

Jaipur Engineering College and

Research Centre, Shri Ram ki Nangal,

via Sitapura RIICO Jaipur- 302 022.

Academic year-

2020-2021

Vision & Mission of the Department

Vision of the Department

To become renowned Centre of excellence in computer science and engineering and make

competent engineers & professionals with high ethical values prepared for lifelong learning.

 Mission of the Department

M1: To impart outcome based education for emerging technologies in the field of computer

science and engineering.

M2: To provide opportunities for interaction between academia and industry.

M3: To provide platform for lifelong learning by accepting the change in technologies

M4: To develop aptitude of fulfilling social responsibilities.

Jaipur Engineering College and

Research Centre, Shri Ram ki Nangal,

via Sitapura RIICO Jaipur- 302 022.

Academic year-

2020-2021

SYLLABUS

Jaipur Engineering College and

Research Centre, Shri Ram ki Nangal,

via Sitapura RIICO Jaipur- 302 022.

Academic year-

2020-2021

PROGRAM OUTCOMES

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent responsibilities

relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with

the engineering community and with society at large, such as, being able to comprehend

Jaipur Engineering College and

Research Centre, Shri Ram ki Nangal,

via Sitapura RIICO Jaipur- 302 022.

Academic year-

2020-2021

and write effective reports and design documentation, make effective presentations, and

give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of

the engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

Jaipur Engineering College and

Research Centre, Shri Ram ki Nangal,

via Sitapura RIICO Jaipur- 302 022.

Academic year-

2020-2021

Jaipur Engineering College and Research Centre

 Department of Computer Science & Engineering

Subject – Big Data Analytics Subject code – 8CS4 - 01

Semester - VIII [L/T/P - 3/0/0]

Course Outcome

CO1. To understand the features, file system and challenges of big data.

CO2. To learn and analyze big data analytics tools like Map Reduce, Hadoop.

CO3. To apply and evaluate Hadoop programming with respect to PIG architecture.

CO4. To create and analyze database with Hive and related tools.

CO- PO Mapping

H=3, M=2, L=1

S
em

ester

S
u
b
ject

C
o
d
e

L
/T

/P

C
O

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

1
0

P
O

1
1

P
O

1
2

V
II

I

 V

B
ig

 D
a
ta

A
n

a
ly

ti
cs

8
C

S
4
 -

 0
1
 L CO1 3 2 2 2 1 1 1 1 1 1 2 3

L CO2 3 3 3 2 2 1 1 1 1 1 2 3

L CO3 3 3 3 2 2 1 1 1 1 2 2 3

L CO4 3 3 3 2 2 2 2 2 2 2 2 3

Jaipur Engineering College and

Research Centre, Shri Ram ki Nangal,

via Sitapura RIICO Jaipur- 302 022.

Academic year-

2020-2021

PROGRAM EDUCATIONAL OBJECTIVES:

1. To provide students with the fundamentals of Engineering Sciences with more

emphasis in Computer Science &Engineering by way of analyzing and exploiting

engineering challenges.

2. To train students with good scientific and engineering knowledge so as to

comprehend, analyze, design, and create novel products and solutions for the real

life problems.

3. To inculcate professional and ethical attitude, effective communication skills,

teamwork skills, multidisciplinary approach, entrepreneurial thinking and an ability

to relate engineering issues with social issues.

4. To provide students with an academic environment aware of excellence, leadership,

written ethical codes and guidelines, and the self motivated life-long learning

needed for a successful professional career.

5. To prepare students to excel in Industry and Higher education by Educating

Students along with High moral values and Knowledge

Jaipur Engineering college and research

centre, Shri Ram ki Nangal, via Sitapura

RIICO Jaipur- 302 022.

Academic year-

2020-2021

I

UNIT - 5

Applying Structure to Hadoop
Data with Hive

In This Chapter
▶ Introducing Hive

▶ Exploring the Hive architecture

▶ Getting started (properly) with Hive

▶ Working with the Hive clients

▶ Seeing which data types work with Hive

▶ Creating and managing databases and tables

▶ Mastering the Hive data-manipulation language

▶ Querying and analyzing data

f you were to look back at the history of the IT Industry, you’d soon see
that every decade has had one or more watershed moments. Huge inno-

vations have often dramatically impacted the industry as a whole, changing
the course of certain companies and creating a “genesis moment” for others.
Edgar F. Codd’s groundbreaking work in the 1970s on the relational model
that spawned the whole relational database management system (RDBMS)
industry was definitely a significant innovation. Immediately following Codd’s
innovation was the introduction of structured query language (SQL), which
was created by Donald D. Chamberlin and Raymond F. Boyce to provide a
common programming language for managing data stored in a RDBMS. The
RDBMS and SQL technologies became the de facto standards for data man-
agement and processing and have continued to hold sway over the industry.

Now, if you were to ask us to name the major innovation of the “noughties”
(we’re still getting used to this nickname for the aught years, from 2000 to
2009), we’d pick Apache Hadoop, of course — the amazing new technol-

ogy for big data management, analysis, and processing. However, few if any
new IT technologies, no matter how innovative and attractive, can uproot

established standards and start over with a clean slate. For Hadoop to truly
have a broad impact on the IT Industry and live up to its true potential, it
needed to “play nice” with the older technologies: It had to support SQL;
integrate with, and extend, the RDBMS; and enable IT professionals who
lack skills in using Java MapReduce to take advantage of its features. For
this reason (and others, which we discuss later in this chapter), Apache
Hive was created at Facebook by a team of engineers who were led by Jeff
Hammerbacher. Hive, a top-level Apache project and a vital component
within the Apache Hadoop ecosystem, drives several leading big-data use
cases and has brought Hadoop into data centers across the globe.

Saying Hello to Hive
To make a long story short, Hive provides Hadoop with a bridge to the
RDBMS world and provides an SQL dialect known as Hive Query Language
(HiveQL), which can be used to perform SQL-like tasks. That’s the big news,
but there’s more to Hive than meets the eye, as they say, or more applica-
tions of this new technology than you can present in a standard elevator
pitch. For example, Hive also makes possible the concept known as enter-
prise data warehouse (EDW) augmentation, a leading use case for Apache
Hadoop, where data warehouses are set up as RDBMSs built specifically for
data analysis and reporting. Now, some experts will argue that Hadoop (with
Hive, HBase, Sqoop, and its assorted buddies) can replace the EDW, but we
disagree. We believe that Apache Hadoop is a great addition to the enterprise
and that it can augment (as mentioned earlier in this paragraph) and comple-
ment existing EDWs. This particular debate is also the subject of Chapter 10,
so check out our discussion there. For now, we leave that debate alone and
simply explain in this chapter how Hive, HBase, and Sqoop enable EDW
augmentation.

Closely associated with RDBMS/EDW technology is extract, transform, and
load (ETL) technology. To grasp what ETL does, it helps to know that, in many
use cases, data cannot be immediately loaded into the relational database — it
must first be extracted from its native source, transformed into an appropriate
format, and then loaded into the RDBMS or EDW. For example, a company or
an organization might extract unstructured text data from an Internet forum,
transform the data into a structured format that’s both valuable and useful,
and then load the structured data into its EDW.

As you make your way through this chapter (if you choose to read it that
way), you can see that Hive is a powerful ETL tool in its own right, along
with the major player in this realm: Apache Pig. (See Chapter 8 for more on
Apache’s porcine offering.) Again, users may try to set up Hive and Pig as
the new ETL tools for the data center. (Let them try.) As with the debate over

EDW versus Apache Hadoop, we see these Apache Hadoop technologies not
as direct replacements for existing ETL tools but instead as powerful new ETL
tools to be used when appropriate.

Last but not least, Apache Hive gives you powerful analytical tools, all within
the framework of HiveQL. These tools should look and feel quite familiar to IT
professionals who understand how to use SQL. We provide you with hands-
on examples of Hive analytics later in this chapter, but first we discuss the
architecture of Hive in the next section.

Seeing How the Hive is Put Together
In this section, we illustrate for you the architecture of Apache Hive and
explain its various components, as shown in the illustration in Figure 13-1.

Figure 13-1:
The Apache

Hive
architecture.

As you examine the elements shown in Figure 13-1, you can see at the bottom
that Hive sits on top of the Hadoop Distributed File System (HDFS) and
MapReduce systems. In the case of MapReduce, Figure 13-1 shows both the
Hadoop 1 and Hadoop 2 components. With Hadoop 1, Hive queries are con-
verted to MapReduce code and executed using the MapReduce v1 (MRv1)
infrastructure, like the JobTracker and TaskTracker. With Hadoop 2, YARN
has decoupled resource management and scheduling from the MapReduce
framework. (For more on MapReduce and YARN, check out Chapters 6 and 7.)
Hive queries can still be converted to MapReduce code and executed, now
with MapReduce v2 (MRv2) and the YARN infrastructure.

There is a new framework under development called Apache Tez, which is
designed to improve Hive performance for batch-style queries and support
smaller interactive (also known as real-time) queries. At the time of writing, the
Apache Tez project is still in incubation, and doesn’t yet have a production-ready
release.

If it helps you visualize how all the pieces fit together, think of the HDFS
(see Chapter 4) and MapReduce systems (see Chapter 6) as being parts of
the Apache Hadoop operating system, with Hive — as well as other compo-
nents, such as HBase, described in Chapter 12 — as higher-level functions or
applications. (If you read the chapters in this part of the book, you can see
a common theme emerge: HDFS provides the storage, and MapReduce pro-
vides the parallel processing capability for higher-level functions within the
Hadoop ecosystem.) Moving up the diagram, you find the Hive Driver, which
compiles, optimizes, and executes the HiveQL. The Hive Driver may choose
to execute HiveQL statements and commands locally or spawn a MapReduce
job, depending on the task at hand. (We discuss MapReduce within the con-
text of Hive later in this chapter.) The Hive Driver stores table metadata in
the metastore and its database.

We assume that you have some familiarity with SQL and the relational data-
base model from the world of RDBMSs. A table or relation is composed of verti-
cal columns and horizontal rows. Cells are stored where the rows and columns
intersect. If you’re not familiar with SQL and the relational database model,
you can find helpful learning sources using your favorite search engine.

