Jaipur Engineering College \& Research Centre, Jaipur

Lecture Notes
3EE4-06: Analog Electronics ACADEMIC SESSION 2020-21

Prepared By: Jisha Varghese

VISION OF ELECTRICAL ENGINEERING DEPARTMENT

Electrical Engineering Department strives to be recognized globally for outcome based knowledge and to develop human potential to practice advance technology which contribute to society.

MISSION OF ELECTRICAL ENGINEERING DEPARTMENT

M1. To impart quality technical knowledge to the learners to make them globally competitive Electrical Engineers.

M2. To provide the learners ethical guidelines along with excellent academic environment for a long productive career.

M3. To promote industry-institute relationship.

PROGRAM OUTCOMES

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems in Electrical Engineering.
2. Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantial conclusions using first principles of mathematics, natural sciences, and engineering sciences in Electrical Engineering.
3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations using Electrical Engineering.
4. Conduct investigations of complex problems: Use research based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions using Electrical Engineering.
5. Modern tool usage: Create, select and apply appropriate techniques, resources, and modern engineering and EE tools including prediction and modeling to complex engineering activities with an understanding of the limitations in EE.
6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice using EE.
7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of EE and need for sustainable development in EE.
8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice using EE.
9. Individual and team work: Function effectively as an individual and as a member or leader in diverse teams, and multi-disciplinary settings in EE.
10. Communication: Communicate effectively on complex engineering activities with the engineering community and society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.
11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage EE projects and in multi-disciplinary environments.
12. Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological changes needed in EE.

COURSE OUTCOMES:

On successful completion of the course, the students will be able to: -

cO1	Understand the characteristics of Diodes, concepts behind the Clippers, and Clampers. Design and analysis of various rectifier and amplifier circuits
cO2	Analyze the characteristics of current flow in a bipolar junction transistor and MOSFET \& different electronic devices such as Amplifiers
CO3	Understand the dynamics of Linear \& Non Linear Devices

Syllabus

RAJASTHAN TECHNICAL UNIVERSITY, KOTA STLLABUS
 2^{24} Year = III Semester: B.Tech. (Electrical Engineeringl

3EE4 O6: Anallog Electronics
Credit: 3
Man. Marks: 150 (IAU30, ETEn120)
3L-0T+0P
End Term Ename i Hours

SN		Hours
1.	Diode circuits P-N junction diode, I-V characteristics of a diode; review of halfwave and full-wnve rectifiers, Zener diodes, clamping and clipping circuits.	4
2.	BJI circuits Structure and I-v characteristics of a BUT; EUT as a switch. EJT as an amplifier small-signal model, binsing circuits, current mirror; common-emitter, common-base and common coilector amplifiers; Small signal equivalent circuits, highfirequency equivalent circuits	8
3.	MOSFET circuits MOSFET structure and I-v characteristics. MOSFET as a switch MOSFET as an amplifier small-signal model and biasing circuits, common-source, common-gate and commondrain amplifiers; small signal equivalent circuits $=$ grin, input and output impedances, transconductance, high frequency equivalent circuit	8
4.	Differential, multi-stage and operational amplifiers Differential amplifier; power amplifier, divect coupled multi-stage amplifier; internall structure of an operational amplifier, ideal op= amp, non-idealities in an op-amp [Output offact woltage, input bins current, imput offset current, shew rate, pain bandwidth producth	8
5.	Linear applications of op-amp Idealized analysis of op-amp circuits. Inverting and non-inverting amplifier, differential amplifier, instrumentation amplifier, integrator, active filter, P, PI and PID controllers and lead/hag compensator using an op-amp, voltage regulator, oscillators (Wein bridge and phase shift)- Anallog to Digital Conversion.	8
6.	Nonlinear applications of op-amp Hysteretic Comparator, Zero Crossing Detector, Square-wawe and triangular-wave generators, Peccision rectifier, pealk detecterMonoshot	6
	TOTAL	42

Offite of Dean headerie AFfirs
Rapisthan Techeloal Univenity, Eata

Unit: 2

Chapter: BJT Circuits

Unit-2 (BJT circuits)
BJ I - (Bipolar Junction Transistor) is a two junctions, bi-polar, 3-termial device which is basically used as an amplifier when working in active mode and working as a switch when working in cut of os saturation mode.

Construction-:
It has 2 junction (J_{1} and J_{2}), three terminal device. The current is curried either by holes \mathbf{c} or electrons (Bipolar \rightarrow both $e^{-} s$ holes participates in injector process).

The 3 terminals formed are Emitter (E), Base (B) and collector (c).
It is of two types
(1) NPN
(2) $P N P$

PNP Transistor NPN Transistor

EL DEPARTMENT

Transitar has 3 layers

1) Emitter- Most heavily doped. It emits charges.
2) Base:- Central portion of transistor Doping levels size is kept minimum due to following reason. 1) Concentration of charge carriers in base be is less (clue to low doping), hence the recombination rate decreases and the amount of charge carriers entering into collect or increases.
3) 2) With thin base, the charges injected from emitter will come in contact with lesser number of opposite charge covers of base and recombination rale will decrease.

$$
\text { Resistivity } \propto \frac{1}{\text { Dopinglevel }}
$$

Small cross section area of base, maximum resistance.
3) Collector:- Size of collector is larges due to
collected

1) No. of charge carries collected
2) Transistor amplification factor α \& $\beta>$ with 1 in numbs
of collected charges
3) Heat generated across collector Junction is more,

More heat can be dissipated to ambient if collector is if bigger size.

Open Circuited Transistor:

Width of depletion layer is inverse ely proportional to doping concentration. Hence peneration of depletion layer is more in base.

Operating region:-
a) Active Region : $E-B \rightarrow F \cdot B, B-C \rightarrow R \cdot B, I_{C}=\beta \cdot I_{b}$
b) Cut-off Region : Both junction are reverse biased (Fully
c) Saturation Region - Both junctions are F.B (Fully $O N$)

Transistor Operation:-
N.P-N

Let us consider a Dense transistor such that E-B junction is $F \cdot B \$ C-B$ junction is $R \cdot B$.
Since the $E-B$ junction is forward biased, the depletion layer between E-B Junction disappears

e^{-}from emitter junctions repelles the - vetesminal of battery and diffuse into base. To a Small amount recombination occurs at Base junction due to which a small amount of Base current flows through the $\operatorname{ckt}(\mu A)$.

C-B junction is reversebiased, hence the remaining e^{-}in base region are a thoracted towards collector and hence collector current I_{c} flows.

$$
\therefore I_{E}=I_{B}+I_{C}
$$

Current Gains.

1) Alpha (α)

Ratio of collect or current I_{c} to emitter current I_{E}.

$$
\begin{aligned}
& \alpha_{d c}=\frac{I_{C}}{I_{E}} \alpha_{a c} \quad \alpha \text { varies from } \\
& 0.90 \text { to } 0.998 \\
& \alpha_{a c} \\
& \left.\Delta I_{E}\right|_{\text {veg }} \text { construal }
\end{aligned}
$$

$\because \alpha_{a c} \cong \alpha_{d c}=\alpha$ (short circuit current amplification factor)
2) $\operatorname{Beta}(B)$

Ratio of collector current (I_{C}) to base current (I_{B})

$$
\begin{aligned}
& \beta_{d C}=\frac{I_{C}}{I_{B}} \\
& \beta_{a C}=\frac{\Delta I_{C}}{\Delta I_{B}}{ }_{C C R=\text { constant }}
\end{aligned}
$$

B ranges from so to more than 400 .

$$
\beta_{d c}=\beta_{a c}=\beta \text { (Current amplification factor) }
$$

Relation between $\alpha \& \beta$

$$
\beta=\frac{\Delta I_{C}}{\Delta I_{B}} \quad \alpha=\frac{\Delta I_{C}}{\Delta I_{F_{E}}}
$$

Now

$$
I_{E}=I_{B}+I_{C}
$$

Let Δ be the small change

$$
\begin{aligned}
\therefore \Delta I_{E} & =\Delta I_{B}+\Delta I_{C} \\
\Delta I_{B} & =\Delta I_{E}-\Delta I_{C}
\end{aligned}
$$

$$
\beta=\frac{\Delta I_{C}}{\Delta I_{B}}
$$

Sub. the value of ΔI_{B} is above equation

$$
\begin{gathered}
\beta=\frac{\Delta I_{C}}{\Delta I_{E}-\Delta I_{C}}=\frac{\Delta I_{C} / \Delta I_{E}}{1-\frac{\Delta I_{C}}{\Delta I_{r_{2}}}} \\
\beta=\frac{\alpha}{1-\alpha}
\end{gathered}
$$

$11 y$

$$
\alpha=\frac{\beta}{1+\beta}
$$

Early Effect (Base Width Modulation)

Increasing reverse bias a cross collector base junctio reduces effective electrical width of base. This is called Early Effect.

