \right]$$

as obtained previously.

PRACTICE EXERCISE 7.10

Calculate the self-inductance of the coaxial cable of Example 7.10 if the space between the line conductor and the outer conductor is made of an inhomogeneous material having $\mu = 2\mu_0/(1 + \rho)$.

Answer:
$$\frac{\mu_0 \ell}{8\pi} + \frac{\mu_0 \ell}{\pi} \left[\ln \frac{b}{a} - \ln \frac{(1+b)}{(1+a)} \right].$$

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE DEPARTMENT OF ELECTRICAL ENGINEERING

REFERENCES

- Engineering Electromagnetic by william H. Hayt, Jr. John A. Buck
- Principals of Electromagnetics by Matthew N. O. Sadiku.
- CBS problems and solution series (Problems and solution of Engineering Electromagnetics).
- https://nptel.ac.in/courses/108/106/108106073/
- https://nptel.ac.in/courses/117/103/117103065/