By default, Hive includes the Apache Derby RDBMS configured with the
metastore in what’s called embedded mode. Embedded mode means that the
Hive Driver, the metastore, and Apache Derby are all running in one Java
Virtual Machine (JVM). This configuration is fine for learning purposes, but
embedded mode can support only a single Hive session, so it normally isn’t
used in multi-user production environments. Two other modes exist — local
and remote — which can better support multiple Hive sessions in production
environments. Also, you can configure any RDBMS that’s compliant with the
Java Database Connectivity (JDBC) Application Programming Interface (API)
suite. (Examples here include MySQL and DB2.)

The key to application support is the Hive Thrift Server (see Figure 13-1),
which enables a rich set of clients to access the Hive subsystem. We’ve
included the open source SQuirreL SQL client, which can be found at
http://squirrel-sql.sourceforge.net, as an example. The main
point is that any JDBC-compliant application can access Hive via the bundled
JDBC driver. The same statement applies to clients compliant with Open
Database Connectivity (ODBC) — for example, unixODBC and the isql utility,
which are typically bundled with Linux, enable access to Hive from remote
Linux clients. Additionally, if you use Microsoft Excel, you’ll be pleased to
know that you can access Hive after you install the Microsoft ODBC driver
on your client system. Finally, if you need to access Hive from programming
languages other than Java (PHP or Python, for example), Apache Thrift is the
answer. Apache Thrift clients connect to Hive via the Hive Thrift Server, just
as the JDBC and ODBC clients do.

To continue with the Hive architecture drawing in Figure 13-1, note that Hive
includes a Command Line Interface (CLI), where you can use a Linux terminal
window to issue queries and administrative commands directly to the Hive
Driver. (We use the Hive CLI several times in this chapter to demonstrate
HiveQL.) If a graphical approach is more your speed, there’s also a handy
web interface so that you can access your Hive-managed tables and data via
your favorite browser.

There is another web browser technology known as Hue that provides a
graphical user interface (GUI) to Apache Hive. Some Hadoop users like to have
a GUI at their disposal instead of just a command line interface (CLI). Along
with Hive, Hue supports other key Hadoop technologies as well like HDFS,
MapReduce/YARN, HBase, Zookeeper, Oozie, Pig, and Sqoop. We think you’ll
like the name for Hue’s Apache Hive GUI -- it’s called Beeswax. Hue is also an
open source project and you can find it at http://gethue.com.

Getting Started with Apache Hive
As with most technological matters, there’s no better way to see what’s what
than to install the software and give it a test run — Hive is no exception. And,
as with other technologies in the Hadoop ecosystem, it doesn’t take long to
get started.

If you have the time and the network bandwidth, it’s always best to download
an entire Apache Hadoop distribution with all the technologies integrated and
ready to run. You can find a list of Apache Hadoop bundles at

http://squirrel-sql.sourceforge.net/
http://gethue.com/

If you take the full-distribution route, a popular approach for learning the ins
and outs of Hive is to run your Hadoop distribution in a Linux virtual machine
(VM) on a 64-bit-capable laptop with sufficient RAM. (Eight gigabytes or
more of RAM tends to work well if Windows 7 is hosting your VM, although
we’ve met engineers who live dangerously with less.) You also need Java 6 or
later and — of course — a supported operating system: Linux, Mac OS X, or
Cygwin, to provide a Linux shell for Windows users. (We use Red Hat Linux
on Windows 7 in a VMware virtual machine for the sample environment.)

The setup steps run something like this:

1. Download the latest Hive release from this site:

 http://hive.apache.org/releases.html

For this book, we downloaded Hive version 11.0. You also need the
Hadoop and MapReduce subsystems, so be sure to complete Step 2.

2. Download Hadoop version 1.2.1 from this site:

 http://hadoop.apache.org/releases.html

3. Using the commands in Listing 13-1 (the listing following this step list),
place the releases in separate directories, and then uncompress and
untar them. (Untar is one of those pesky Unix terms which simply
means to expand an archived software package.)

4. Using the commands in Listing 13-2 (again, following this step list),
set up your Apache Hive environment variables, including HADOOP_
HOME, JAVA_HOME, HIVE_HOME and PATH, in your shell profile
script.

5. Create the Hive configuration file that you’ll use to define specific
Hive configuration settings.

The Apache Hive distribution includes a template configuration file that
provides all default settings for Hive. To customize Hive for your envi-
ronment, all you need to do is copy the template file to the file named
hive-site.xml and edit it. Listing 13-3 shows the steps to accomplish
this task.

Because you’re running Hive in stand-alone mode on a virtual machine
rather than in a real-life Apache Hadoop cluster, configure the system
to use local storage rather than the HDFS: Simply set the hive.
metastore.warehouse.dir parameter. As we demonstrate in the next

http://wiki.apache.org/hadoop/Distributions%20and%20
Commercial%20Support

http://hive.apache.org/releases.html
http://hadoop.apache.org/releases.html
http://wiki.apache.org/hadoop/Distributions%20and

section, when you start a Hive client, the $HIVE_HOME environment vari-
able tells the client that it should look for your configuration file (hive-
site.xml) in the conf directory.

Listing 13-1: Installing Apache Hadoop and Hive

Listing 13-2: Setting Up Apache Hive Environment Variables in .bashrc

Listing 13-3: Setting Up the hive-site.xml File

$ mkdir hadoop; cp hadoop-1.2.1.tar.gz hadoop; cd hadoop

$ gunzip hadoop-1.2.1.tar.gz

$ tar xvf *.tar

$ mkdir hive; cp hive-0.11.0.tar.gz hive; cd hive

$ gunzip hive-0.11.0.tar.gz

$ tar xvf *.tar

export HADOOP_HOME=/home/user/Hive/hadoop/hadoop-1.2.1

export JAVA_HOME=/opt/jdk

export HIVE_HOME=/home/user/Hive/hive-0.11.0

export PATH=$HADOOP_HOME/bin:$HIVE_HOME/bin:

$JAVA_HOME/bin:$PATH

$ cd $HIVE_HOME/conf

$ cp hive-default.xml.template hive-site.xml

(Using your favorite editor, modify the hive-site.xml file

so that it only includes the "hive.metastore.

warehouse.dir" property for now. When finished

it will look like the XML file below. Note

that we removed the comments to shorten the

listing):

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl"

href="configuration.xsl"?>

<configuration>

<!-- Hive Execution Parameters -->

<property>

<name>hive.metastore.warehouse.dir</name>

<value>/home/biadmin/Hive/warehouse</value>
<description>location of default database for the

warehouse</description>

</property>

</configuration>

Both Hadoop and Hive support a local mode configuration, which is the
approach we’re leveraging in this chapter. If you already have a Hadoop cluster
configured and running, you need to set the hive.metastore.warehouse.
dir configuration variable to the HDFS directory where you intend to store
your Hive warehouse, set the mapred.job.tracker configuration variable to
point to your Hadoop JobTracker, and (most likely) set up a distributed metas-
tore. For the latest up-to-date Hive installation instructions, see the page at

That’s all you need to do to get started with Apache Hive! In the next section,
you meet several Hive clients and get to run your first Hive commands.

Examining the Hive Clients
Earlier in this chapter (refer to Figure 13-1), you can see that there are quite a
number of client options for Hive. It’s truly beyond the scope of this chapter
to show you how to leverage all the client options, so we picked three that we
believe should prove quite useful when the time comes to analyze data using
HiveQL. The first client is the Hive command-line interface (CLI), followed
by a web browser using the Hive Web Interface (HWI) Server, and, finally,
the open source SQuirreL client using the JDBC driver. Each of these client
options can play a particular role as you work with Hive to analyze data.

The Hive CLI client
To master the finer points of the Hive CLI client, it might help to revisit the
(somewhat busy-looking) Hive architecture diagram shown in Figure 13-1.
In Figure 13-2, we’ve streamlined the original figure to focus only on the compo-
nents that are required when running the CLI.

Figure 13-2:
The Hive

command-
line inter-

face mode.

https://cwiki.apache.org/confluence/display/Hive/
GettingStarted

Figure 13-2 illustrates the components of Hive that are needed when running
the CLI on a Hadoop cluster. In the examples in this chapter, you run Hive in
local mode, which uses local storage, rather than the HDFS, for your data.

To run the Hive CLI, you execute the hive command and specify the CLI as
the service you want to run. In Listing 13-4, you can see the command that’s
required as well as some of our first HiveQL statements. (We have included a
steps annotation using the A-B-C model in the listing to direct your attention
to the key commands.)

Listing 13-4: Using the Hive CLI to Create a Table

The first command in Listing 13-4 (see Step A) starts the Hive CLI using the
$HIVE_HOME environment variable (refer to Listing 13-2). The –service
cli command-line option directs the Hive system to start the command-line
interface, though you could have chosen other servers. (In fact, you can try
a few later in this section.) Next, in Step B, you tell the Hive CLI to print your
current working database so that you know where you are in the namespace.
(This statement will make sense after we explain how to use the next com-
mand, so hold tight.) Continuing in Listing 13-4, in Step C you use HiveQL’s
data definition language (DDL) to create your first database. (Remember that
databases in Hive are simply namespaces where particular tables reside;
because a set of tables can be thought of as a database or schema, you could
have used the term SCHEMA in place of DATABASE to accomplish the same
result.) More specifically, you’re using DDL to tell the system to create a data-
base called ourfirstdatabase and then to make this database the default
for subsequent HiveQL DDL commands using the USE command in Step
D. In Step E, you create your first table and give it the (quite appropriate)
name our_first_table. (Until now, you may have believed that it looks
a lot like SQL, with perhaps a few minor differences in syntax depending on
which RDBMS you’re accustomed to — and you would have been right.)