From the above figure, Let W be the width of depletion layer which is dependant on the concentration. of doping N and applied reverse voltage V_{R}.

Thickness of depletion layer

$$
W \propto\left(\frac{V_{r}+V_{R}}{N}\right)^{1 / 2} \quad V_{r}=\text { Cutin voltage }
$$

This devon
Thickness of depletion layer $\propto \frac{1}{\sqrt{N}}$
Where $N=$ Concentration of doping

$$
N=N_{A} \text { for } P \text {-type }=N_{D} \text { for } N \text { type }
$$

For unbiased junction J_{2}. Width of depletion layer ss $\left(t_{1}+t_{2}\right)$

Effective electrical base width $W_{B}^{\prime}=W_{B}=t$, (The effective electrical base width is termed as base width.
$t_{1} \rightarrow$ part ion depletion laigen penetrated into the base,
$t_{2} \rightarrow$ part of depletion layer penetrated into the collector.
$t_{1} \gg t_{2}$. (Since base is lightly doped in comparison with collectors.
 $t_{1}+\Delta t_{1} 8 t_{2}+\Delta t_{2}$ resh.

Now $\Delta t_{1} \gg \Delta t_{2}$ (dopping of level of collectors is much highest then base)
effective electrical base width $W_{B}^{\prime \prime}=W_{B}-\left(t_{1}+\Delta t_{1}\right)$
With T in $R \cdot B$, thickness of depletion width increases and it penetrates into base and collector region, but pen. etration into base region, is much larger than the collector region and effective electrical base width is reduced to $W_{B}^{\prime \prime}$

$$
W_{B}^{u}=W_{B}-\left(t_{1}+\Delta t_{1}\right)
$$

Chang of reverse bias at collector junction modulates (change) the effective electrical width of the base, this is known as Base width modulation or Early effect.

Coupling Capacitor (Cc)
\rightarrow Used to couple opP of one stage to imp of next stage. It offers very high impedance to D.C and very low impedance to A.C. s / g.
\rightarrow If not done the bias condition of next stage will be drastically changed dee to shunt ing effect of R_{c}. Rc comes in parallel with if imp of next stage, altering the bicesing condition.
$\rightarrow C_{C}$ isolates D. (. of one stage from nextstaje, but allows the passage of $A C S / \delta$.

Emitter Bypass Capacitor (C.)
\Rightarrow It is used to bypass emitter resistance RE for $A<-S / \mathrm{S}$. voltage drop ($I_{E} R_{E}$) across $R_{E 2}$ is a -vel feedbags to if elect, hence gain reduce.
\rightarrow In order to avoid the decrease in the gain IE should not be bypassed through R_{E}. The C_{E} connected in parallel with R_{F} behaves as short Mkt, IE is bypassed thrown S.C. path and voltage drop ($I_{E} R_{2}$) is reduced to zero.
\rightarrow Hence overall A.C. Gam increases.
$C_{E} \rightarrow$ Large enough sothat act as $S C \rightarrow$ Low free. $O C \rightarrow \operatorname{dan} D(S)$.

BJTas Switch:-

Alp characteristics of incensistos.
Let m be the slop.

$$
\text { Slope }(m)=\frac{d I_{c}}{d V_{c}} \text { (veryhigh) }
$$

op resistance of transistor, $R_{0}=\frac{d V_{C}}{d I_{C}}=\frac{1}{m} \rightarrow 0$
therefore transistor offers zero resistance in saturation region and act like a closed switch.

When Base current $\left(I_{B}\right)$ is zero, the point of operation of Enansist or will be point (2).

$$
m \cong 0 .
$$

$$
R_{0}=\frac{d V_{c}}{d I_{c}}=\frac{1}{m} \rightarrow \infty
$$

Transiston offers very high impedance and acts lit an open switch in cut off region.

When I_{B} is equal to $I_{B(s a t)}$, the transistor is driven into saturation and I_{c} is max. and equal to $V_{c e} / R_{r}$.

$$
V_{0}=V_{c c}-I_{c} R_{c}=0 \quad(S \cdot c i o n c \text { closed switch) }
$$

BJ Ias Amplifier

A transistor is used to transfer weak sig from low ils resistive cot to high old res istive circuit.

Transistor is operated in active region with the help of biasing bratteries $V_{B B} 8 \mathrm{VCC}$. The ill sig is applied across Base (B) and emitter (E) while opP is taken across R_{C}.

As we know, that the imp resistance is low, due to which there is a change in I_{B} when a small change is i/ps/g occurs..

This change in I_{B} cause a large change in I_{C}, by relatio

$$
I_{C}=B I_{B}
$$

Due to which their is a large drop across Re $\&$ Hence a weak sig is being amplified.

Derivation
Let V_{s} be the $A C S / j$. Let V_{i} be the ip sig applied between Base (B) and Emitter (B)

$$
\therefore V_{i}=V_{S}+V_{B B}
$$

$V_{B B} \rightarrow D C$ biasing battery.
Let ΔV_{i} be the change in the ip $/ / s$.

$$
\Delta V_{i}=V_{s}
$$

Let $I_{C} \rightarrow D \cdot C$ component
$i_{c} \rightarrow A \cdot C$. Component.
Hence variation in collector current will be only due to A.C. Component ic. $^{\text {? }}$

$$
\Delta I_{C}=i_{C}
$$

$$
\begin{aligned}
& \Delta V_{L}=-\Delta I_{C} R_{C}-i c R_{C} \\
& \text { Voltage gain }=\frac{\Delta \Delta / p \text { voles }}{\Delta C i / p V_{0}} \\
& A r=\frac{\Delta V_{L}}{\Delta V_{i}}=\frac{-i_{c} R_{C}}{V_{S}}=\frac{-\frac{\beta l_{b} R_{C}}{V_{s}}}{V_{S}} \\
&=-\frac{\beta R_{c}}{V_{b}}=-\frac{\beta R_{c}}{r_{b}}
\end{aligned}
$$

$r_{b}=\frac{V_{s}}{i_{b}}=i / p$ base (ircuit resistance)

$$
\beta \gg 1, R_{c} \gg r_{b} .
$$

$A_{V} \gg 1$
Hence transistor act like an emp.

Biasing of BJT

* Transistor operates mainly in linear region of $0 / \mathrm{p}$ characteristics, where of p volley is linear function of ip voltage.
(1) Base Bias (Fixed Bias)
(2) Voltage divider Bias (S elf Bias or Emitter BT as)
(3.) Voltage Feedback Bias or Self Bias) (ollectun Feed back e.

Fixed Bias (Base Bias)

Assumptions-
(1) Coupling capacitors are open circuited.
3) remove all AC sources

Applying the above assumption in the circuit.

Seperating i/ps o/p clet.

(1) Base emitter ckl .

Applying KVL in clock wise direction.

$$
\begin{align*}
& +V_{C C}-I_{B} R_{B}-V_{B E}=0 \\
& V_{C C}-V_{B E}=I_{B} R_{B} \\
& \therefore I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}} \tag{1}
\end{align*}
$$

(2) Collector Emitter Loop:

As we know $I_{C}=\beta I_{B}$

Applying KVLacioss ole

$$
\begin{array}{r}
+V_{C C} \mp I_{C} R_{C}-V_{C E}=0 \\
\quad V_{C E}=V_{C C}-I_{C} R_{C} \tag{3}
\end{array}
$$

$V_{C E}$ can also be written as

$$
V_{C E}=V_{C}-V_{E}
$$

Since Eviler (E) is ground $V_{E}=0$

$$
\begin{gathered}
\therefore V_{C F}=V_{C} \\
\Pi_{y} V_{B E}=V_{B}-V_{E} \\
V_{B E}=V_{B}
\end{gathered}
$$

Voltage Divider Bias
\rightarrow Independent of B of transistor.

* Resistor R_{1} and R_{2} forms the voltage divider circuit.

