JECRC Fou;\dation JEER[

JAIPUR ENGINEERING COLLEGE
AND RESEARCH CENTRE

JAIPUR ENGINEERING COLLEGE AND RESEARCH CENTRE

Year & Sem - B.Tech Il year, sem- Il|
Subject - Electromagnetic Fields

Unit - 11

Presented by - Ms. Ritu Soni
Designation - Assistant Professor
Department- Electrical Engineering

Ritu Soni ( Assistant Professor, EE ), JECRC, JAIPUR




Vision and Mission of Institute

Vision of institute

To become a renowned centre of outcome based learning, and work towards,
professional, cultural and social enrichment of the lives of individuals and
communities.

Mission of Institute

M1.Focus on evaluation of learning outcomes and motivate students to inculcate
research aptitude by project based learning.

M?2.ldentify ,based on informed perception of Indian, regional and global needs, the
areas of focus and provide platform to gain knowledge and solutions.

M3.Offer opportunities for interaction between academia and industry.

M4.Develop human potential to its fullest extent so that intellectually capable and
Imaginatively gifted leaders may emerge in a range of professions



Vision and Mission of Electrical Engineering Department

Vision of department
he Electrical Engineering department strives to recognized globally for

outcome based technical knowledge and produce quality human being who can
manage the advance technologies and contribute to society.

Mission Of department
M1. To impart quality technical knowledge to the learners to make them globally

competitive Electrical Engineers.
M?2. To provide the learners ethical guidelines along with excellent academic

environment for a long productive career.
M3. To promote Industry- institute relationship.
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Syllabus of Electromagnetic fields

unit 1- Review of Vector Calculus

Vector algebra- addition, subtraction, components of vectors, scalar and vector multiplications,
triple products, three orthogonal coordinate systems (rectangular, cylindrical and spherical).
Vector calculus differentiation, partial differentiation, integration, vector operator del,
gradient, divergence and curl; integral theorems of vectors. Conversion of a vector from one
coordinate system to another.

Unit 2- Static Electric Field

Coulomb’s law, Electric field intensity, Electrical field due to point charges. Line, Surface and
Volume charge distributions. Gauss law and its applications. Absolute Electric potential,
Potential difference, Calculation of potential differences for different configurations. Electric
dipole, Electrostatic Energy and Energy density.

Unit 3- Conductors, Dielectrics and Capacitance

Current and current density, Ohms Law In Point form, Continuity of current, Boundary
conditions of perfect dielectric materials. Permittivity of dielectric materials, Capacitance,
Capacitance of a two wire line, Poisson’s equation, Laplace’s equation, Solution of Laplace and
Poisson’s equation, Application of Laplace’s and Poisson’s equations.



unit 4- Static Magnetic Fields

Biot-Savart Law, Ampere Law, Magnetic flux and magnetic flux density, Scalar and Vector Magnetic
potentials. Steady magnetic fields produced by current carrying conductors.

Unit5- Magnetic Forces, Materials and Inductance

Force on a moving charge, Force on a differential current element, Force between differential current
elements, Nature of magnetic materials, Magnetization and permeability, Magnetic boundary
conditions, Magnetic circuits, inductances and mutual inductances.

Unit 6- Time Varying Fields and Maxwell’s Equations

Faraday’s law for Electromagnetic induction, Displacement current, Point form of Maxwell’s
equation, Integral form of Maxwell’s equations, Motional Electromotive forces. Boundary Conditions.
Unit 7- Electromagnetic Waves

Derivation of Wave Equation, Uniform Plane Waves, Maxwell’s equation in Phasor form, Wave
equation In Phasor form, Plane waves in free space and in a homogenous material. Wave equation for a
conducting medium, Plane waves in lossy dielectrics, Propagation in good conductors, Skin effect.
Poynting theorem.




Course outcomes for Electromagnetic fields

CO1-Acquire basic understanding of vectors , their representation and conversion In
different coordinate systems.

CO2-Able to compute the force, fields & energy of the electrostatic & magneto static
fields. Able to analyze the materials, conductors, dielectrics, inductances and
capacitances.

CO3-Understand the concept of time varying field and able to solve electromagnetic
relation using Maxwell equations. Also able to analyze the electromagnetic waves.