(A) $ $HIVE_HOME/bin hive --service cli
(B) hive> set hive.cli.print.current.db=true;
(C) hive (default)> CREATE DATABASE ourfirstdatabase;
OK

Time taken: 3.756 seconds

(D) hive (default)> USE ourfirstdatabase;
OK

Time taken: 0.039 seconds

(E) hive (ourfirstdatabase)> CREATE TABLE our_first_table
(

> FirstName STRING,

> LastName STRING,

> EmployeeId INT);

OK

Time taken: 0.043 seconds

hive (ourfirstdatabase)> quit;

(F) $ ls /home/biadmin/Hive/warehouse/ourfirstdatabase.db
our_first_table

The last command, in Step F, carries out a directory listing of your chosen
Hive warehouse directory so that you can see that our_first_table has in
fact been stored on disk.

You set the hive.metastore.warehouse.dir variable to point to the local
directory /home/biadmin/Hive/warehouse in your Linux virtual machine
rather than use the HDFS as you would on a proper Hadoop cluster.

After you’ve created a table, it’s interesting to view the table’s metadata. In
production environments, you might have dozens of tables or more, so it’s
helpful to be able to review the table structure from time to time. You can use
a HiveQL command to do this using the Hive CLI, but the Hive Web Interface
(HWI) Server provides a helpful interface for this type of operation. (More on
HWI in the next section.)

Using the HWI Server instead of the CLI can also be more secure. Careful
consideration must be made when using the CLI in production environments
because the machine running the CLI must have access to the entire Hadoop
cluster. Therefore, system administrators typically put in place tools like the
secure shell (ssh) in order to provide controlled and secure access to the
machine running the CLI as well as to provide network encryption. However,
when the HWI Server is employed, a user can only access Hive data allowed
by the HWI Server via his or her web browser

The web browser as Hive client
Using the Hive CLI requires only one command to start the Hive shell, but
when you want to access Hive using a web browser, you first need to start
the HWI Server and then point your browser to the port on which the server
is listening. Figure 13-3 illustrates how this type of Hive client configuration
might work. (Note that even though you might not be using the Hive CLI, it’s
not an optional component and is still present.)

Figure 13-3:
The Hive

Web
Interface
client con-
figuration.

The following steps show you what you need to do before you can start the
HWI Server:

1. Using the commands in Listing 13-5 (following this list), configure the

$HIVE_HOME/conf/hive-site.xml file to ensure that Hive can find
and load the HWI’s Java server pages.

2. The HWI Server requires Apache Ant libraries to run, so you need to
download more files. Download Ant from the Apache site at http://
ant.apache.org/bindownload.cgi.

3. Install Ant using the following commands:

4. Set the $ANT_LIB environment variable and start the HWI Server by
using the following commands:

Listing 13-5: Configuring the $HIVE_HOME/conf/hive-site.xml file

In a production environment, you’d probably configure two other properties:
hive.hwi.listen.host and hive.hwi.listen.port. You can use the
first property to set the IP address of the system running your HWI Server, and
use the second to set the port that the HWI Server listens on. In this exercise,
you use the default settings: With the HWI Server now running, you simply
enter the URL http://localhost:9999/hwi/ into your web browser and
view the metadata for our_first_table (refer to Listing 13-4). Figure 13-4
shows what the screen looks like after selecting the Browse Schema link fol-
lowed by ourfirstdatabase and our_first_table.

mkdir ant
cp apache-ant-1.9.2-bin.tar.gz ant; cd ant

gunzip apache-ant-1.9.2-bin.tar.gz

tar xvf apache-ant-1.9.2-bin.tar

$ export ANT_LIB=/home/user/ant/apache-ant-1.9.2/lib

$ bin/hive --service hwi

13/09/24 16:54:37 INFO hwi.HWIServer: HWI is starting up

...
13/09/24 16:54:38 INFO mortbay.log: Started

SocketConnector@0.0.0.0:9999

<property>

<name>hive.hwi.war.file</name>

<value>${HIVE_HOME}/lib/hive_hwi.war</value>
<description>This is the WAR file with the

jsp

content for Hive Web Interface</description>

</property>

Figure 13-4:
Using the
Hive Web

Interface to
browse the
metadata.

In production environments, working with the HWI Server can save you the
time of loading the Hive distribution on every client — instead, you just point
your browser to the server running the HWI. Additionally, you can use the
HWI Server to view Hive Thrift Server diagnostics and query tables. The HWI
Server allows you to set up batch sessions for long-running queries. To set up
a session, you simply click the Create Session link (refer to Figure 13-4).

SQuirreL as Hive client
with the JDBC Driver
The last Hive client we discuss and demonstrate in this chapter is the open
source tool SQuirreL SQL. You can download this universal SQL client from
the SourceForge website: http://sourceforge.net. It provides a user
interface to Hive and simplifies the tasks of querying large tables and analyz-
ing data with Apache Hive.

Figure 13-5 illustrates how the Hive architecture would work when using tools
such as SQuirreL.

In the figure, you can see that the SQuirreL client uses the JDBC APIs to pass
commands to the Hive Driver by way of the Server.

For a helpful example of a Hive Java client connecting to the system via the
JDBC interface, see

https://cwiki.apache.org/confluence/display/Hive/
HiveClient#HiveClient-JDBC

http://sourceforge.net/

Figure 13-5:
Using the
SQuirreL
client with

Apache
Hive.

Follow these steps to get SQuirreL running:

1. Start the Hive Thrift Server using the command in Listing 13-6 (follow-
ing this list).

2. Download the latest SQuirreL distribution from the SourceForge site
into a directory of your choice.

For this example, we downloaded squirrel-sql-3.5.0-
standard.tar.gz from http://sourceforge.net/projects/
squirrel-sql/files/1-stable/3.5.0-plainzip.

3. Uncompress the SQuirreL package using the gunzip command and
expand the archive using the tar command.

4. Change to the new SQuirreL release directory and start the tool using
the following command.

5. Follow the directions for running SQuirreL with Apache Hive at

Note that the instructions for including the Hadoop core .jar file may
differ depending on the Hadoop release. In this case, the Hadoop .jar
file was named hadoop-core-1.2.1.jar, so including $HADOOP_
HOME/hadoop-*-core.jar per the online instructions was incorrect.
We had to use $HADOOP_HOME/hadoop-core*.jar.

$ cd squirrel-sql-3.5.0-standard;./squirrel-
sql.sh

gunzip squirrel-sql-3.5.0-standard.tar.gz; tar
xvf squirrel-sql-3.5.0-standard.tar.gz

https://cwiki.apache.org/confluence/display/Hive/

HiveJDBCInterface - HiveJDBCInterface-
IntegrationwithSQuirrelSQLClient

http://sourceforge.net/projects/

Listing 13-6: Starting the Hive Thrift Server

This is all that’s required to begin using the SQuirreL graphical user interface.
Figure 13-6 shows some HiveQL commands running against the Hive Driver —
similar to the commands you ran earlier, with the CLI; refer to Listing 13-4.

Figure 13-6:
Using the
SQuirreL

SQL client to
run HiveQL

commands.

The Apache Hive 0.11 release also includes a new Hive Thrift Server called
HiveServer2. When configured correctly, HiveServer2 can support multiple
clients (a CLI client and a SQuirreL client at the same time, for example)
and it provides better security. For more information on HiveServer2
see: https://cwiki.apache.org/confluence/display/Hive/
Setting+up+HiveServer2.

Now that you know how to leverage some indispensable Hive client technolo-
gies, we want to start you on your survey of the HiveQL. Your first stop: Hive
data types.

Working with Hive Data Types
Listing 13-7 goes to the trouble of creating a table that leverages all (as of this
writing) Hive-supported data types.

$ $HIVE_HOME/bin/hive --service hiveserver -p 10000 -v

Starting Hive Thrift Server

Starting Hive Thrift Server on port 10000 with 100 min

worker threads and 2147483647 max worker
threads

Listing 13-7: HiveQL-Supported Data Types

$./hive --service cli

hive> CREATE DATABASE data_types_db;

OK

Time taken: 0.119 seconds

hive> USE data_types_db;

OK

Time taken: 0.018 seconds

(1) Hive> CREATE TABLE data_types_table (
(2) > our_tinyint TINYINT COMMENT '1 byte signed integer',

(3) > our_smallint SMALLINT COMMENT '2 byte signed integer',

(4) > our_int INT COMMENT '4 byte signed integer',

(5) > our_bigint BIGINT COMMENT '8 byte signed integer',

(6) > our_float FLOAT COMMENT 'Single precision floating point',

(7) > our_double DOUBLE COMMENT 'Double precision floating point',

(8) > our_decimal DECIMAL COMMENT 'Precise decimal type based

(9) > on Java BigDecimal Object',

(10) > our_timestamp TIMESTAMP COMMENT 'YYYY-MM-DD HH:MM:SS.fffffffff"

(11) > (9 decimal place precision)',

(12) > our_boolean BOOLEAN COMMENT 'TRUE or FALSE boolean data type',

(13) > our_string STRING COMMENT 'Character String data type',

(14) > our_binary BINARY COMMENT 'Data Type for Storing arbitrary

(15) > number of bytes',

(16) > our_array ARRAY<TINYINT> COMMENT 'A collection of fields all of

(17) > the same data type indexed BY

(18) > an integer',

(19) > our_map MAP<STRING,INT> COMMENT 'A Collection of Key,Value Pairs

(20) > where the Key is a Primitive

(21) > Type and the Value can be

(22) > anything. The chosen data

(23) > types for the keys and values

(24) > must remain the same per map',

(25) > our_struct STRUCT<first : SMALLINT, second : FLOAT, third : STRING>

(26) > COMMENT 'A nested complex data

(27) > structure',

(28) > our_union UNIONTYPE<INT,FLOAT,STRING>

(29) > COMMENT 'A Complex Data Type that can

(30) > hold One of its Possible Data

(31) > Types at Once')

(32) > COMMENT 'Table illustrating all Apache Hive data types'

(33) > ROW FORMAT DELIMITED

(34) > FIELDS TERMINATED BY ','

(35) > COLLECTION ITEMS TERMINATED BY '|'

(36) > MAP KEYS TERMINATED BY '^'

(37) > LINES TERMINATED BY '\n'

(38) > STORED AS TEXTFILE

(39) > TBLPROPERTIES ('creator'='Bruce Brown', 'created_at'='Sat Sep 21

20:46:32 EDT 2013');

OK

Time taken: 0.886 seconds

We’ve included line numbers with the HiveQL to make it easier to study the
table. You can see from the CREATE TABLE statement (refer to Line 1) all the
various data types at your disposal (again, as of this writing) in Hive 0.11.
One in particular, DECIMAL, is new as of Hive 0.11, so whenever Hive 0.12 is
released, check to see whether it has more. (Hint: Watch for the type named
DATE.)