Biasing voltage $V_{c c}$ is divided into two parts and. voltage drop V_{2} across R_{2} is applied between base and emitter to forward bias the emitter base jus ios

* Biasing voltage is obtained through voltage divides circuit.

Analysis:-
Capacitors are considered as open circuit and $A C S / g$ is being removed. The circuit simplified as

$R_{T H}=$ (Theremin Resistance $)=R_{1} \| R_{2}=R_{\text {TH }}$

$$
E_{T H}=V_{Q_{Z}}=I R_{2}=\frac{V_{C C} \cdot R_{2}}{R_{1}+R_{2}} V_{T H} \quad\left\{I=\frac{V_{C C}}{R_{1}+R_{2}}\right\}
$$

Thevenired circuit

Mathematical Ancalys isApplying KVL to the base circuit.

$$
\begin{equation*}
-I_{B} R_{t h}+V_{t h}-V_{B E}-J_{E} R_{E E}=0 \tag{1}
\end{equation*}
$$

Since $\quad I_{F}=I_{B}+I_{C} \quad \& I_{C}=\beta I_{B}$

$$
I_{E}=I_{B}(1+\beta)
$$

Sub. this value ineq. (1)

$$
\begin{aligned}
& -I_{B} R_{\text {th }}+V_{\text {th }}-V_{B E}-I_{B}(1+\beta) R_{E}=0 \\
& V_{T H}=V_{B E}+I_{B}\left[R_{t h}+(1+B) R_{E}\right] \\
& I_{B}=\frac{V_{T M}-V_{B E}}{\left(R_{T h}+(1+B) R_{F}\right]} \\
& I_{C}=\beta I_{B} \\
& =\frac{\beta\left[V_{T H}-V_{B E}\right]}{\left[R_{T H}+(1+\beta) R_{E}\right]} \\
& =\frac{V_{\text {th }}-V_{B B}}{R_{E}+\frac{R_{E}+R_{t h}}{\beta}} \\
& \beta \gg 1 \Rightarrow R_{E} \gg \frac{R_{E}+R_{t h}}{\beta} \\
& I_{C Q}=I_{C}=\frac{V_{H}-V_{B B}}{R_{F_{B}}}
\end{aligned}
$$

$$
\begin{aligned}
& \because V_{\text {th }} \gg V_{B E} \\
& I_{C Q}=\frac{V_{T H}}{R_{F}} \\
& V_{C F C}=V_{C E}=V_{C C}-I_{C} R_{C}-I_{E E} R_{E} \\
&=V_{C C}-I_{C}\left(R_{C}+R_{E}\right) \\
& \quad V_{C B}=V_{C C}-I_{C Q}\left(R_{C}+R_{E}\right)
\end{aligned}
$$

Collector Feedback Bias (Voltage Feedback Bias on Self Bias)

* R helps in compensating the variation in I_{c} due to change in temperature.
$\beta \uparrow$ with rise in temperature.

Common Base Amplifier:

The common base amplifier circuit is shown in Fig. The Vee source forward biases the emitter diode and $V_{C C}$ source reverse biased collector diode. The ac source $\mathrm{V}_{\text {in }}$ is connected to emitter through a coupling capacitor so that it blocks dc. This ac voltage produces small fluctuation in currents and voltages. The load resistance R_{L} is also connected to collector through coupling capacitor so the fluctuation in collector base voltage will be observed across RL. The dc equivalent circuit is obtained by reducing all ac sources to zero and opening all capacitors. The dc collector current is same as I_{E} and V_{CB} is given by

$$
V_{C B}=V_{C C}-I_{C} R_{C} .
$$

These current and voltage fix the Q point. The ac equivalent circuit is obtained by reducing all dc sources to zero and shorting all coupling capacitors. r^{\prime} e represents the ac resistance of the diode as shown in Fig.

the diode curve relating Ie_{e} and V_{be}. In the absence of ac signal, the transistor operates at Q point (point of intersection of load line and input characteristic). When the ac signal is applied, the emitter current and voltage also change. If the signal is small, the operating point swings sinusoidally about Q point (A to B).

If the ac signal is small, the points A and B are close to Q, and arc $A B$ can be approximated by a straight line and diode appears to be a resistance given by

$$
\begin{aligned}
\mathrm{r}_{\mathrm{e}} & =\left.\frac{\Delta V_{\mathrm{BE}}}{\Delta \mathrm{IE}_{\mathrm{E}}}\right|_{\text {smallchange }} \\
& =\frac{V_{\mathrm{be}}}{i_{e}}=\frac{\text { acvoltageacrossbaseandemitter }}{\text { accurrentthroughemitter }}
\end{aligned}
$$

If the input signal is small, input voltage and current will be sinusoidal but if the input voltage is large then current will no longer be sinusoidal because of the non linearity of diode curve. The emitter current is elongated on the positive half cycle and compressed on negative half cycle. Therefore the output will also be distorted.
$r^{\prime} \mathrm{e}$ is the ratio of $\Delta \mathrm{V}_{\mathrm{BE}}$ and $\Delta \mathrm{I}_{\mathrm{E}}$ and its value depends upon the location of Q . Higher up the Q point small will be the value of r^{\prime} e because the same change in Vbe produces large change in Ie.

$$
\mathrm{r}_{\mathrm{e}}^{\prime}=25 \mathrm{mV} / \mathrm{I}_{\mathrm{E}}
$$

Small Signal CE Amplifiers

CE amplifiers are very popular to amplify the small signal ac. After a transistor has been biased with a Q point near the middle of a dc load line, ac source can be coupled to the base. This produces fluctuations in the base current and hence in the collector current of the same shape and frequency. The output will be enlarged sine wave of same frequency.

The amplifier is called linear if it does not change the wave shape of the signal. As long as the input signal is small, the transistor will use only a small part of the load line and the operation will be linear.

On the other hand, if the input signal is too large. The fluctuations along the load line will drive the transistor into either saturation or cut off. This clips the peaks of the input and the amplifier is no longer linear.

The coupling capacitor (C_{C}) passes an ac signal from one point to another. At the same time it does not allow the dc to pass through it. Hence it is also called blocking capacitor.

The ac voltage at point A is transmitted to point B . For this series reactance Xc_{c} should be very small compared to series resistance Rs. The circuit to the left of A may be a source and a series
resistor or may be the Thevenin equivalent of a complex circuit. Similarly Rl may be the load resistance or equivalent resistance of a complex network. The current in the loop is given by

Analysis of CE amplifier:

$$
\begin{aligned}
i & =\frac{v_{\text {in }}}{\sqrt{\left(R_{S}+R_{L}\right)^{2}+X_{C}^{2}}} \\
& =\frac{v_{\text {in }}}{\sqrt{R^{2}+X^{2}}}
\end{aligned}
$$

In a transistor amplifier, the dc source sets up quiescent current and voltages. The ac source then produces fluctuations in these current and voltages. The simplest way to analyze this circuit is to split the analysis in two parts: dc analysis and ac analysis. One can use superposition theorem for analysis .

AC \& DC Equivalent Circuits:

For dc equivalent circuit, reduce all ac voltage sources to zero and open all ac current sources and open all capacitors.

AC Load line:

Consider the dc equivalent circuit

Assuming $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C}}($ approx $)$, the output circuit voltage equation can be written as

$$
\text { and } \begin{align*}
V_{C E} & =V_{C C}-I_{C}\left(R_{C}+R_{E}\right) \\
I_{C} & =-\frac{V_{C E}}{R_{C}+R_{E}}+\frac{V_{C C}}{R_{C}+R_{E}} \\
V_{C E} & =0, \quad I_{C}=\frac{V_{C C}}{R_{C}+R_{E}} \tag{E-51}\\
\text { and } \quad I_{C} & =0, V_{C E}=V_{C C}
\end{align*}
$$

The slop of the d.c load line is

$$
\frac{1}{R_{C}+R_{E}}
$$

When considering the ac equivalent circuit, the output impedance becomes $\mathrm{R}_{\mathrm{c}} \| \mathrm{R}_{\mathrm{L}}$ which is less than $\left(R_{C}+R_{E}\right)$. In the absence of ac signal, this load line passes through Q point. Therefore ac load line is a line of slope ($-1 /\left(\mathrm{R}_{\mathrm{C}} \| \mathrm{R}_{\mathrm{L}}\right)$) passing through Q point. Therefore, the output voltage fluctuations will now be corresponding to ac load line as shown in fig. Under this condition, Q-point is not in the middle of load line, therefore Q- point is selected slightly upward, means slightly shifted to saturation side.