Unit 1l Static Electric field

Ritu Soni ( Assistant Professor, EE ), JECRC, JAIPUR



Coulomb’s Law
The Coulomb'’s law states that force between the two point charges Q, and Q,,
1. Acts along the line joining the two point charges.
2. Is directly proportional to the product (Q,Q,) of the two charges.

3. Is inversely proportional to the square of the distance between them.

Consider the two point charges Q; and Q, as

shown in the Fig. separated by the distance R. The
charge Q, exerts a force on Q, while Q, also exerts a

01 Qz force on Q,. The force acts along the line joining Q,
L Gnambhebtl et -9 and Q,. The force exerted between them is repulsive
I"—R—"i if the charges are of same polarity while it is attractive

if the charges are of different polarity.

Mathematically the force F between the charges can be expressed as,

o Q,0:

F =32




where Q; Q-
R

Product of the two charges

Distance between the two charges

The Coulomb’s iaw also states that this force depends on the medium in which the
point charges are located. The effect of medium is introduced in the equation of force as a
constant of proportionality denoted as k.

F = ka2
RZ

where k = Constant of proportionality




Constant of proportionality K

The constant of proportionality takes into account the effect of medium, in which
charges are located. In the International System of Units (SI), the charges Q, and Q, are
expressed in Coulombs (C), the distance R in metres (m) and the force F in newtons (N).
Then to satisfy Coulomb's law, the constant of proportionality is defined as,

1
k 4KE

where € = Permittivity of the medium in which charges are located

The units of € are farads/metre (F/m).

In general £ is expressed as, where €

Permittivity of the free space or vacuum

m
"
!

Relative permittivity or dielectric constant of the
£ = E OEr medium with respect to free space

€ = Absolute permittivity



For the free space or vacuum, the relative permittivity €, =1, hence

E = Eo
. F - 1 Q-
- 4rne, R?2

The value of permittivity of free space g, is,

1 9 _ ~12
1 1

RS k

4TEg  47mx 8.854x10 12 =8.98x107 =9>10% m/F
0 -

Hence the Coulomb’s law can be expressed as,

F = Q.0

"~ 4ney R?2

This is the force between the two point charges located in free space or vacuum.

Ritu Soni ( Assistant Professor, EE ), JECRC, JAIPUR
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Vector Form of coulomb's Law

The force exerted between the two point charges has a fixed direction which is a
straight line joining the two charges. Hence the force exerted between the two charges can
be expressed in a vector form.

Consider the two point charges Q, and Q, located at the points having position
vectors 1; and 1, as shown in the Fig.

Then the force exerted by Q; on Q, acts along the direction Ri where a,, is unit
vector along Riz. Hence the force in the vector form can be expressed as,

E = _9_1.9_2_"3'12

2 F 4
4mELRy; Origing?




_ — Vector

where a;, = Unit vector along R,, = Magnitude of vector
iy, = Ry, _Tp—r — I, —n
| Rlzl I R-lzl Irl —Ih I
where ’ _I'ilzl = R = distance between the two charges

The following observations are important :
1. As shown in the Fig. the force F is the force exerted on Q; due to Q,. It can be expressed as,

E, Q;Q, = Q,Q, v I -1,

4negR3, "7 dnegRy | -5
ay = -2p |
£ _QQ, (&, )=—Fa Hence force exerted by the two charges on each other is equal but opposite in

4ne R3, direction.



2. The like charges repel each other while the unlike charges attract each other.

These are experiement conclusions though not reflected in the mathematical expression.

3. It is necessary that the two charges are the point charges and stationary in nature.

4. The two point charges may be positive or negative. Hence their signs must be
considered

5. The Coulomb's law is linear which shows that if any one charge is increased 'n’
times then the force exerted also increass by n times.

F» = -Fi then nF2=-nF

where n = Scalar

It Is also true that the force on a charge In the presence of several other charges is
the sum of the forces on that charge due to each of the other charges acting alone.



Example A charge O, =—20 uC is located at P (— 6, 4, 6) and a charge Q, =50 uC

is located at R (5, 8, — 2) in a free space. Find the force exerted on Q, by Q, in vector form.
The distances given are in metres.