Consult the Data Types page in the Apache Hive Language Manual
(https://cwiki.apache.org/confluence/display/Hive/
LanguageManual+Types) to watch for new data types as the Hive commu-
nity continues to develop and create new, innovative features in Hive.

Notice in the table that after every column we created (see Lines 2–31), we
wrote a comment (using the HiveQL reserved keyword - COMMENT) giving
you information about the Hive data type of the column. Hive supports the
Comment feature as a way to document the columns in your tables. Also,
Line 32 allows you to add a comment for the entire table. Line 39 starts with
the keyword TBLPROPERTIES, which provides a way for you to add metadata
to the table. This information can be viewed later, after the table is created,
with other HiveQL commands such as DESCRIBE EXTENDED table_name.

Keep in mind that Hive has primitive data types as well as complex data
types. The last four columns (see Lines 16–31) in our_datatypes_table are
complex data types: ARRAY, MAP, STRUCT, and UNIONTYPE. Their presence
provides more proof (if proof is needed) that Hive supports a rich set of data
types that enables you to manage diverse data, all under HiveQL.

Finally, Lines 33–38 in the CREATE TABLE statement show off a particularly
powerful feature of Hive. Here, the lines let you define the file format when
your table gets stored in HDFS and define how fields and rows are delimited.
Actually Hive allows you to specify the file format and record format sepa-
rately. We discuss this powerful feature of Hive in greater detail in the next
section as we tell you more about creating Hive databases and tables.

Creating and Managing
Databases and Tables

To fully grasp Hive database and table creation in all its splendor, you need
a thorough grounding in what’s referred to as Hive’s data definition language
(DDL). You get that grounding in this section, starting with database or
schema creation.

Managing Hive databases
Earlier in this chapter, Listing 13-4 shows you the basics of creating data-
bases or schemas with Hive, but they’re just that — the basics. Quite a few
more features are out there that you’ll find useful; Listing 13-8 illustrates a
few of them.

Listing 13-8: Creating, Dropping, and Altering Databases in Apache Hive

Listing 13-8 picks up where Listing 13-4 left off, with you having already cre-
ated a database aptly named ourfirstdatabase. In Line 4 of Listing 13-8,
you’re now altering the database to include two new metadata items: creator
and created_for. As you can imagine, including custom metadata with your
database (and tables, as we describe earlier) can be quite useful for docu-
mentation purposes and coordination within your working group. On Line 5,
you get the command to view the metadata, and on Line 6 you’re dropping
the entire database — removing it from the server, in other words — with the
DROP command and CASCADE keyword. (Without the CASCADE keyword, you
couldn’t drop the database because the server has still stored our_first_
table — refer to Listing 13-4.) You can use the DROP TABLE command to
delete individual tables or you can use the brute-force technique, as you do
here, to forcefully remove everything from the namespace.

(1) $ $HIVE_HOME/bin hive --service cli
(2) hive> set hive.cli.print.current.db=true;
(3) hive (default)> USE ourfirstdatabase;
(4) hive (ourfirstdatabase)> ALTER DATABASE

ourfirstdatabase SET DBPROPERTIES

('creator'='Bruce Brown',

'created_for'='Learning Hive DDL');

OK

Time taken: 0.138 seconds
(5) hive (ourfirstdatabase)> DESCRIBE DATABASE EXTENDED

ourfirstdatabase;

OK

ourfirstdatabase
file:/home/biadmin/Hive/warehouse/

ourfirstdatabase.db {created_for=Learning

Hive DDL, creator=Bruce Brown}

Time taken: 0.084 seconds, Fetched: 1 row(s)CREATE

(DATABASE|SCHEMA) [IF NOT EXISTS] database_name

(6) hive (ourfirstdatabase)> DROP DATABASE
ourfirstdatabase CASCADE;

OK

Time taken: 0.132 seconds

Creating and managing tables with Hive
After you have a good working knowledge of Hive database creation and man-
agement under your belt, it’s time to turn your attention to table creation and
management. Your first stop? Hive table file and record formats. Apache Hive
lets you define the record format separately from the file format. This power-
ful feature — coupled with the complex data types you leveraged in Listing
13-7 — enables the Hive user to analyze and query unstructured and semi-
structured data that RDBMSs cannot handle!

Defining table file formats
In the “Working with Hive Data Types” section, earlier in this chapter, we
describe how to create a table (data_types_table) that includes all Hive
0.11–supported data types. We point out there that Lines 33–38 illustrate a
powerful feature in Hive, and we promise to discuss that feature in this chap-
ter. Well, here we are, as promised. To refresh your memory, we’ve copied
Lines 33–38 into Listing 13-9 so that you don’t have to flip back and review
the Hive Query Language (HiveQL) — refer to Listing 13-7.

Listing 13-9: Defining the Hive Row Format for the TEXTFILE File Format

Lines 33–37 define the Hive row format for your data_types_table and
provide specifics on how fields will be separated or delimited whenever you
insert or load data into the table. (You can find out more in the next section
about the various techniques for loading data into tables.) Line 38 defines the
Hive file format — a text file — when the data is stored in the HDFS (or local
file system, in this case). You may be wondering why our_first_table
(refer to Listing 13-4) lacks these extra keywords and delimiters. The reason
is that Hive tables default to the configuration in Listing 13-10 unless you
override the default settings, as we do above in Listing 13-9.

(1)Hive> CREATE TABLE data_types_table (

...

(33) > ROW FORMAT DELIMITED
(34) > FIELDS TERMINATED BY ','
(35) > COLLECTION ITEMS TERMINATED BY '|'
(36) > MAP KEYS TERMINATED BY '^'
(37) > LINES TERMINATED BY '\n'
(38) > STORED AS TEXTFILE
...
(39) > TBLPROPERTIES ('creator'='Bruce Brown',

'created_at'='Sat Sep 21 20:46:32 EDT 2013');

Listing 13-10: Hive Table Default Row and File Format

We chose to have you override the defaults in Listing 13-7 and 13-9 to make
it easier to build a readable data file to load into the data_types_table,
and to illustrate this powerful row formatting feature in Hive. We show you
how to actually create a readable data file and load it into the data_types_
table later in this chapter, in the section entitled “Seeing How the Hive Data
Manipulation Language Works” in Listing 13-13.

So far, we have been using the default TEXTFILE format for your Hive table
records. However, as you know, text files are slower to process, and they con-
sume a lot of disk space unless you compress them. For these reasons and
more, the Apache Hive community came up with several choices for storing
our tables on the HDFS. The following list describes the file formats you can
choose from as of Hive version 0.11.

✓ TEXTFILE: The default file format for Hive records. Alphanumeric char-
acters from the Unicode standard (see www.unicode.org) are used to
store your data.

✓ SEQUENCEFILE: The format for binary files composed of key/value
pairs. Sequence files, which are used heavily by Hadoop, are often good
choices for Hive table storage, especially if you want to integrate Hive
with other technologies in the Hadoop ecosystem.

✓ RCFILE: Stores records in a column-oriented fashion rather than a
row-oriented fashion — like the TEXTFILE format approach. Using the
RCFILE format makes sense when tables have a large number of col-
umns, but only a few columns are typically accessed. (RCFILE stands
for record columnar file.)

✓ ORC: A format (new as of Hive 0.11) that has significant optimizations to
improve Hive reads and writes and the processing of tables. (ORC stands
for optimized row columnar and has nothing to do goblins loyal to Lord
Sauron.) For example, ORC files include optimizations for Hive com-
plex types and new types such as DECIMAL. Also lightweight indexes
are included with ORC files to improve performance. For a complete
list of new ORC file format features, consult the Hive Language Manual
at https://cwiki.apache.org/confluence/display/Hive/
LanguageManual+ORC

CREATE TABLE ...

...

ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\001'

COLLECTION ITEMS TERMINATED BY '\002'

MAP KEYS TERMINATED BY '\003'

LINES TERMINATED BY '\n'

STORED AS TEXTFILE

...

✓ INPUTFORMAT, OUTPUTFORMAT: Lets you specify the Java class that
will read data from the Hive table. OUTPUTFORMAT does the same thing
for writing data to the Hive table. The keywords in the earlier table entries
(TEXTFILE, for example) provide shortened syntax so that you don’t
have to specify both INPUTFORMAT and OUTPUTFORMAT for every CREATE
TABLE statement. Of course, it enables customization and can be quite pow-
erful under the right circumstances. To see the default settings for the table,
simply execute a DESCRIBE EXTENDED tablename HiveQL statement and
you’ll see the INPUTFORMAT and OUTPUTFORMAT classes for your table.

Defining table record formats
The Java technology that Hive uses to process records and map them to
column data types in Hive tables (like you defined in Listing 13-7) is called
SerDe, which is short for SerializerDeserializer. Figure 13-7 illustrates how
SerDes are leveraged and it will help you understand how Hive keeps file for-
mats separate from record formats.

Figure 13-7:
How Hive
Reads and

Writes
Records

So the first thing to notice from Figure 13-7 is the INPUTFORMAT object.
INPUTFORMAT allows you to specify your own Java class should you want
Hive to read from a different file format. In the examples so far, you have been
using STORED AS TEXTFILE, which is easier than writing INPUTFORMAT
org.apache.hadoop.mapred.TextInputFormat — the whole Java
package tree and class name for the default text file input format object,
in other words. The same is true of the OUTPUTFORMAT object. Instead of
writing out the whole Java package tree and class name, the STORED AS
TEXTFILE statement takes care of all of that for you. Now, we’ve been saying

that Hive allows you to separate your record format from your file format so
how exactly do you accomplish this? Simple, you either replace STORED AS
TEXTFILE with something like STORED AS RCFILE, or you can create your
own Java class and specify the input and output classes using INPUTFORMAT
packagepath.classname and OUTPUTFORMAT packagepath.classname.