Voltage gain:

To find the voltage gain, consider an unloaded CE amplifier. The ac equivalent circuit is shown in fig. The transistor can be replaced by its collector equivalent model i.e. a current source and emitter diode which offers ac resistance r^{\prime} e.

The input voltage appears directly across the emitter diode
Therefore emitter current $i_{e}=V_{\text {in }} / r^{\prime}{ }^{\prime}$.

Since, collector current approximately equals emitter current and $i_{C}=i_{e}$ and $v_{\text {out }}=-i_{e} R_{C}$ (The minus sign is used here to indicate phase inversion)

Further $\mathrm{V}_{\text {out }}=-\left(\mathrm{V}_{\text {in }} \mathrm{R}_{\mathrm{C}}\right) / \mathrm{r}_{\mathrm{e}}$

Therefore voltage gain $\mathrm{A}=\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}=-\mathrm{R}_{\mathrm{C}} / \mathrm{r}_{\mathrm{e}}$

The ac source driving an amplifier has to supply alternating current to the amplifier. The input impedance of an amplifier determines how much current the amplifier takes from the ac source.

In a normal frequency range of an amplifier, where all capacitors look like ac shorts and other reactance are negligible, the ac input impedance is defined as

$$
\mathrm{zin}=\mathrm{vin} / \text { in }
$$

Where vin, $i_{\text {in }}$ are peak to peak values or rms values
The impedance looking directly into the base is symbolized Zin (base) and is given by

$$
\mathrm{Z}_{\text {in }}(\text { base })=\mathrm{v}_{\text {in }} / \mathrm{ib},
$$

Since, v in $=\mathrm{i}_{\mathrm{e}} \mathrm{r}_{\mathrm{e}} \mathrm{e}$
From the ac equivalent circuit, the input impedance $z_{i n}$ is the parallel combination of R_{1}, R_{2} and β

$$
\mathrm{r}_{\mathrm{e} .}^{\prime} \mathrm{Z}_{\text {in }}=\mathrm{R}_{1}\left\|\mathrm{R}_{2}\right\| \beta \mathrm{r}_{\mathrm{e}}^{\prime}
$$

The Thevenin voltage appearing at the output is

$$
\text { vout }=A \text { vin }
$$

The Thevenin impedance is the parallel combination of R_{C} and the internal impedance of the current source. The collector current source is an ideal source, therefore it has an infinite internal impedance.

$$
\mathrm{Z}_{\mathrm{out}}=\mathrm{R}_{\mathrm{C}} .
$$

Two port network is a pair of two terminal electrical network in which, current enters through one terminal and leaves through another terminal of each port. Two port network representation is shown in the following figure.

Here, one pair of terminals, $1 \& 1$ ' represents one port, which is called as port1 and the other pair of terminals, $2 \& 2$ ' represents another port, which is called as port2.
There are four variables V_{1}, V_{2}, I_{1} and I_{2} in a two port network as shown in the figure. Out of which, we can choose two variables as independent and another two variables as dependent. So, we will get six possible pairs of equations. These equations represent the dependent variables in terms of independent variables. The coefficients of independent variables are called as parameters. So, each pair of equations will give a set of four parameters.

h-parameters

We will get the following set of two equations by considering the variables $\mathrm{V}_{1} \& \mathrm{I}_{2}$ as dependent and $I_{1} \& V_{2}$ as independent. The coefficients of independent variables, I_{1} and V_{2}, are called as h-parameters.

$$
\begin{aligned}
& V_{1}=h_{11} I_{1}+h_{12} V_{2} \\
& I_{2}=h_{21} I_{1}+\hbar_{22} V_{2}
\end{aligned}
$$

The h-parameters are

$$
\begin{aligned}
& \hbar_{11}=\frac{V_{1}}{I_{1}}, \text { when } V_{2}=0 \\
& \hbar_{12}=\frac{V_{1}}{V_{2}}, \text { when } I_{1}=0 \\
& \hbar_{21}=\frac{I_{2}}{I_{1}}, w h e n V_{2}=0 \\
& \hbar_{22}=\frac{I_{2}}{V_{2}}, \text { when } I_{1}=0
\end{aligned}
$$

h-parameters are called as hybrid parameters. The parameters, h_{12} and h_{21}, do not have any units, since those are dimension-less. The units of parameters, h_{11} and h_{22}, are Ohm and Mho respectively.

We can calculate two parameters, h_{11} and h_{21} by doing short circuit of port2. Similarly, we can calculate the other two parameters, h_{12} and h_{22} by doing open circuit of port1.

The h-parameters or hybrid parameters are useful in transistor modelling circuits (networks).

BJT AMPLIFIERS

H-Parameter Representation of a Transistor.
A transiston con be treated as a two-port Network

Transistor is a corrent openated device.
Here input voltoge v_{i} and ootpot conrent I_{o} are the dependent Vaniables.

Input curdent I_{i} and sotput vortage V_{o} ane
Independent vaniables.

$$
\begin{aligned}
& v_{i}=f_{1}\left(I_{1}, V_{0}\right) \\
& I_{0}=f_{2}\left(I_{i}, v_{0}\right)
\end{aligned}
$$

This can be written in the equation form as follows

$$
V_{i}=h_{11} I_{i}+h_{12} v_{0}
$$

$I_{0}=h_{21} I_{i}+h_{22} V_{0}$
The above equation can also be written using

BUT AMPLIFIERS

H-Parameter Representation of a Transistor
A transistor can be treated as a two-port Network

Here $I_{i}=$ Input current to the Amplifier
$V_{i}=$ Input Voltage to the Amplifier
$I_{0}=$ output current of the Amplifier
$V_{0}=$ output voltage of the Amplifier

Transistor is a current openated device.
Here input voltage V_{i} and output current I_{0} are the dependent Variables.

Input current I_{i} and output voltage vo are Independent variables.

$$
\begin{aligned}
& V_{i}=f_{1}\left(I_{1}, V_{0}\right) \\
& I_{0}=f_{2}\left(I_{i}, V_{0}\right)
\end{aligned}
$$

This can be written in the equation form as follows

$$
\begin{aligned}
& V_{i}=h_{11} I_{i}+h_{12} V_{0} \\
& I_{0}=h_{21} I_{i}+h_{22} V_{0}
\end{aligned}
$$

The above equation can also be written using alphabetic notations

Based on above two equations the equivalent circuit or Hybrid Model for transistor can be drawn.

Advantages' (or) Benifits of h-parameters

1) Real numbers at audio frequencies
2) Easy to measure
3) can be obtained from the transistor static characteristic curves.
4) convinient to use in circuit analysis and design.
5) Easily convertable from one configuration to other
6) Most of the transistor manufacturers sepecify the h-parameters.

Hparaneter Model for CE configuration Let us consider the common emitter configuration shown in figure below, the variables I_{b}, I_{c}, V_{b} and V_{c} represent total instantaneous currents and voltages.

Fig: simple common emitter
configuration

Here I_{b} - Input current
V_{b} - Input voltage
I_{c} - output current $\quad V_{c}$ - outport voltage
h-parameter model for common emitter configuration is shown in figure below.

$$
\begin{aligned}
& V_{b}=h_{i e} I_{b}+h_{r e} V_{c} \\
& I_{c}=h_{f e} I_{b}+h_{o e} V_{c}
\end{aligned}
$$

where

$$
\begin{aligned}
& h_{\text {ie }}=\left.\frac{\Delta V_{B}}{\Delta I_{B}}\right|_{V_{c}=\text { constant }}=\left.\frac{V_{b}}{\dot{I}_{b}}\right|_{V_{c}}=\text { constant } \\
& h_{\text {re }}=\left.\frac{\Delta V_{B}}{\Delta V_{c}}\right|_{I_{B}=\text { constant }}=\left.\frac{V_{b}}{V_{c}}\right|_{I_{b}}=\text { constant } \\
& h_{f e}=\left.\frac{\Delta I_{c}}{\Delta I_{B}}\right|_{V_{c}}=\text { constant } \\
&=\left.\frac{i_{c}}{i_{b}}\right|_{V_{c}}=\text { constant } \\
& h_{\text {oe }}=\left.\frac{\Delta I_{c}}{\Delta V_{C}}\right|_{I_{B}}=\text { constant }=\left.\frac{i_{c}}{V_{c}}\right|_{\dot{I}_{b}}=\text { constant }
\end{aligned}
$$

Typical h-parameter values for a transistor parameter $C E \quad C C$ CB

	2	1100Ω	1100Ω

Analysis of a transistor amplifier circuit using h-parameter model.