Solution : From the co-ordinates of P and R , the respective position vectors are —

P = —6a, +4a, +64a, R = 5a, +8a, —2a,

The force on Q, is given by,

Fo = % 5,
dnegR),
R = Rer =R-P=I5-(-6)] 7, +8-9) a, +[-2-(6)3, ]

=11a, +4a, -84,

IR, = ()2 +(4)? +(-8)? =14.1774

i Ruz =11i‘l_x +4a, -8a, _ 0.7758 a, +0.2821 a, -0.5642 a,
7 Ryl 14.1774 h



_ —20x 1074 x50%107°
41t 8.854x107*“ % (14.1774)

—0.0447[0.7758 @, +0.2821 &, —0.5642 &, ]
~0.0346 @, —0.01261 @, +0.02522 &, N

This is the required force exerted on Q, by Q;.
The magnitude of the force is,

[F2| = 4/(0.0346)2 +(0.01261)" +(-0.02522)" =44.634 mN



Electric field intensity

Consider a point charge Q, as shown in Fig. (a)

1 < =
" 3 y
x; | . B
i o .
~ L N t e .
= A T
L “ | >
“ P ﬁ-.-'
H.nn_-m--m-n-l—bu—*
In F “
> 01 o ! “
¥ F -} \‘ i
h: {_ f' ! . T
A ’ = .1 - \ . {E.
L . 1 -
LU L4 1 ERl
oL -

If any other similar charge Q, is brought near it, Q, experiences a force. Infact if Q,

is moved around Q,, still Q, experiences a force as shown in the Fig. {a)



Thus there exists a region around a charge in which it exerts a force on any other
charge. This region where a particular charge exerts a force on any other charge located in
that region is called electric field of that charge. The electric field of Q; is shown in the
Fig- (b)

The force experienced by the charge Q, due to Q, is given by Coulomb'’s law as,

Fz = 4Ql(12{2,, a;,
neg Ry _
o F2 _ _Q g
Thus force per unit charge can be written as, Q, =~ 4re,RZ, * ~ @

This force exerted per unit charge is called electric field intensity or electric field
strength. It is a vector quantity and is directed along a segment from the charge Q, to the
position of any other charge. It is denoted as E

E —] ____9.1_5_.51? e (2)
4na(,R,P |



where p = Position of any other charge around Q,

The equation (2) is the electric field intensity due to a single point charge Q, in a free
space or vacuum.

Another definition of electric field intensity is the force experienced by a unit positive
test charge 1.e. Q, = 1C.

Consider a charge Q; as shown in the Fig. The unit positive charge Q, = 1C is
placed at a distance R from Q,. Then the force acting on Q, due to Q, is along the unit
vector ag. As the charge Q, is unit charge, the force exerted on Q, is nothing but electric
field intensity E of Q, at the point where unit charge is placed.

Qi -

E = a
4ne,R?

R




Consider n charges Q,, Q, ... Q,, as shown in the Fig. The combined electric field

intensity is to be obtained at point P.

Q,
Q,
ag2
Q3 s E
a3 Ra
R4
Q4 a Eﬂn
R4 o

E due to n number of charges




the total electric field intensity at point P is the vector sum of the individual field
intensities produced by the various charges at the point P.

E = E, +E, +E; +....+ E_
Q — Q _ Q _
- 4 1 > 1 -+ 2 2 R2 +...+ n 5 Rn
nEG Ry 4drtgg R3 dmey Ry
-1 & Q,
E = 471te, ; R2 < Ri
) B
g = =
|I'p—1'l|
where rp = Position vector of point P

i
I

Position vector of point where charge Q; is placed.




Units of E

The definition of electric field intensity is,

Force _(N)Newtons

£ = Unit charge  (C) Coulomb

Hence units of E is N/C. But the electric potential has units J/C i.e. Nm/C and hence

E is also measured in units V/m (volts per metre). This unit is used practically to express
E



Example Determine the electric field intensity at P(- 0.2, 0, — 2.3) m due to a point
charge of +5 nC at (0.2, 0.1, — 2.5) m in air.