Finally notice that when Hive is reading data from the HDFS (or local file
system), a Java Deserializer formats the data into a record that maps to
table column data types. This would characterize the data flow for a HiveQL
SELECT statement which you’ll be able to try out in “Querying and analyzing
data” section below. When Hive is writing data, a Java Serializer accepts the
record Hive uses and translates it such that the OUTPUTFORMAT class can
write it to the HDFS (or local file system). This would characterize the data
flow for a HiveQL CREATE-TABLE-AS-SELECT statement which you’ll be
able to try out in “Mastering the Hive data-manipulation language” section
below. So the INPUTFORMAT, OUTPUTFORMAT and SerDe objects allow Hive to
separate the table record format from the table file format. You’ll be able to
see this in action in two examples below but first we want to expose you to
some SerDe options.

Hive bundles a number of SerDes for you to choose from, and you’ll find a
larger number available from third parties if you search online. You can also
develop your own SerDes if you have a more unusual data type that you want
to manage with a Hive table. (Possible examples here are video data and
e-mail data.) In the list below, we describe some of the SerDes provided with
Hive as well as one third-party option that you may find useful.

✓ LazySimpleSerDe: The default SerDe that’s used with the TEXTFILE
format; it would be used with our_first_table from Listing 13-4 and
with data_types_table from Listing 13-7.

✓ ColumnarSerDe: Used with the RCFILE format.

✓ RegexSerDe: The regular expression SerDe, which ships with Hive
to enable the parsing of text files, RegexSerDe can form a powerful
approach for building structured data in Hive tables from unstructured
blogs, semi-structured log files, e-mails, tweets, and other data from
social media. Regular expressions allow you to extract meaningful infor-
mation (an e-mail address, for example) with HiveQL from an unstruc-
tured or semi-structured text document incompatible with traditional
SQL and RDBMSs.

✓ HBaseSerDe: Included with Hive to enables it to integrate with HBase.
You can store Hive tables in HBase by leveraging this SerDe.

✓ JSONSerDe: A third-party SerDe for reading and writing JSON data
records with Hive. We quickly found (via Google and GitHub) two JSON
SerDes by searching online for the phrase json serde for hive.

✓ AvroSerDe: Included with Hive so that you can read and write Avro data
in Hive tables.

Reviewing the Language Manual DDL (found at: https://cwiki.apache.
org/confluence/display/Hive/LanguageManual+DDL) can be very
helpful before you start creating your tables. We’ve included an excerpt from
the manual below, which shows you (in bold print) all of the options we’ve
been discussing in this section.

Tying it all together with an example
We want to tie things together in this section with two examples. In this first
example, we revisit data_types_table from Listing 13-7. Here we leverage
the DESCRIBE EXTENDED data_types_table HiveQL command to illus-
trate what Hive does with our CREATE TABLE statement under the hood.

CREATE [EXTERNAL] TABLE [IF NOT EXISTS]

[db_name.]table_name

... (Skipping some lines for brevity)
[ROW FORMAT row_format] [STORED AS file_format]
| STORED BY 'storage.handler.class.name' [WITH

SERDEPROPERTIES (...)]]

... (Skipping some lines for brevity)

row_format

: DELIMITED [FIELDS TERMINATED BY char [ESCAPED BY

char]] [COLLECTION ITEMS TERMINATED BY char]

[MAP KEYS TERMINATED BY char] [LINES TERMINATED BY

char] [NULL DEFINED AS char]

| SERDE serde_name [WITH SERDEPROPERTIES

(property_name=property_value, property_

name=property_value, ...)]

file_format:

: SEQUENCEFILE | TEXTFILE | RCFILE | ORC

| INPUTFORMAT input_format_classname OUTPUTFORMAT

output_format_classname

hive> DESCRIBE EXTENDED data_types_table;

OK

our_tinyint tinyint 1 byte

signed integer

our_smallint smallint 2 byte

signed integer

...

(A)inputFormat:org.apache.hadoop.mapred.TextInputFormat,

outputFormat:

(B)org.apache.hadoop.hive.ql.io.

HiveIgnoreKeyTextOutputFormat

, ...

serializationLib:

org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe,

(C) parameters:{collection.delim=|, mapkey.delim=^, line.

delim=

(D) , serialization.format= ,, field.delim=,}),
...

Notice that Hive provides an INPUTFORMAT and OUTPUTFORMAT class for you
when you specify STORED AS TEXTFILE, as we did in line 38 from Listing 13-7.
Also note how Hive included the default LazySimpleSerDe. The row format delim-
iters that you specified in lines 33 through 37 from Listing 13-7 are inserted as
parameters to the LazySimpleSerDe so the records in the text file can be parsed
and translated into column types by the SerDe or written in proper format to the
text file.

An example of how to use the HBase SerDe
In this last example of this section, we want to show you how to specify a
SerDe instead of letting Hive pick a default SerDe for you. We want to show
you an example that also dovetails with some of the concepts covered in
Chapter 12 — the HBase Chapter. Hive includes an HBase SerDe, which
is great news if you want to put a HiveQL front end on your HBase table.
Without HiveQL, HBase users have to leverage the HBase shell or write Java
code to query from and write to HBase tables. In the example in Listing 13-11,
you create an EXTERNAL Hive table that connects with an HBase table. (The
external table is another feature of Hive that lets you connect with data, then
query and analyze the data with HiveQL, but when you delete the table, the
data remains in its original location.) Listing 13-11 shows the schema and
contents of the HBase table that you connect to with Hive using the HBase
SerDe.

Listing 13-11: Customer Information HBase Table

ROW COLUMN+CELL

00001 column=ContactInfo:EA, value=John.Smith@xyz.com

00001 column=ContactInfo:SA, value=1 Hadoop Lane, NY

00001
11111

column=CustomerName:FN,

value=John

00001 column=CustomerName:LN, value=Smith

00001 column=CustomerName:MN, value=Timothy

00002 column=ContactInfo:EA, value=Jane.Doe@xyz.com

00002 column=ContactInfo:SA, value=7 HBase Ave, CA 22222

00002 column=CustomerName:FN, value=Jane

00002 column=CustomerName:LN, value=Doe

00002 column=CustomerName:MN, value=A

The Customer Information HBase table consists of two rows and two column
families: ContactInfo and CustomerName. The ContactInfo column
family has two columns storing the customer’s e-mail address (EA) and street
address (SA). The CustomerName column family has three rows storing
the first name (FN), middle name (MN) and last name (LN) of the customer.
You can find out much more about HBase in Chapter 12, but for now, what’s
important to understand is that HBase stores key value pairs just like the
Hive map data type we demonstrate in Line 19 of Listing 13-7. In Listing 13-12,
you see the HiveQL statements you need in order to create a table that con-
nects to your HBase table (refer to Listing 13-11) using map data types.

mailto:value%3DJohn.Smith@xyz.com
mailto:value%3DJane.Doe@xyz.com

Listing 13-12: Creating an External Hive Table to Connect to the HBase

Customer Information Table

In Step (A), you create an external table with a Key field to link up with
the HBase row keys (00001 and 00002 from Listing 13-11), and two map
data types (name and info) to link up with the two column families
(ContactInfo and CustomerName). Note the syntax for providing this
linkage via the WITH SERDEPROPERTIES keywords. This SerDe con-
figuration technique is quite common in Hive DDL. Note as well that the
TBLPROPERTIES keyword is crucial for connecting the new external hive_
hbase_table with the actual customerinfo HBase table name.

Step (B) shows how the key value pairs in HBase ({“FN”,”John”}, for example)
are now available for querying with the help of the HiveQL. Note the syntax
for accessing the Hive map data type in Step (C). You can select the value of
the info map type using the notation info ["EA"] where "EA" is the key.

If you’re already familiar with SQL, you’ll notice that the SELECT ...
FROM ... WHERE statement shown in Step (C) is almost identical to the
types of queries you can form using SQL and MySQL, or DB2 and others.

(A) CREATE EXTERNAL TABLE hive_hbase_table (
key INT,

name map<STRING,STRING>,

info map<STRING,STRING>)

STORED BY 'org.apache.hadoop.hive.hbase.

HBaseStorageHandler'
WITH SERDEPROPERTIES ("hbase.columns.mapping" =

":key,CustomerName:,ContactInfo:")

TBLPROPERTIES ("hbase.table.name" = "customerinfo");

(B) hive> SELECT * FROM hive_hbase_table;
OK

1 {"FN":"John","LN":"Smith","MN":"Timothy"}
{"EA":"John.Smith@xyz.com","SA":"1 Hadoop Lane, NY

11111"}

2 {"FN":"Jane","LN":"Doe","MN":"A"}
{"EA":"Jane.Doe@xyz.com","SA":"6 Novice HBase Ave,

CA 22222"}

Time taken: 1.422 seconds

(C) hive> SELECT info["EA"] FROM hive_hbase_table WHERE
name["FN"] = "Jane" AND name["LN"] = "Doe";

Total MapReduce jobs = 1
...

OK

Jane.Doe@xyz.com

mailto:John.Smith@xyz.com
mailto:Jane.Doe@xyz.com
mailto:Jane.Doe@xyz.com

Seeing How the Hive Data Manipulation
Language Works

In the first half of this chapter, we walk you through a couple of CREATE
TABLE examples using the Hive CLI (refer to Listings 13-4 and 13-7), and
you can see how Hive allows you to control your table’s file and record stor-
age formats. Now it’s time to delve into Hive’s data manipulation language
(DML) — it lets you load and insert data into tables and create tables from
other tables. We even go all out and provide examples that illustrate four
ways to input data into Hive tables.

LOAD DATA examples
We have you start out by placing data into the data_types_table you cre-
ated using Listing 13-7. Doing so illustrates the LOAD DATA command and
will serve to cement some of the concepts from the last section. The syntax
for the LOAD DATA command is shown in Listing 13-13.