A transistor amplifier can be constructed by connecting an external load and signal. source as indicated in figure below. and biasing the transistor properly.

The hybrid parameter model for above network is shown in figure below.

Fig: Transistor hybrid parameter model.

1) Current Gain (or) Current Amplification A_{i} :

For a transistor amplifier the current gain A_{I} is defined as the ratio of output current to input current.

$$
A_{I}=\frac{I_{L}}{I_{1}}=\frac{-I_{2}}{I_{1}}
$$

From the circuit $\quad I_{2}=h_{f} I_{1}+h_{0} V_{2} \longrightarrow$ (1)

$$
V_{2}=I_{L} Z_{L}=-I_{2} Z_{L} \rightarrow \text { (2) }
$$

Sub (2) in (1)

$$
I_{2}=h_{f} I_{1}-I_{2} z_{L} h_{0}
$$

$$
I_{2}+I_{2} z_{L} h_{0}=h_{f} I_{1}
$$

$$
I_{2}\left(1+z_{L} h_{0}\right)=h_{f} I_{1} \Rightarrow \frac{I_{2}}{I_{1}}=\frac{h_{f}}{1+z_{L} h_{0}}
$$

$$
A_{I}=\frac{-I_{2}}{I_{1}}=\frac{-h_{f}}{1+z_{L} h_{0}}
$$

$$
\begin{array}{ccc}
A_{I} & \frac{C_{E}}{-h_{f e}} & \frac{C B}{1+z_{\text {Lhoe }}}
\end{array} \frac{-h_{f b}}{1+z_{L} h_{O b}} \quad \frac{C C}{1+z_{\text {Lh oc }}}
$$

2) Input Impedance z_{i}

In the circuit R_{s} is the signal source resistance The impedance seen when looking in to the amplifier terminals $(1,1)$ is the amplifier input impedance z_{i}

$$
z_{i}=\frac{V_{1}}{I_{1}}
$$

From figure $V_{1}=h_{i} I_{1}+h_{r} V_{2}$

$$
\text { The ratio of output voltage } v_{2} \text { to input voltage }
$$

gives the voltage gain of the transistor

$$
A_{v}=\frac{V_{2}}{V_{1}}
$$

$$
\text { substituting } V_{2}=-I_{2} z_{L}=A_{I} I_{1} \dot{z}_{L}
$$

$$
\Rightarrow \quad A_{V}=\frac{A_{I} I_{1} Z_{L}}{V_{1}}=\frac{A_{I} z_{L}}{V_{1} / I_{1}}=\frac{A_{I} z_{L}}{z_{i}}
$$

$$
C E \quad C B \quad C C
$$

$$
\begin{array}{lll}
A_{V} & \frac{A_{I} Z_{L}}{Z_{i}} & \frac{A_{I} Z_{L}}{Z_{i}}
\end{array} \frac{A_{I} Z_{L}}{Z_{i}}
$$

$$
\begin{aligned}
& \text { voltage gain (Av): }
\end{aligned}
$$

4) Output Admittance (y_{0}):

$$
y_{0}=\frac{I_{2}}{V_{2}} \text { with } V_{S}=0 \text { and } R_{L}=\infty
$$

From the circuit $I_{2}=h_{f} I_{1}+h_{0} V_{2}$
Dividing by $V_{2}, \frac{I_{2}}{V_{2}}=h_{f} \frac{I_{1}}{V_{2}}+h_{0} \longrightarrow 0$
with $V_{S}=0$, by kVL in input circuit
$R_{s} I_{1}+h_{i} I_{1}+h_{r} V_{2}=0$

$$
\dot{I}_{1}\left(R_{s}+h_{i}\right)+h_{n} v_{2}=0
$$

$$
\text { Hence } \quad \frac{I_{1}}{V_{2}}=-\frac{h_{r}}{R_{S}+h_{i}}
$$

$$
\text { Now } \varepsilon_{q}(1) \Rightarrow \frac{I_{2}}{v_{2}}=\frac{-h_{f} h_{r}}{R_{S}+h_{i}}+h_{0}
$$

$$
\Rightarrow \quad y_{0}=h_{0}-\frac{h_{f} h_{r}}{R_{S}+h_{i}}
$$

$$
C E \quad C B \quad C C
$$

Yo hoe $-\frac{h_{f e} h_{r e}}{R_{S}+h_{i e}} \quad$ hob $-\frac{h_{f b} h_{r b}}{R_{S}+h_{i b}} \quad h_{0 c}-\frac{h_{f c} h_{r c}}{R_{S}+h_{i c}}$
5) Voltage gain (AVS) (Including source):

$$
A_{V_{S}}=\frac{V_{2}}{V_{s}}=\frac{V_{2}}{V_{1}} \frac{V_{1}}{V_{s}} \Rightarrow A_{V_{s}}=A_{V} \frac{V_{1}}{V_{s}}
$$

$$
\text { Now } \quad A_{v_{S}}=\frac{A_{V} z_{i}}{R_{S}+z_{i}}
$$

$$
A_{V S}=\frac{A_{I} R_{L}}{z_{i}} \times \frac{z_{i}}{R_{S}+z_{i}}=\frac{A_{I} R_{L}}{R_{S}+z_{i}}
$$

If $R_{S}=0$ then $A_{V S}=\frac{A_{I} R_{L}}{Z_{i}}=A_{V}$.
6) Current Amplification (AIS)

$$
A_{I S}=\frac{-I_{2}}{I_{S}}=\frac{-I_{2}}{I_{1}} \cdot \frac{I_{1}}{I_{S}}=A_{I} \frac{I_{1}}{I_{S}}
$$

The modified input circuit using Norton's equivalent circuit for the source for the calculation of AIs

$$
\begin{aligned}
& A_{I S}=A_{I} \frac{R_{S}}{R_{S}+Z_{i}} \\
& A_{V S}=\frac{A_{I S} Z_{L}}{R_{S}}
\end{aligned}
$$

\Rightarrow In $C E$ configuration
current Gain $A_{I}=\frac{-h_{f e}}{1+h_{o e} z_{L}} \quad\left[z_{L}=R_{L}\right]$
Input Impedance $z_{i}=$ hie $-\frac{h_{f e} \text { hoe }}{Y_{L}+\text { hoe }} \quad\left[Y_{L}=\frac{1}{z_{L}}=\frac{1}{R_{L}}\right.$
Voltage $\operatorname{sain} A_{V}=A_{I} \frac{Z_{L}}{Z_{i}}$
output Admittance $Y_{0}=$ hoe $-\frac{h_{f e} \text { hre }}{h_{i}+R_{s}}$
\Rightarrow In $C B$ configuration
current gain $A_{I}=\frac{-h_{f b}}{1+h_{0 b} z_{L}}$
Input Impedance $z_{i}=h_{i b}-\frac{h_{f b} h r b^{y_{L}+h_{o b}}}{1}$
voltage gain $A_{V}=A_{I} \frac{z_{L}}{z_{i}}$
output Admittance $Y_{0}=h_{o b}-\frac{h_{f b} h_{r b}}{h_{i b}+R_{s}}$
\Rightarrow In $c c$ configuration
current gain $A_{I}=\frac{-h_{f c}}{1+h_{O C} z_{L}}$
Input Impedance $z_{i}=$ hic $-\frac{h_{f c} h_{r c}}{y_{L}+h_{0 c}}$
voltage gain $A_{V}=\frac{A_{I} Z_{L}}{Z_{i}}$
output Admittance $Y_{0}=h_{0 c}-\frac{h_{f c} h_{r c}}{h_{i c}+R_{s}}$
Conversion formulae for hybrid parameters

$$
\begin{array}{rlrl}
C B & C c \\
h_{i b}=\frac{h_{i e}}{1+h_{f e}} & h_{i c}=\text { hie } \\
h_{r b}=\frac{h_{i e} h_{o e}}{1+h_{f e}}-h_{r e} & h_{r c}=1 \\
h_{f b}=\frac{-h_{f e}}{1+h_{f e}} & h_{f c}=-\left(1+h_{f e}\right) \\
h_{\text {ob }}=\frac{h_{0 e}}{1+h_{f e}} & h_{0 c}=h_{o e}
\end{array}
$$

1) Characteristics of common emitter Amplifier
2) Current gain A_{I} is high for $R_{L}<10 \mathrm{~K} \Omega$
3) The voltage gain is high for normal values of Load resistance R_{L}
4) The input resistance R_{i} is medium
1.4) The output resistance R_{0} is moderately high

Applications of common emitter amplifier:

1. of the three configunations ce amplifier alone is capable of providing both voltage gain and current gain.
2. The output resistance R_{0} and input resistance R_{i} are moderately high
3. CE amplifier is widely used for Amplification purpose

Characteristics of common Base Amplifier:

1. current gain is less than unity and its magnitude decreases with the increase of load resistance R_{L} 2. Voltage gain A_{V} is high for normal values of R_{L}
2. The input resistance R_{i} is the lowest of all the three configurations.
3. The output resistance R_{0} is the highest of all the three configurations.