Solution : E = Q Ag
are o R*

Ap -_-_ﬁ__Q"

| Rop|

S,

T-o
P-Q = (-02-02)a, +(0-01)a, +[23—-(-25)]a,

= —04a, —0la, +02a,
—04a, —0l1lay, +02a,

J(—04)% +(01)? +(0.2)?

aR=_

—04a, —01a, +02a,
0.45825 '




—0.8728a, —0.2182a, +04364a,
R = [P-Q|= 045825

. -9
47 8.854% 1012 x (0.45825)

Substituting value of ag,

E = -186.779a, —46.694 a y +93.389 a, V/m

This is electric field intensity at point P.




Example A charge of 1 C is at (2, 0, 0). What charge must be placed at (- 2, 0, 0)
which will make y component of total E zero at the point (1, 2, 2) ?

Solution :

The position vectors of points A, B and P are,

A — z-a_x P §=—25,‘

. P = 5,‘ +2¢=:i-3_r +25= Q B(—2,0.0)
_ | ) / T
E, is field at P due to Q,, and will act along a,p. o7

Eg is field at P due to Q, and will

—Y
act along agp.
_ Q _ Q P-A
EA - 1 > aAP —_— L 2 X ——
411:80 RAP 47(50 RAP I P—Al



E. = . Q; _ Qg P-B
B = Yre Rz, ® " 4ne R, I P-B
0 B’ 0 BPr

-A Q, P-B
—‘K| R%P|‘ﬁ-‘ﬁ|

3l | =2l

= == 1 Q
-. EatP = E, + Eg = Tme, [R; |
M!-

1 1{-a, +2a, +2a,] . Q.[3a, +2a, +2a,]
ATE | (V92 J(1)2 +(D2 +(D2  (V17)2{(3)2 +(2 +(2)?

1 -a, +2a, +2a, Q;|3a,+2a,+2a,]
= dne, 27 *e 70.0927

The y component of E must be zero.

2 2Q,
77 ¥ 500027 0
2 70.0927

This is the required charge Q, to be placed at (-2, 0,0) which will make y component
of E zero at point P.




Types of Charge Distributions
1. Point charge 2. Line charge 3. Surface charge 4. Volume charge

Point Charge

+ &

{(a) Point charges




Line Charge

{b) Line charges

The charge density of the line charge is denotcd as p; and defined as charge per unit length.

Total charge in coulomb

Total length in metres (C/m)

PL =

Thus p, is measured in C/m. The p; is constant all along the length L of the line
carrying the charge.

dQ = p, dI = charge on differential length dI Q@ - faa-f poa
E = 9Q 5 __pP.dl - e py dl  _
dE Ad71TE Rzﬂa 4rte, R “R E = i[ Aney, R2 AR



Surface Charge

+++F++++H++
IR A R o o O o
++++t+++F+F
ke b o o 6 L 2K
ol e 2 oK e b ot o K 2
++FtEtttE4t
R R

Ps

the surface charge density is denoted as pg and defined as the charge-per unit surface arca.

Total charge in coulomb
Total area in square metres

Psg (C/ mz)

Thus pg is expressed in C/ m?. The pg is constant over the surface carrying the charge.

Q = [ dQ=[ ps dS E — PsdS _
!; {Ps = -! 4te, R *R



Volume Charge

The volume charge density is denoted as p, and defined as the charge per unit
volume.

Pv

m3

_ Total charge in coulomb C
~ Total volume in cubic metres [ )

Thus p, is expressed in C/ m°.

— - d
Q = J'pv dv E = ....E\ vz ER
vol Vol 41[80 R

Ritu Soni ( Assistant Professor, EE ), JECRC, JAIPUR
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Electric field due to infinite line charge

Consider an infinitely long straight line carrying uniform line charge having density p
C/m. Let this line lies along z-axis from - to « and hence called infinite line charge Let

point P is on y-axis at which electric field intensity is to be determined. The distance of
point P from the origin is 'r' as shown in the Fig.

Consider a small differential length d! carrying a charge dQ, along the line as shown
in the Fig. It is along z axis hence dl = dz.

~dQ=p, dl =p; dz .. (1)

The co-ordinates of dQ are (0, 0, z) while
the co-ordinates of point F are (0, r, 0). Hence
the distance vector R can be written as,

———

R = fp Ty =[rad, —za,]

o | R =Vr? +22

R ra,—-za
;AR = R I3 - . (2)

IR] 12 422




Field due to infinite line charge

Ritu Soni ( Assistant Professor, EE ), JECRC, JAIPUR
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fdE=—9Q2 <

4 gy R? *R
=
4 e (\/r2+zz) Vr? +2?