Listing 13-13: LOAD DATA Command Syntax

A few areas in Listing 13-13 need an explanation. First, the optional LOCAL
keyword tells Hive to copy data from the input file on the local file system
into the Hive data warehouse directory (in our case, on the local file system).
Without the LOCAL keyword, the data is simply moved (not copied) into the
warehouse directory. Also you should be aware that when running in distrib-
uted mode, if you omit the LOCAL keyword Hive assumes your data is already
in the HDFS, and in this case moves the data from its current HDFS location
into the HDFS warehouse directory. Second, the optional OVERWRITE key-
word, as you might imagine, causes the system to overwrite data in the speci-
fied table if it already has data stored in it. Finally, the optional PARTITION
list tells Hive to partition the storage of the table into different directories
in the data warehouse directory structure. This powerful concept improves
query performance in Hive, and we demonstrate its use later in this section.
When you think about the magnitude of data that can be managed by Hive
in the HDFS, partitioning makes a lot of sense. Rather than run a MapReduce
job over the entire table to find the data you want to view or analyze, you can
isolate a segment of the table and save a lot of system time with partitions.

Apache Hive uses the MapReduce technology within Hadoop to query and
analyze tables — though, in some cases, MapReduce is not used. It turns out
that you can set the configuration variable hive.exec.mode.local.auto

"LOAD DATA [LOCAL] INPATH 'path to file' [OVERWRITE] INTO

TABLE 'table name' [PARTITION partition column1

= value1, partition column2 = value2,...]

in the hive-site.xml file. When the variable is set to true, Hive tries to
execute queries on small data sets locally without MapReduce whenever pos-
sible, to speed execution.

Listing 13-14 shows the commands to use to load the data_types_table
with data. Again, we’ve annotated the listing so that we can discuss each step.

Listing 13-14: Loading our_first_table with Data

Step (A) is a listing (using the Unix cat command) of data you intend to load.
This data file has only one record in it, but there’s a value for each field in the
table. Note the field and complex type delimiters. As we specified at table cre-
ation time (refer to Listing 13-7 or 13-9), fields are separated by a comma; col-
lections (such as STRUCT and UNIONTYPE) are separated by the vertical bar
or pipe character (|̄); and the MAP keys and values are separated by the caret
character (^̄). Step (B) has the LOAD DATA command, and in Step (C) you’re
retrieving the record you just loaded in Step (B) so that you can view the data.

The data retrieved using the SELECT command is as expected, but the last
field — see line (D) — needs some attention. Note how the UNIONTYPE works.
UNIONTYPEs in Hive can store different data types, but only one at a time. In the
data.txt file you list in Step (A), you specify to use the third data type in the
our_union field. (It’s the third one because you start counting at zero, of course.)
So you specify a string — in this case, test union — after the 2 in the data file.

(A) $ cat data.txt
100,32000,2000000,9200000000000000000,0.15625,4.9406564584

124654,

1.23E+3,2013-09-21 20:19:52.025,true,

test string,\0xFFFFDDDDEEEEAAAA,1|2|3|4,key^1024,

1|3.1459|test struct,2|test union

(B) hive (data_types_db)> LOAD DATA LOCAL INPATH
'/home/biadmin/Hive/data.txt' INTO TABLE

data_types_table;

Copying data from file:/home/biadmin/Hive/data.txt

Copying file: file:/home/biadmin/Hive/data.txt

Loading data to table data_types_db.data_types_table

Table data_types_db.data_types_table stats:

[num_partitions: 0, num_files: 1, num_rows: 0,

total_size: 185, raw_data_size: 0]

OK

Time taken: 0.287 seconds

(C) hive> SELECT * FROM data_types_table;
OK

100 32000 2000000 9200000000000000000 0.15625

4.940656458412465

1230 2013-09-21 20:19:52.025 true test string

\0xFFFFDDDDEEEEAAAA [1,2,3,4] {"key":1024}

{"first":1,"second":3.1459,"third":"test struct"}

(D) {2:"test union"}
Time taken: 0.201 seconds, Fetched: 1 row(s)

The last example in this subsection sets up other examples later in this
chapter. We have downloaded some historical airline flight data for the
years 2007 and 2008 from the website http://stat-computing.org/
dataexpo/2009/the-data.html. This data was compiled by the Research
and Innovative Technology Administration, which coordinates with the U.S.
Department of Transportation’s Bureau of Transportation Statistics to pro-
vide data to statisticians and scientists. It’s a classic use case for Apache
Hive: We show you how to load this airline data into a Hive table, and then
you get a chance to perform some analysis with HiveQL!

To put this airline data in perspective, the data for the year 2007 is approxi-
mately 671MB and the data for the year 2008 is 659MB. We don’t want to over-
load the disk space on your virtual machine, so we downloaded only a few
data files, though it appears that the files range between 100MB and 659MB in
the case of the year 2008. If you were to download all 22 years’ worth of data
from http://stat-computing.org/dataexpo/2009/the-data.html,
it would amount to well over 1 terabyte (TB) of information. This is a typical
big data use case for Apache Hadoop and Hive running on a cluster of Linux
servers. If you would attempt to analyze that much data on classic relational
database systems, it would be costly and cumbersome at best.

So, after downloading the data and studying the data types listed on the
website, we created two identical tables, named FlightInfo2007 and
FlightInfo2008, as you can see in steps (A) and (F) in Listing 13-15. Note
that this data is posted on the aforementioned website as comma-separated
text, so you’ll use the classic text file format for your records, and we’ve
specified comma separation for the record fields. Hive’s LazySimpleSerDe
does the rest of the job for you. Step (B) should also look familiar except that
we didn’t use the LOCAL keyword. That’s because these files are large; you’ll
move the data into your Hive warehouse, not make another copy on your
small and tired laptop disk. You’d likely want to do the same thing on a real
cluster and not waste the storage.

Listing 13-15: Flight Information Tables from 2007 and 2008

(continued)

(A) CREATE TABLE IF NOT EXISTS FlightInfo2007 (

Year SMALLINT, Month TINYINT, DayofMonth TINYINT,

DayOfWeek TINYINT,
DepTime SMALLINT, CRSDepTime SMALLINT, ArrTime SMALLINT,

CRSArrTime SMALLINT,

UniqueCarrier STRING, FlightNum STRING, TailNum STRING,

ActualElapsedTime SMALLINT, CRSElapsedTime SMALLINT,

AirTime SMALLINT, ArrDelay SMALLINT, DepDelay SMALLINT,

Origin STRING, Dest STRING,Distance INT,

TaxiIn SMALLINT, TaxiOut SMALLINT, Cancelled SMALLINT,

CancellationCode STRING, Diverted SMALLINT,

CarrierDelay SMALLINT, WeatherDelay SMALLINT,

NASDelay SMALLINT, SecurityDelay SMALLINT,

LateAircraftDelay SMALLINT)

COMMENT 'Flight InfoTable'

http://stat-computing.org/
http://stat-computing.org/dataexpo/2009/the-data.html

Listing 13-15 (continued)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY ','

LINES TERMINATED BY '\n'

STORED AS TEXTFILE

TBLPROPERTIES ('creator'='Bruce Brown', 'created_at'='Thu

Sep 19 10:58:00 EDT 2013');

(B) hive (flightdata)> LOAD DATA INPATH '/home/biadmin/
Hive/Data/2007.csv' INTO TABLE FlightInfo2007;

Loading data to table flightdata.flightinfo2007
Table flightdata.flightinfo2007 stats: [num_partitions:

0, num_files: 2, num_rows: 0, total_size:

1405756086, raw_data_size: 0]

OK

Time taken: 0.284 seconds;

(C) hive (flightdata)> SELECT * FROM FlightInfo2007 LIMIT
2;

OK

NULL NULL NULL NULL NULL NULL NULL

NULL UniqueCarrier FlightNum TailNum

NULL NULLNULL NULL NULL Origin

Dest NULL NULL NULL NULL

CancellationCode NULL NULL

NULLNULL NULL NULL

2007 1 1 1 1232 1225 1341

1340 WN 2891 N351 69 75

54 1 7SMF ONT 389 4 11

0 0 0 0 0

0 0

Time taken: 0.087 seconds, Fetched: 2 row(s)

(D) LOAD DATA INPATH '/home/biadmin/Hive/Data/2007.csv'
OVERWRITE INTO TABLE FlightInfo2007;

(E) hive (flightdata)> SELECT * FROM FlightInfo2007 LIMIT

2;

OK
2007 1 1 1 1232 1225 1341

 1340 WN 2891 N351 69 75
 54 1 7SMF ONT 389 4 11
 0 0 0 0 0

 0 0

2007 1 1 1 1918 1905 2043

 2035 WN 462 N370 85 90

 74 8 13 SMF PDX 479 5
 6 0 0 0 0

Time

0

taken: 0.089

0 0

seconds, Fetched: 2 row(s)

(F) CREATE TABLE IF NOT EXISTS FlightInfo2008 LIKE
FlightInfo2007;

(G) LOAD DATA INPATH '/home/biadmin/Hive/Data/2008.csv'
INTO TABLE FlightInfo2008;

To test the LOAD DATA command and make sure everything works, you use
the SELECT command as shown in the previous example, but this time you
also use the LIMIT keyword [see step (C)] because this table is huge. Note
that initially you have a bit of problem with the FlightInfo2007 table.
Why are you seeing mostly all NULL values in the first record? The answer is
that the 2007.csv file has a header on the first line giving the descriptions
of the columns in the rest of the file. These descriptions match the website’s
explanation of the fields we used to define the data types. So the solution
was simple: We downloaded another copy of the data, deleted the header
line, and ran the command again — this time, using the OVERWRITE keyword.
Now, in Step (E) you can see that the problem has been solved. In Step (F),
the LIKE keyword instructs Hive to copy the existing FlightInfo2007
table definition when creating the FlightInfo2008 table. In Step (G) you’re
using the same technique as in Step (B).

The problem with NULL values seemed trivial enough, but this example
points to an interesting aspect of Hive that we need to explain before we
move on to the next Hive DML command.