Applications of common base Amplifier The $C B$ Amplifier is not Commonly used for Amplification purpose. It is used for

1) Matching a very low impedance source.
2) As a non inverting amplifier with voltage gain exceeding unity
3) For driving a high impedance load
4) As a constant current source.
5) Characteristics of common collector Amplifier
1. For low value of $R_{L}(<10 \mathrm{k} \Omega)$ the current gain A_{I} is high and almost equal to that of a CE amplifier
2. The voltage gain A_{v} is less than unity.
3. The input resistance is the highest of all the three configurations.
4. The output resistance is the lowest of all the three configurations.
Applications of common collector Amplifier:
5. The $C C$ Amplifier is widely used as a buffer stage between a high impedance source and low impedance load. (CC Amplifier is called emitter follower)

Comparison of Transistor Amplifier configurations.
The characteristics of three configurations are summarized in table below. Here the quantities $A_{I}, A_{V}, R_{i}, R_{0}$ and A_{p} (power gain) are calculated for $R_{L}=R_{S}=3 \mathrm{k} \Omega$

Quantity	$C B$	$C C$	$C E$
A_{I}	0.98	47.5	-46.5
A_{V}	131	0.989	-131
A_{P}	128.38	46.98	6091.5
R_{i}	22.6Ω	$144 \mathrm{k} \Omega$	1065Ω
R_{0}	$1.72 \mathrm{M} \Omega$	80.5Ω	$45.5 \mathrm{~K} \Omega$

Simplified CE Hybrid model (or) Approximate CE
Hybrid model (Approximate Analysis):
As the h parameters themselves vary widely for the same type of transistor, It is justified to make approximations and simplify the expressions for $A_{I}, A V, A P, R_{i}$ and R_{0}.

The behaviour of the transistor circuit can be obtained by using the simplified hybrid model. The h-parameter equivalent circuit of the transistor in the CE configuration is shown in figure below.

The parallel combination of two unequal impedances is approximately equal to the lower value ie R_{L}. Hence if $\frac{1}{h_{0 e}}>R_{L}$, then the term hoe may be neglected provided that hoe $R_{L} \ll 1$
If hoe is omitted, the collector current I_{c} is given by $\quad I_{c}=h_{f e} I_{b}$.
under this condition the magnitude of voltage generated in the emitter circuit is
hoe $\left|V_{c}\right|=h_{r e} I_{c} R_{L}=h_{r e} h_{f e} I_{b} R_{L}$
Since here $h_{f e} \approx 0 . D 1$, this voltage nay be neglected in comparison with the voltage drop across hie. ie hie I_{b} provided that R_{L} is not too large. ie of the load resistance R_{L} is small it is possible to neglect the parameter here and: hoe and the approximate equivalent circuit is obtained as shown in figure below.

Fig: Approximate ce Hybrid model.

1) Current Gain (A_{I}):

The current gain for CE configuration is

$$
A_{I}=\frac{-h_{f e}}{1+h_{\text {oe }} R_{L}} \quad \text {, if hoe } R_{L}<0.1
$$

$$
A_{I}=-h_{f e}
$$

2) Input Impedance $\left(z_{1}\right)$:

By exact analysis $z_{i}=R_{i}=\frac{V_{1}}{I_{1}}$

$$
\begin{aligned}
& y_{1}=\text { hie } I_{1}+\text { ore } v_{2} \\
& z_{i}=\frac{h_{i e} I_{1}+h_{r e} V_{2}}{I_{1}}=h_{i e}+h_{r e} \frac{V_{2}}{I_{1}} \\
& V_{2}=-I_{2} Z_{L}=-I_{2} R_{L}=A_{I} I_{1} R_{L} \quad\left[\because A_{I}=\frac{-I_{2}}{I_{1}}\right] \\
& \Rightarrow z_{i}=h_{i e}+\text { hoe } \frac{A_{I} I_{1} R_{2}}{I_{1}} \quad\left[\because V_{2}=A_{I} I_{1} R_{L}\right] \\
& R_{i}=\left[\text { hie }+ \text { hr } A_{I} R_{L}\right] \\
& R_{i}=h_{i e}\left[1+\frac{\text { hoe } A_{I} R_{L}}{\text { hie }}\right] \\
& R_{i}=h_{i e}\left[1+\frac{h_{r e} A_{I} R_{L}}{\text { hie }} \times \frac{h_{f e} \text { hoe }}{h_{f e}}\right] \\
& \text { using the typical values for the } h \text {-parameters } \\
& \frac{\text { hoe hoe }}{\text { hie hoe }} \simeq 0.5 \\
& \Rightarrow R_{i}=\text { hie }\left[1+\frac{0.5 A_{I} R_{L} \text { hoe }}{h_{f e}}\right]
\end{aligned}
$$

we know that $A_{I}=\frac{-h f e}{1+\text { hoe } R_{L}}$ If hoe $R_{L}<0.1$
then $\quad A_{I}=-h_{f e}$
$\Rightarrow R_{i}=$ hie $\left[1-\frac{0.5 h_{f e} R_{L} h_{o e}}{h_{f e}}\right]$
$\Rightarrow R_{i}=h_{i e}\left[1-0.5\right.$ hoe $\left.R_{L}\right]$
If hoe $R_{L}<0.1$
then $\quad R_{i}=h_{i e} \quad\left[R_{i}=z_{i}\right]$
voltage gain: $A_{V}=A_{I} \frac{K_{L}}{R_{i}}=\frac{-h_{f e} R_{L}}{h_{i e}}$

output Impedance:

It is the ratio of V_{c} to I_{c} with $V_{S}=0$ and
R_{L} excluded. The simplified circuit has infinite output impedance because with $V_{S}=0$ and external voltage Source applied at output, it is found that $I_{b}=0$ and hence $I_{c}=0$

$$
R_{0}=\frac{V_{c}}{I_{c}}=\infty \quad\left[\because I_{c}=0\right]
$$

Approximate analysis of CE Amplifier
current gain $A_{I}=-h_{f e}$
Input resistance $R_{i}=$ hie
Voltage gain $A_{V}=\frac{-h_{f e} R_{L}}{h_{i e}}$
output resistance $R_{0}=\infty$

Analysis of $c c$ Amplifier using the approximate Model:
Figure shows the equivalent circuit of $c c$ Amplifier using the approximate model with the collector grounded, input signal applied between base and ground and load connected between emitter and ground.