Note : For every charge on positive z-axis there is equal charge present on negative
z-axis. Hence the z component of electric field intensities produced by such charges at
point P will cancel each other. Hence effectively there will not be any z component of E at

P.
Hence the equation of dE can be written by eliminating 3, component, &

= dz ra ~
dE = > ; (4) ) T
dne, (w/r2 +z° ) Vrl+z e =
e
Now by integrating dE over the z-axis from - __} Es
—oo tO o= we can obtain total E at point P. : =1
—E. = j Pr rdZiy IEzql = 1E2]

2 2\ 3/2 Equal and opposite
=L 4REO (l’ +z ) hence cancelPo



Note : For such an integration, use the substitution
z
tan 6

Z =rta2n@ ie r=

dz = rsec®6do
Here r is not the variable of integration.
For z = —es, 0O =tan}(—e) = —n/2 = -90°

For z = 4o, O =tan™ (o) =n/2=+90°

n’2

E = J‘ PL

0= -nxs2

PL "jz r? sec? 640

dnen ) ri[l+tan? 0]>/2

But 1+tan? 0 sec? 6

- ®/2 coc? 040
E = - P1. J' sec” O ﬁ'y
1ngy - . rsec’ O

dney[r? +r? tan? 6]°/2

ay

} Changing the limits

rxrsec? 0 doa

b 4



_ 1. P . _
= dme.r _;!;2 cos O dba, ... sec O “os O
= - PL__[siney2,a, =Pt |sinZ—sin| - || 2
4TEy ¥ TIETY  4Ame,r 2 2 Y
— P 4-1313 = __PL =
 4meEyr [1-(-D}a, 41, £ 23y
E =Pl _a, V/m e (5)

2XEG T Y

The result of equation (5) which is specifically in cartesian system can be generalized.
The @, is unit vector along the distance r which is perpendicular distance of point P from
the line charge. Thus in general a, =a,.

Hence the result of E can be expressed as,

T - Pl =
E = 2n£0ra' V/m .. (6)

where r = Perpendicular distance of point P from the line charge
a, = Unit vector in the direction of the perpendicular distance of point P

from the line charge




Very important notes : 1. The field intensity E at any point has no component in the
direction parallel to the line along which the charge is located and the charge is infinite.
For example if line charge is parallel to z axis, E can not have a, component, if line charge
is parallel to y axis, E can not have a, component. This makes the integration calculations
easy.

y

2. The above equation consists r and a, which do not have meanings of cylindrical
co-ordinate system. The distance r is to be obtained by distance formula while 2, is unit
vector in the direction of T.



Example A uniform line charge, infinite in extent with py = 20 nC/m lies along the
z axis. Find the E at (6,8,3) m.

Solution : The line charge is shown in the Fig. Any point on the line is (0,0,2).

As line charge is along z axis, E can not have any component ﬂlong Z
z direction. S0 do not consider z co-ordinate while calculating .

P{6.8.3)
- - - pL = L
r = (6-0)a, +(8—-0)a, 20 NC/m
.t 6a+8a, 6a,+8a, -y
a!‘ S —= T ce——
Il'l f62+83 10
X
= 063, +08 a,
Thus, E = PL a, ]
2REqT
20x107°

0.6a,+08 a_]=107853a_ +14.38 a_ V
21{)( 8_854)(10—12 xlo I ax ay] a-x a}, /m



Electric field due to charged circular ring

Consider a charged circular ring of radius r placed in xy plane with centre at origin,

carrying a charge uniformly along its circumference. The charge density isp; C/m.
The point P is at a perpendicular distance 'z' from the ring as shown in the Fig.

Consider a small differential length dl
on this ring. The charge on it is dQ.

= . pL df

dE = a .. {1
4xe, R2 R (1)
where R = Distance of point
P from dl.

Consider the cylindrical co-ordinate

system. For dl we are moving in ¢
direction where dl = r dé.

.



dl = rdo .. (2

R? = r?42z2?

While R can be obtained from its two

components, in cylindrical system as shown in the
Fig. The two components are,

1) Distance r in the direction of -a,, radially
inwards i.e. —-ra,.