In Listing 13-15, Hive could not (at first) match the first record with the data
types you specified in your CREATE TABLE statement. So the system showed
NULL values in place of the real data, and the command completed success-
fully. This behavior illustrates that Hive uses a Schema on Read verification
approach as opposed to the Schema on Write verification approach, which you
find in RDBMS technologies. This is one reason why Hive is so powerful for big
data analytics — it lets you discover and explore your data in a relaxed fashion
as opposed to a strict structured approach. A typical RDBMS system would
have returned errors when the data didn’t match. Hive didn’t return an error
when we tried to load data into the table that didn’t match our schema — it
simply showed NULL values, and then you figured out the bit about the data-
types disconnect by inspecting the data and adjusted accordingly.

INSERT examples
Another Hive DML command to explore is the INSERT command. You basi-
cally have three INSERT variants; we show you two of them in Listing 13-16.
To demonstrate this new DML command, we have you create a new table that
will hold a subset of the data in the FlightInfo2008 table you created in
the previous example. In Step (A), you create this new table and specify that
the file format will be row columnar (Step (B)) instead of text. This format is
more compact than text and often performs better, depending on your access
patterns. (If you’re accessing a small subset of columns instead of entire
rows, try the RCFILE format.)

The default SerDe for RCFILE format is the ColumnarSerDe. You can verify
this fact by running the DESCRIBE EXTENDED myFlightInfo HiveQL com-
mand from the command line interface.

Listing 13-16: Partitioned Version of 2008 Flight Information Table

(A) CREATE TABLE IF NOT EXISTS myFlightInfo (
Year SMALLINT, DontQueryMonth TINYINT, DayofMonth

TINYINT, DayOfWeek TINYINT,

DepTime SMALLINT, ArrTime SMALLINT,

UniqueCarrier STRING, FlightNum STRING,

AirTime SMALLINT, ArrDelay SMALLINT, DepDelay SMALLINT,

Origin STRING, Dest STRING, Cancelled SMALLINT,

CancellationCode STRING)

COMMENT 'Flight InfoTable'

PARTITIONED BY(Month TINYINT)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY ','

LINES TERMINATED BY '\n'

(B) STORED AS RCFILE
TBLPROPERTIES ('creator'='Bruce Brown', 'created_at'='Mon

Sep 2 14:24:19 EDT 2013');

(C) INSERT OVERWRITE TABLE myflightinfo
PARTITION (Month=1)

SELECT Year, Month, DayofMonth, DayOfWeek, DepTime,

ArrTime, UniqueCarrier,

FlightNum, AirTime, ArrDelay, DepDelay, Origin,

Dest, Cancelled,

CancellationCode

FROM FlightInfo2008 WHERE Month=1;

(D) FROM FlightInfo2008
INSERT INTO TABLE myflightinfo

PARTITION (Month=2)

SELECT Year, Month, DayofMonth, DayOfWeek, DepTime,

ArrTime, UniqueCarrier, FlightNum,

AirTime, ArrDelay, DepDelay, Origin, Dest, Cancelled,

CancellationCode WHERE Month=2

... (Months 3 through 11 skipped for brevity)
INSERT INTO TABLE myflightinfo

PARTITION (Month=12)

SELECT Year, Month, DayofMonth, DayOfWeek, DepTime,

ArrTime, UniqueCarrier, FlightNum,

AirTime, ArrDelay, DepDelay, Origin, Dest, Cancelled,

CancellationCode WHERE Month=12;

(E) hive (flightdata)> SHOW PARTITIONS myflightinfo;
OK

month=1

month=10

month=11

month=12

...

month=9

(F) $ ls
/home/biadmin/Hive/warehouse/flightdata.db/myflightinfo

month=1 month=11 month=2 month=4 month=6 month=8

month=10 month=12 month=3 month=5 month=7 month=9

(G) $HIVE_HOME/bin/hive --service rcfilecat
/home/biadmin/Hive/warehouse/flightdata.db/myflightinfo/

month=12/000000_0
...

2008 12 13 6 655 856 DL
 1638 85 0 -5 PBI ATL
 0

2008 12 13 6 1251 1446 DL

 1639 89 9 11 IAD ATL
 0

2008 12 13 6 1110 1413 DL

 1641 104 -5 7 SAT ATL
 0

After creating the table, you use the INSERT OVERWRITE command [see Step
(C)] to insert data via a SELECT statement from the FlightInfo2008 table.
Note that you’re partitioning your data using the PARTITION keyword based on
the Month field. After you’re finished, you’ll have 12 table partitions, or actual
directories, under the warehouse directory in the file system on your virtual
machine, corresponding to the 12 months of the year. As we explain earlier,
partitioning can dramatically improve your query performance if you want to
query data in the myFlightInfo table for only a certain month. You can see
the results of the PARTITION approach with the SHOW PARTITIONS command
in Steps (E) and (F). Notice in Step (D) that you’re using a variant of the INSERT
command to insert data into multiple partitions at one time. We have only shown
month 2 and 12 for brevity but months 3 through 11 would have the same syntax.

Partitions are quite useful to the Hive programmer. However, it’s not uncom-
mon to encounter a data set where partitioning could become unwieldy, espe-
cially if multiple partitions are specified [PARTITION BY(Country STRING,
PersonName STRING), for example]. Twelve partitions are one thing — 7
billion partitions would be quite another! The solution to partition sprawl is
bucketing. Bucketing in Hive works by allowing you to specify some reason-
able number of buckets, and then the system attempts to evenly distribute
the data into the number of buckets you specify. [That could look something
like PARTITION BY(...) CLUSTERED BY(BucketingColumn) INTO x
BUCKETS.] Additionally, this feature enables table sampling — a technique
that allows Hive users to write queries on a sample of the data instead of the
entire table. HiveQL table sampling can be very useful for big data analytics.
(For more information on bucketing and table sampling see https://cwiki.
apache.org/confluence/display/Hive/LanguageManual+Sampling.)

You can also use this FROM table1 INSERT INTO table2 SELECT ...
format to insert into multiple tables at a time. We have you use INSERT
instead of OVERWRITE here to show the option of inserting instead of

overwriting. Hive allows only appends, not inserts, into tables, so the INSERT
keyword simply instructs Hive to append the data to the table. Finally, note in
Step (G) that you have to use a special Hive command service (rcfilecat)
to view this table in your warehouse, because the RCFILE format is a binary
format, unlike the previous TEXTFILE format examples.

We say at the beginning of this subsection that the INSERT DML command has
three variants. (You’ve been dying to find out what the third variant is, right?)
Well, the third one is the Dynamic Partition Inserts variant. In Listing 13-16,
you partition the myFlightInfo table into 12 segments, 1 per month. If
you had hundreds of partitions, this task would have become quite diffi-
cult, and it would have required scripting to get the job done. Instead, Hive
supports a technique for dynamically creating partitions with the INSERT
OVERWRITE statement. So, if you find yourself needing to leverage table
partitioning with a large, and possibly variable, number of partitions, check
out the Dynamic Partition Inserts feature in the Hive DML Language Manual
at https://cwiki.apache.org/confluence/display/Hive/
Tutorial - Tutorial-Dynamic-PartitionInsert.

Create Table As Select (CTAS) examples
In the Hive DML example in this section, we illustrate the powerful technique
in Hive known as Create Table As Select, or CTAS. Its constructs allow you to
quickly derive Hive tables from other tables as you build powerful schemas
for big data analysis.

Listing 13-17 shows you how CTAS works, and it sets the stage for other
HiveQL examples later in this chapter.

Listing 13-17: An Example of Using CREATE TABLE . . . AS SELECT

(A) hive> CREATE TABLE myflightinfo2007 AS
> SELECT Year, Month, DepTime, ArrTime, FlightNum,

Origin, Dest FROM FlightInfo2007

> WHERE (Month = 7 AND DayofMonth = 3) AND
(Origin='JFK' AND Dest='ORD');

(B) hive> SELECT * FROM myFlightInfo2007;
OK

2007 7 700 834 5447 JFK ORD

2007 7 1633 1812 5469 JFK ORD

2007 7 1905 2100 5492 JFK ORD

2007 7 1453 1624 4133 JFK ORD

2007 7 1810 1956 4392 JFK ORD

2007 7 643 759 903 JFK ORD

2007 7 939 1108 907 JFK ORD

2007 7 1313 1436 915 JFK ORD

2007 7 1617 1755 917 JFK ORD

2007 7 2002 2139 919 JFK ORD

Time taken: 0.089 seconds, Fetched: 10 row(s)

hive> CREATE TABLE myFlightInfo2008 AS

> SELECT Year, Month, DepTime, ArrTime, FlightNum,
Origin, Dest FROM FlightInfo2008

> WHERE (Month = 7 AND DayofMonth = 3) AND
(Origin='JFK' AND Dest='ORD');

hive> SELECT * FROM myFlightInfo2008;

OK

Time taken: 0.186 seconds, Fetched: 10 row(s)

2008 7 930 1103 5199 JFK ORD

2008 7 705 849 5687 JFK ORD

2008 7 1645 1914 5469 JFK ORD

2008 7 1345 1514 4392 JFK ORD

2008 7 1718 1907 1217 JFK ORD

2008 7 757 929 1323 JFK ORD

2008 7 928 1057 907 JFK ORD

2008 7 1358 1532 915 JFK ORD

2008 7 1646 1846 917 JFK ORD

2008 7 2129 2341 919 JFK ORD

In Step A, you build two smaller tables derived from the FlightInfo2007
and FlightInfo2008 by selecting a subset of fields from the larger tables
for a particular day (in this case, July 3), where the origin of the flight is
New York’s JFK airport (JFK) and the destination is Chicago’s O’Hare airport
(ORD). Then in Step B you simply dump the contents of these small tables so
that you can view the data.

Querying and Analyzing Data
Earlier sections in this chapter describe Hive data types, Hive’s DDL, and
Hive’s DML, but now we help you explore some HiveQL features for query-
ing and analyzing data. Keep in mind, though, that it is beyond the scope of
this chapter to provide an exhaustive treatise on HiveQL as it stands today.
Moreover, the vibrant and active Apache Hive community continually adds
to an already extensive feature set, which makes exhaustive coverage even
more difficult. We concentrate on the high points here, knowing full well that
finishing this chapter will get you excited about the new potential of big data
analytics at your fingertips with Apache Hive. We begin by exploring table
joins in Hive.