1) current gain :-

$$
A_{I}=\frac{I_{L}}{I_{b}}=\frac{\left(1+h_{f e}\right) I_{b}}{I_{b}}=\left(1+h_{f e}\right)
$$

2) Input resistance

$$
\begin{aligned}
& V_{b}=I_{b} h_{i e}+\left(1+h_{f e}\right) I_{b} R_{L} \\
& R_{i}=\frac{V_{b}}{I_{b}}=h_{i e}+\left(1+h_{f e}\right) R_{L}
\end{aligned}
$$

3) voltage gain

$$
\begin{aligned}
& A_{V}=\frac{V_{e}}{V_{b}}=\frac{\left(1+h_{f e}\right) I_{b} R_{L}}{\left[h_{i e} I_{b}+\left(1+h_{f e}\right) I_{b} R_{L}\right]} \\
& A_{V}=\frac{\left(1+h_{f e}\right) R_{L}}{h_{i e}+\left(1+h_{f e}\right) R_{L}}=\frac{h_{i e}+\left(1+h_{f e}\right) R_{L}-h_{i e}}{h_{i e}+\left(1+h_{f e}\right) R_{L}}
\end{aligned}
$$

$$
A_{v}=1-\frac{h i e}{h_{i e}+\left(1+h_{f e}\right) R_{L}}
$$

$$
A_{V}=1-\frac{h_{i e}}{R_{i}} \quad\left[\because R_{i}=h_{i e}+\left(1+h_{f e}\right) R_{L}\right]
$$

4) Output Impedance :-

$$
\begin{aligned}
& \operatorname{admittance} \\
& \text { output impedtacere }
\end{aligned}\left(y_{0}\right)=\frac{\text { short circuit current in } 0 / P \text { temmeds }}{\text { open circuit voltage b/n opP terminals }}
$$

short circuit current

$$
=\left(1+h_{f e}\right) I_{b}=\left(1+h_{f e}\right) \frac{V_{s}}{R_{s}+h_{i e}}
$$

open circuit voltage
bIn output terminals

$$
\therefore \quad y_{0}=\frac{1+h_{f e}}{R_{S}+h_{i e}} \Rightarrow R_{0}=\frac{h_{i e}+R_{S}}{1+h_{f e}}
$$

output impedance including R_{L} ie $R_{0}^{\prime}=R_{0} \| R_{L}$

Analysis of $C B$ Amplifier using the approximate model
Figure shows the equivalent circuit of $C B$
amplifier using the approximate model, with the base grounded, input signal is applied between emitter and base and load connected between collector and base

Fig: Simplified Hybrid model for the $C B$ circuit
i) current gain:

From the figure above $A_{I}=\frac{-I_{c}}{I_{e}}=\frac{-h_{f e} I_{b}}{I_{e}}$
$I_{e}=-\left(I_{b}+I_{c}\right)$
$I_{e}=-\left(I_{b}+h_{f e} I_{b}\right)=-\left(1+h_{f e}\right) I_{b}$
$\therefore A_{I}=\frac{-h_{f e} I_{b}}{-\left(1+h_{f e}\right) I_{b}}=\frac{h_{f e}}{1+h_{f e}}=-h_{f b}$
2) Input Resistance:

Input Resistance $R_{i}=\frac{V_{e}}{I_{e}}$
From figure $V_{e}=-I_{b} h_{i e}, \quad I_{e}=-\left(1+h_{f e}\right) I_{b}$

$$
R_{i}=\frac{h_{i e}}{1+h_{f e}}=h_{i b}
$$

3) voltage gain:

$$
A_{v}=\frac{V_{c}}{V_{e}}
$$

$$
\begin{aligned}
& v_{c}=-I_{c} R_{L}=-h_{f e} I_{b} R_{L} \\
& v_{e}=-I_{b} h_{i e} \\
& A_{v}=\frac{h_{f e} R_{L}}{h_{i e}}
\end{aligned}
$$

output Impedance

$$
R_{0}=\frac{V_{C}}{I_{C}} \text { with } \quad V_{S}=0, \quad R_{L}=\infty
$$

with $V_{s}=0, I_{e}=0$ and $I_{b}=0$ hence $I_{c}=0$

$$
\therefore \quad R_{0}=\frac{V_{c}}{0}=\infty
$$

Approximate Analysis of $C B$ Amplifier

1) comment gain $A_{I}=\frac{h_{f e}}{1+h_{f e}}=-h_{f b}$
2) Input Resistance $R_{i}=\frac{h_{i e}}{1+h_{f e}}=h_{i b}$
3) voltage gain $A_{V}=\frac{h_{f e} R_{L}}{h_{i e}}$
4) out pot Resistance $R_{0}=\infty$

Approximate Analysis of $c c$ Amplifier

1) current gain $A_{I}=(1+h f e)$
2) Input resistance $R_{i}=$ hie $+\left(1+h_{f e}\right) R_{L}$
3) voltage gain $A_{v}=1-\frac{h_{i e}}{R_{i}}$
4) Output Resistance $R_{0}=\frac{h_{i e}+R_{s}}{1+h_{f e}}$

Problem: A CE Amplifier is drawn by a voltage source of Internal resistance $r_{s}=800 \Omega$ and the load impedance
is a resistance $R_{L}=1000 \Omega$. The h parameters are
$h_{i e}=1 \mathrm{k}, h_{r e}=2 \times 10^{-4}, h_{f e}=50$ and $h_{o e}=25 \mu \mathrm{~A} / \mathrm{V}$,
compote the current gain A_{I}, input resistance R_{i}, voltage gain A_{V}, and output resistance R_{0} using exact analysis and approximate analysis.
Solution: Given data
$r_{S}=800 \Omega, R_{L}=1000 \Omega$, $h_{i e}=1 \mathrm{k} \Omega, h_{r e}=2 \times 10^{-4}$,
$h_{f e}=50$, and hoe $=25 \mu \mathrm{~A} / \mathrm{v}$
Exact Analysis:-
current Gain $A_{I}=\frac{-h_{f e}}{1+h_{o e} R_{L}}=-48.78$
Input Resistance $R_{i}=h_{i e}-\frac{h_{f e} h_{r e}}{h_{0 e}+\frac{1}{R_{L}}}=990.24 \Omega$
Voltage gain $A_{V}=A_{I} \frac{R_{L}}{R_{i}}=-49.26$
outport Resistance

$$
\begin{aligned}
& y_{0}=h_{0 e}-\frac{h_{\text {fe }} h_{r e}}{h_{i e}+R_{S}}=194 \times 10^{-5} \text { mho } \\
& R_{0}=\frac{1}{y_{0}}=51.42 \mathrm{k} \Omega
\end{aligned}
$$

Approximate Analysis:

$$
\begin{aligned}
& A_{I}=-h_{f e}=-50 \\
& R_{i}=h_{i e}=1 \mathrm{k} \Omega
\end{aligned}
$$

$$
\begin{aligned}
& A_{V}=\frac{-h f e R_{L}}{h_{i e}}=-\frac{50 \times 1000}{1000}=-50 \\
& R_{0}=\infty
\end{aligned}
$$

Problem: A voltage source of Internal resistance $R_{S}=900 \Omega$ drives a $C c$ amplifier using load resistance $R_{L}=2000 \Omega$. The $C E h$-parameters are hie $=1200 \Omega$, here $=2 \times 10^{-4}$, he $=60$ and hoe $=25 \mu \mathrm{~A} / \mathrm{v}$. compute the current gain A_{I}, input Resistance R_{i}, voltage gain A_{V}, and output resistance R_{0} using exact analysis and approximate analysis.

Sol Conversion formulae:

$$
\begin{aligned}
& h_{i c}=h_{i e}=1200 \Omega \\
& h_{f C}=-\left(1+h_{f e}\right)=-(1+60)=-61 \\
& h_{r c}=1 \\
& h_{O C}=h_{o e}=25 \mu \mathrm{~A} / \mathrm{V}
\end{aligned}
$$

Exact Analysis:

$$
\begin{aligned}
& A_{I}=\frac{-h_{f c}}{1+h_{O C} R_{L}}=58.095 \\
& R_{i}=h_{i c}-\frac{h_{f C} h_{\text {rc }}}{y_{L}+h_{0 c}}=117.39 \mathrm{k} \Omega \\
& A_{V}=\frac{A_{I} R_{L}}{R_{i}}=0.9897
\end{aligned}
$$

output Admittance

$$
\begin{aligned}
& y_{0}=h_{0 c}-\frac{h_{f c} h_{r c}}{h_{i c}+R_{S}} \\
& \Rightarrow R_{O}=\frac{1}{y_{0}}=34.396 \Omega
\end{aligned}
$$

Approximate Analysis

$$
\begin{aligned}
& A_{I}=1+h_{f e}=1+60=61 \\
& R_{i}=h_{i e}+\left(1+h_{f e}\right) R_{L}=123.2 \mathrm{k} \Omega \\
& A_{V}=1-\frac{h_{i e}}{R_{i}}=0.99 \\
& R_{0}=\frac{h_{i e}+R_{S}}{1+h_{f e}}=34.43 \Omega
\end{aligned}
$$