2) Distance z in the direction of a, i.e. za,

R =-ra, +za, . (3)
IR} = J(-— r)? +(z2)? =r2 422 - (4)
_ R —ra, +za, ... (5)
a = — =
TR fr7eg?
AF = p. dl —ra, +za,

x
2
41E, (-\fr:z _._22) Jr? +z?

——+y



dE = — PrUd®) (i . (6)

4mo(r2+22)312

The radial components of E at point P will be symmetrically placed in the plane

parallel to xy plane and are going to cancel each other.
Hence neglecting a, component from dE we get,

dE = P (rde) 23, e (7

4 TE, (r2 +zz):“2

2

= J PL rdé Za
o=0 4meg (r? _._22)3/2 -

|

PL T — 21
za, [¢]
ame, (r2 +22)>3 °

- Integration w.r.t. ¢ where r = Radius of the ring

rz _
Pr 3

2 g, (rl +z2 ) 372 % - (8) z = Perpendicular distance of point P from the ring along

—
el
il

the axis of the ring




Electric field due to infinite sheet charge

Consider an infinite sheet of charge having uniform charge density ps ¢/ m?, placed in xy plane
as shown in the Fig. Let us use cylindrical coordinates.

The point P at which E to be Z
calculated is on z axis.
Consider the differential surface arca ‘P
dS carrying a charge dQ. The normal ~ “ z= 0. xy plane
directHon to dS is z direction hence dS \
normal to z direction is r dr d¢. Pg e
[ . R
Now dQ - ps dS = pS 4 dl‘ dd’ OI-..:I _________ - Y
ANt
F dQ pgrdrdd _ . Py B
Hence, dE = ap = — a e /L AQ
dnggRZ ©  4mggRE X ,



The distance vector R has two components

1. The radial component r along -a, ie. - ra,.
2. The component z along a, ie. z4,.

With these two components R can be obtained from the differential area towards point P as,

R = —-ra_+ca,

| R} = .J(—r)2 +(2)? =vr? +22

_ R —ra, +za,
AR = —/]/ =
IR | Jr2 +z2
9F - Py rdrd¢ _—rE, +za, -

411:80(\[1—'24-22 )2 izt

For infinite sheet in xy plane, r varies from 0 to « while ¢ varies from 0 to 2=

As there is symmetry about z axis from all radial
direction, all 3, components of E are going to canccll each other and net E will



not have any radial component.
Hence while integrating dE there is no need to consider a, component.

Though if considered, after integration procedure, it will get mathematically cancelled.

_=z‘

Put r?+z2=u? hence 2rdr=2udu

d*ﬁ__:T]: pgrdrdo _
0 0

(za,)
2, 2372 \Ydz
» amey(r? +z%)¥

For r=0, u=z and r=c, u=e .. Changing limits

udu

2
E = j. T:EO (uz)gfz d¢zsz

u'--.s

|
c'-—-og'
8
©
7y
.
N| £
(oP
e
N
D)
N
o’




41‘:80 uj, u - u
_ 2r 1 1)_
- 4nso [4]," (2a.) [ oo ( 7)] - 411:80 (2m a,
E = FPs a, V/m ... For points above xy plane

250

Now a, is direction normal to differential surface area dS considered. Hence in general

if a, is direction normal to the surface containing charge, the above result can be
generalized as,

E = -‘-’-— V/m

where a, = Direction normal to the surface charge

Thus for the points below xy plane, a, =- a, hence,

E = —=—- a, V/m ... For points below xy plane.




Example Charge lies in y = — 5m plane in the form of an infinite square sheet
with a uniform charge density of p s =20 nC/m*. Determine E at all the points.

Solution : The plane y = - 5 m constant is parallel to xz plane as shown in the Fig.

N




For y > - 5, the E component will be along +a, as normal direction to the plane
y=-dmisa,.

y
a, = i},
E = _‘_)_;‘i_an =£§_5
€0 € 7
20%x10~° _ _
= a,=112943 a, V/m
2% 8.854x1071% 7 y

For y < -5, the E component will be along —-a y direction, with same magnitude.

= _  Ps — \ _ —
E = e (—ay)——1129.43 a, Vim

At any point to the left or right of the plane, |E| is constant and acts normal to the
plane.