Problem:
For a $C B$ transistor Amplifier driven by a voltage Source of internal resistance $R_{S}=1200 \Omega$, the load impedance is a resistor $R_{L}=1000 \Omega$. The h-parameters are $h_{i b}=22 \Omega, h_{r b}=3 \times 10^{-4}, h_{f b}=-0.98$, $h_{o b}=0.5 \mu \mathrm{~A} / \mathrm{V}$. Compute the current gain A_{I}, Input impedance R_{i}, voltage gain A_{v}, overall voltage gain $A_{v s}$, over all current gain AIS, output impedance R_{0} and power gain Ap using exact and approximate analysis.
Solution:
current gain $A_{I}=\frac{-h f b}{1+h_{0 b} R_{L}}=0.98$
Input Impedance $R_{i}=h_{i b}-\frac{h_{f b} h_{r b}}{y_{L}+h_{o b}}=22.3 \Omega$
voltage gain $A_{V}=\frac{A_{I} R_{L}}{R_{i}}=\frac{0.98 \times 1000}{22.3}=43.94$
overall voltage gain $A_{V S}=\frac{A_{V} R_{i}}{R_{i}+R_{S}}=0.802$
overall current gain $A_{I S}=\frac{A_{I} R_{S}}{R_{i}+R_{S}}=0.962$
output Admittance $Y_{0}=h_{o b}-\frac{h_{f b h r b}}{h_{i b}+R_{s}}=\frac{0.74 \times 10^{-6}}{\text { mho }}$

$$
R_{0}=\frac{1}{y_{0}}=1.35 \mathrm{~m} \Omega
$$

Power gain $A P=A_{V} A_{I}=43.06$
Approximate Analysis:

1) $A_{I}=-h_{f b}=0.98$
2) $R_{i}=h_{i b}=22 \Omega$
3) $A_{v}=\frac{h_{f e} R_{L}}{h_{i e}}$
$\begin{cases}\cdots & \text { convulsion formulae } \\ & h_{f b}=\frac{-h_{f e}}{1+h_{f e}}\end{cases}$
4) $A_{v}=\frac{49 \times 1000}{1100}$

$$
A_{V}=44.54
$$

15) $R_{0}=\infty$

Avs, AIs, AP are same as that of Exact analysis.

$$
\begin{aligned}
& v_{i}=h_{i} I_{i}+h_{x} v_{0} \\
& I_{0}=h_{f} I_{i}+h_{0} v_{0}
\end{aligned}
$$

Definitions of h-parameter:
The parameters in the above equation are defined as follows
$h_{11}=h_{i}=\left.\frac{v_{i}}{I_{i}}\right|_{v_{0}=0}=\begin{aligned} & \text { Input resistance with output } \\ & \text { Short circuited. }\end{aligned}$
$h_{12}=h_{r}=\left.\frac{v_{i}}{I_{0}}\right|_{I_{i}=0}=\begin{aligned} & \text { Reverse voltage transfer ratio } \\ & \text { with input open circuited. }\end{aligned}$
$h_{21}=h_{f}=\left.\frac{I_{0}}{I_{i}}\right|_{V_{0}=0}=\begin{aligned} & \text { short circuit } \times \text { current gain } \\ & \text { with output short circuited }\end{aligned}$
$h_{22}=h_{0}=\left.\frac{I_{0}}{V_{0}}\right|_{I_{1}=0}=\begin{aligned} & \text { output Admittance with input } \\ & \text { open circuited. }\end{aligned}$
BJT H-parameter Model:
Based on the definition of hybrid parameters the mathematical model for two port networks known
as h-parameter model (Hybrid parameter model) can be developed.

The two

$$
\begin{aligned}
& \text { equations of a transistor is given by } \\
& v_{i}=h_{i} I_{i}+h_{r} v_{0} \\
& I_{0}=h_{f} I_{i}+h_{0} v_{0}
\end{aligned}
$$

Derivation for CC configuration

Current Gain (A_{I})
Applying $K C L$ anode (1)

$$
\begin{align*}
I_{E} & =I_{B}+h_{f e} I_{b} \\
& =J_{B}\left(1+h_{f e}\right) \\
I_{E} & =I_{B}\left(1+h_{f e}\right) \tag{1}
\end{align*}
$$

$$
A_{I} \text { (Current Gain) }=\frac{I_{0}}{I_{b}}=\frac{I_{B}}{I_{B}}
$$

subvalue of $I E$ from above eq

$$
\begin{aligned}
& A_{I}=\frac{I_{B}\left(1+h_{f e}\right)}{I_{B}} \\
& A_{I}=\left(1+h_{f e}\right)
\end{aligned}
$$

Applying KVL for the outer look-:

$$
V_{i}=h_{i e} I_{b}+I_{E} R_{E}
$$

Sub. value of $I_{E}=\left(1+h_{f e}\right) I_{b}$

$$
\begin{array}{r}
V_{i=}=h_{i e}+I_{b}+\left(1+h_{j e}\right) I_{b} R_{B_{3}} \\
V_{i}=I_{b}\left[h_{i e}+\left(1+h_{j e}\right) R_{B}\right] \\
R_{i}=\frac{V_{i}}{I_{b}}=h_{i e}+\left(1+h_{f e}\right) R_{E} \\
\therefore R_{i}=h_{i e}+\left(1+h_{j e}\right) R_{F_{i}}
\end{array}
$$

Voltage Gain (Av)
From op loop

$$
\begin{aligned}
& V_{0}=I_{E} R_{B} \\
&=\left(1+h_{f e}\right) I_{B} R_{E} \quad\left\{I_{E}=\left(1+h_{f e}\right) I_{B}\right\} \\
& V_{0}=\left(1+h_{f e}\right) I_{B} R_{B} \\
& \text { Voltage Gain }\left(A_{V}\right)=\frac{V_{0}}{V_{i}}=\frac{\left(1+h_{f e}\right) y_{B} R_{B}}{I_{B}\left[h_{\text {ie }}+\left(1+h_{f e}\right) R_{B}\right]} \\
& \frac{V_{0}}{V_{i}}=\frac{\left(1+h_{f e}\right) R_{E_{2}}}{\left[h_{\text {he }}+\left(1+h_{f e}\right) R_{E}\right]}
\end{aligned}
$$

dividing num $\cdot s$ dep. by $\left[\left(1+h_{f}\right) R_{B}\right]$
we get

$$
\begin{equation*}
A_{V}=\frac{1}{1+\frac{h_{i e}}{\left(1+h_{f e}\right) R_{E}}} \tag{2}
\end{equation*}
$$

Now,

$$
{ }_{R_{i}}=\left(1+h_{f e}\right) R_{R_{F}}+h_{i e} .
$$

$R_{i} \cong\left(1+h_{\lambda_{A}} R_{E} \quad\{\right.$ as hie is very small and can be neglected)

$$
\begin{equation*}
\therefore R_{E}=\frac{R l}{1+h_{f e}} \tag{3}
\end{equation*}
$$

sub value of R_{E} in eq (3), we get

$$
\begin{aligned}
& A_{v}=\frac{1}{1+\frac{h_{i e} \cdot\left(1+h_{k_{e}}\right)}{\left(1+h_{\left.\mathrm{Fe}_{e}\right)} \cdot R_{i}\right.}} \\
& A_{v}=\frac{1}{\left(1+\frac{h_{i e}}{R_{i}}\right)} \\
& A_{V}=\left(1+\frac{h_{i e}}{R_{i}}\right)^{-1}
\end{aligned}
$$

O/P Resistance (R_{0})

$$
R_{0}=\frac{V_{0 c}}{I_{S C}}
$$

(a) Circuit fon Voc

(b) Circuit for ISC.
from fig (a)

$$
V_{O C}=V_{S} .
$$

Now fromfig (b), ISC cambe calculaled.
Applying KVLin loop.

$$
\begin{aligned}
& V_{s}=I_{b} R_{s}+h_{i e} I_{b} \\
& V_{s}=I_{b}\left(R_{s}+h_{i e}\right) \\
& I_{b}=\frac{V_{s}}{\left(R_{s}+h_{j e}\right)}
\end{aligned}
$$

Short circuit werrent $I_{S C}=\left(1+h_{f e}\right)_{b}$

$$
\begin{align*}
I_{s c} & =\frac{\left(1+h_{j e}\right) \cdot V_{s}}{\left(R_{s}+h_{i e}\right)} \tag{5}\\
\therefore R_{0}=\frac{V_{0 c}}{I_{s c}} & =\frac{X_{s} \cdot\left(R_{s}+h_{i e}\right)}{\left(1+h_{f e}\right) \cdot V_{s}} \therefore R_{0}=\frac{\left(R_{s}+h_{i e}\right)}{\left(1+h_{\text {fe }}\right)}
\end{align*}
$$