Example Find E at P (1, 5, 2) m in free space if a point charge of 6 uwC is located
at (0,0,1), the uniform line charge density p; = 180 nC/m along x axis and uniform sheet
of charge with p g =25 nC/m?® over the plane z =-1.

Solution : Case 1 : Point charge Q; = 6 uC at A (0, 0, 1) and P (1, 5, 2)

e _ Q1 — . Q‘l _RAP

E'l - 2 Aap = 2 —
4meg Rp 4neg Rip || Rapl

Rpp = (1-0)a, +(5-0)a, +(2-1)a, =a, +5a, +a,
| Rapl = (1) +(5)* +(1)* =v27

E = 6106 [ﬁx +5a, +a, ]
47 8.854x% 10712 x(JZ'J")z N 27

E, = 384.375a, + 1921.879a, + 3843753, V/m

Case 2 : Line charge p,; along x axis.

It is infinite hence using standard result,

PL r

F o PL
E: = 2REy 1 | T

2 2nEy T

a,




Consider any point on line charge i.e. (x, 0, 0) while P (1, 5, 2). But as line is along x
axis, no component of E will be along a, direction. Hence while calculating t and a,, do

not consider x co-ordinates of the points.
r = (5-0)a, +(2-0)a, =5a, +2a,
17l = J5)*+(2) =V

E, = o 5a,+23,] 180x10"°[5a, +2a,]
2 2 ey X 29 J29 . 2= 8.854%x10712x 29
= 557.859a, + 2231443, V/m
Case 3 : Surface charge pg over the plane z = — 1. The plane is parallel to xy plane and normal

direction to the plane is a, =a,, as point P is above the plane. At all the points above z = - 1 plane the E is

constant along a, direction.

E. = Ps 25x107  _

[:3 - 2€ n = 12 az‘
0 2% 8.854x107

= 1411.7913 a_V/m




Hence the net E at point P is,

E=F +E, +E; = 38437534, + 1921.879 &, + 384.375a, + 557.859 a,
+ 223.144 5, + 1411.7913 3,
= 384.375 a, + 2479.738 3, + 2019.3103 7, V/m

Example The charge lies on the circular disc r=<4 m, z=0, with density
ps =[10"2/r] C/m?. Determine Eatr =0,z =3 m. z

Solution : The sheet of charge is shown in the Fig. P(0.0.3)

Consider the differential area dS carrying

the charge dQ. The normal direction to dS is
a, hencedS, = rdrdo.

P

dQ = p, dS=p¢rdrdd o 2R

- el Eat
0. r dr d¢ P b '

r P

dQ = 10~ drde / dS




4

i - 107 dr (.12(1) -
41y R

Consider R as shown in the Fig. which has two components in cylindrical system,

1. The component along —-a, having radius r i.e. —ra,. }

2. The component z = 3 along a, ie. 3 a,.

R = -ra, +3a,
IR| = (=) +(3)° = +9
_ R -ra_+3a,
ap = — =
IR| r+9
dE =

- 10~ drd¢ [-rir+3iz]
dre, (Jr2+9|- Vr? +9

It can be seen that due to symmetry about z axis, all radial components will cancell
each other. Hence there will not be any component of E along a,. So in integration a,
need not be considered.




} $=0 r=0 2TME, (1'2 "‘9)‘
As there is no r dr in the numerator, use
r = 3tan @ dr =3sec?0do } ... Change of limits
For r=0, 06, =0
For r=4, 0, =tan'4/3

2r 92 10 3sec? 0 dO do

) T 7 2995914x10° sec? 0d0 do _

E = (37,) 372 a7
¢'—.[o ol'[o 4 TE, [9 tan? 0+9] 72 - e=0 0;=0° [1+ta112 9] !
2n © 3 n 0
= 299.91x107 469 apa, = | f 299.5914x 10 * d0d¢[cos 0]a,
sec O = 4 o
o -0 0] = ° o=0 Bl =0

2995914 x 10° [6]2 [sin 0]2;0,; i, = 18823x10° sin 0, &,

[~

4 .
0, = tan"l—S— 1e. tan0, =3

E = 18823x10°x08a, = 1.5059x10°a, V/m = 15059 a, MV/m

Sin 92 — - 0-8

G|
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