For an exhaustive list of HiveQL features, consult the Hive Language Manual at
this page:

https://cwiki.apache.org/confluence/display/Hive/
LanguageManual

Joining tables with Hive
You probably know already that experts in relational database modeling and
design typically spend a lot of their time designing normalized databases,
or schemas. Database normalization is a technique that guards against data
loss, redundancy, and other anomalies as data is updated and retrieved. The
experts follow a number of rules to arrive at a normalized database, but Rule
1 is that you must end up with a group of tables. (One large table storing all
your data is not normal — pun intended.) There are exceptions, depending
on the use case, but the law of many tables is generally followed closely,
especially for databases that support transactions or analytic processing
(business intelligence, for example). When you begin to query and analyze
your data, tables are joined based on the defined relationships between them
using SQL — which means that the disks are ultimately busy on your server
when you start joining tables, and busy disks usually result in slower user
response times. However, the good news is that RDBMSs and EDWs are tuned
to make joins as fast as possible.

What does all this have to do with joins in Hive? Well, remember that
the underlying operating system for Hive is (surprise!) Apache Hadoop:
MapReduce is the engine for joining tables, and the Hadoop File System
(HDFS) is the underlying storage. It’s all good news for the user who wants to
create, manage, and analyze large tables with Hive. The potential to unlock
information that’s hidden in massive data structures is exciting. However,
joins with Hive usually don’t perform as well as they do in the RDBMS/EDW
world, so first-time users are often surprised by the “pokiness” of the system
response. Remember that MapReduce and HDFS are optimized for through-
put with big data analytics and that, in this world, latencies — user response
times, in other words — are usually high. Hive is designed for batch-style
analytic processing, not for fast online transaction processing. Users who
want the best possible performance with SQL on Apache Hadoop have solu-
tions available, and we look at those solutions in more detail in Chapter 14.
For now, keep this dynamic in mind when you start joining tables with Hive.
Also note that Hive architects usually denormalize their databases to some
extent, so having fewer larger tables is commonplace. That’s why complex
data types such as STRUCTs and ARRAYs are provided. You can use these
complex data types to pack a lot more data into a single table. Because Hive
table reads and writes via HDFS usually involve very large blocks of data,
the more data you can manage altogether in one table, the better the overall
performance.

Disk and network access is a lot slower than memory access, so minimize
HDFS reads and writes as much as possible.

With this background information in mind, you can tackle making joins
with Hive. Fortunately, the Hive development community was realistic and
understood that users would want and need to join tables with HiveQL.

This knowledge becomes especially important with EDW augmentation,
as explained in Chapter 10. Use cases such as “queryable” archives often
require joins for data analysis.

Earlier in this chapter, we show you how to use Hive’s Create Table As Select
(CTAS) technique for creating new tables from existing tables. Now we show you
a Hive join example using our flight data tables. Listing 11-17 shows you how
to create and display a myflightinfo2007 table and a myflightinfo2008
table from the larger FlightInfo2007 and FlightInfo2008 tables.
The plan all along was to use the CTAS created myflightinfo2007 and
myflightinfo2008 tables to illustrate how you can perform joins in Hive.
Figure 13-8 shows the result of an inner join with the myflightinfo2007 and
myflightinfo2008 tables using the SQuirreL SQL client.

Figure 13-8:
The Hive
inner join.

Hive supports equi-joins, a specific type of join that only uses equality com-
parisons in the join predicate. (ON m8.FlightNum = m7.FlightNum, from
Figure 13-8 above, is one example of an equi-join.) Other comparators such
as Less Than (<) are not supported. This restriction is only because of limita-
tions on the underlying MapReduce engine. Also, you cannot use OR in the ON
clause.

Figure 13-8 illustrates the earlier example of the inner join and two other Hive
join types. Note that you can confirm the results of an inner join by reviewing
the contents of the myflight2007 and myflight2008 tables in Listing 13-17.
Figure 13-9 illustrates how an inner join works using a Venn diagram, in case
you’re not familiar with the technique. The basic idea here is that an inner join
returns the records that match between two tables. So an inner join is a per-
fect analysis tool to determine which flights are the same from JFK (New York)
to ORD (Chicago) in July of 2007 and July of 2008.

Figure 13-9:
Hive inner

join, full
outer join,

and left
outer join.

Optimizing Hive joins is a hot topic in the Hive community. For more informa-
tion on current optimization techniques, see the Join Optimization page on the
Hive wiki at

Improving your Hive queries with indexes
Creating an index is common practice with relational databases when you
want to speed access to a column or set of columns in your database.
Without an index, the database system has to read all rows in the table to
find the data you have selected. Indexes become even more essential when
the tables grow extremely large, and as you now undoubtedly know, Hive
thrives on large tables. As you would expect, Hive supports index creation
on tables, though its functionality is still somewhat immature as of this
writing. However, as we’ve said, the Hive community is active, and indexing
will eventually mature. Even with its current limitations, indexing offers an
approach to speed up Hive queries with little effort, so we show you a brief
example.

You can optimize Hive queries in at least five ways: First, with a little research,
you can often speed your joins by leveraging certain optimization techniques,
as described on the Hive wiki. (Check out https://cwiki.apache.org/
confluence/display/Hive/LanguageManual+JoinOptimization.)
Second, column-oriented storage options (see the “Defining table file formats”
section, earlier in the chapter) can be quite helpful. Remember that the ORC
file format is new as of Hive 0.11. Third, we demonstrate and discuss how to
partition tables in Listing 13-16. Fourth, the Hive community has provided

https://cwiki.apache.org/confluence/display/Hive/LanguageM
anual+JoinOptimization

indexing, as illustrated in Listing 13-18. Finally, don’t forget the hive.exec.
mode.local.auto configuration variable we mention earlier, in the section
“Seeing How the Hive Data Manipulation Language Works.”

In Listing 13-18, we list the steps necessary to index the FlightInfo2008
table. This extremely large table has millions of rows, so it makes a good can-
didate for an index or two.

Listing 13-18: Creating an Index on the FlightInfo2008 Table

(A) CREATE INDEX f08_index ON TABLE flightinfo2008
(Origin) AS 'COMPACT' WITH DEFERRED REBUILD;

(B) ALTER INDEX f08_index ON flightinfo2008 REBUILD;
(C) hive (flightdata)> SHOW INDEXES ON FlightInfo2008;
OK

f08index flightinfo2008 origin

flightdata flightinfo2008_f08index

Time taken: 0.079 seconds, Fetched: 1 row(s)

(D) hive (flightdata)> DESCRIBE

compact

flightdata flightinfo2008_f08index ;
OK

origin string None

_bucketname string

_offsets array<bigint>

Time taken: 0.112 seconds, Fetched: 3 row(s)

(E) hive (flightdata)> SELECT Origin, COUNT(1) FROM
flightinfo2008 WHERE Origin = 'SYR' GROUP BY

Origin;

SYR 12032

Time taken: 17.34 seconds, Fetched: 1 row(s)

(F) hive (flightdata)> SELECT Origin, SIZE(`_offsets`)
FROM flightdata flightinfo2008_f08index

WHERE origin = 'SYR';

SYR 12032

Time taken: 8.347 seconds, Fetched: 1 row(s)

(G) hive (flightdata)> DESCRIBE
flightdata flightinfo2008_f08index ;

OK

origin string None

_bucketname string

_offsets array<bigint>

Time taken: 0.12 seconds, Fetched: 3 row(s)

Step (A) creates the index using the ‘COMPACT' index handler on the Origin
column. Hive also offers a bitmap index handler as of the 0.8 release, which
is intended for creating indexes on columns with a few unique values. In Step
(A) the keywords WITH DEFERRED REBUILD instructs Hive to first create an
empty index; Step (B) is where you actually build the index with the ALTER
INDEX ... REBUILD command. Deferred index builds can be very useful
in workflows where one process creates the tables and indexes, another
loads the data and builds the indexes and a final process performs data

analysis. (For more on workflows — more specifically, Oozie workflows —
check out Chapter 9. As of this writing, Hive doesn’t provide automatic index
maintenance, so you need to rebuild the index if you overwrite or append
data to the table. Also, Hive indexes support table partitions, so a rebuild
can be limited to a partition. (Refer to Listing 13-16 for more information on
partitions.) Step (C) illustrates how you can list or show the indexes created
against a particular table. Step (D) illustrates an important point regarding
Hive indexes: Hive indexes are implemented as tables. This is why you
need to first create the index table and then build it to populate the table.
Therefore, you can use indexes in at least two ways:

✓ Count on the system to automatically use indexes that you create.

✓ Rewrite some queries to leverage the new index table (as we demon-
strate in Listing 13-18).

The automatic use of indexes is progressing, but this aspect is a work in prog-
ress. Focusing on the second option, in Step (E) you write a query that seeks
to determine how many flights left the Syracuse airport during 2008. To get
this information, you leverage the COUNT aggregate function. You can see that
Hive took 17.32 seconds on our virtual machine to report that 12,032 flights
originated from Syracuse, New York. In Step (F), you leverage the new index
table and use the SIZE function instead. Step (F) makes more sense after
you study Step (D): Step (D) shows you what an index table looks like, where
records each hold the column _bucketname, which is the location of the data
in the Hive warehouse (/home/biadmin/Hive/warehouse, in this case),
and an _offsets array, which is the index into the table (FlightInfo2008)
in this case. So now the query in Step (F) makes sense. All Hive has to do is
find the SYR origin (for Syracuse) in the flightdata flightinfo2008_
f08index table and then count the rows in the _offsets’ array to get
the number of flights — a simple yet elegant way to double the performance
(8.347 secs in Step (F) versus 17.34 in Step (E)) of the original query.

Windowing in HiveQL
The concept of windowing, introduced in the SQL:2003 standard, allows the
SQL programmer to create a frame from the data against which aggregate and
other window functions can operate. HiveQL now supports windowing per
the SQL standard. Examples are quite helpful when explaining windowing and
aggregate functions, so we start with an introductory example.

In our experience (and as other frequent flyers can attest), departure delays
come with the territory when flying is your chosen mode of travel. It comes as
no surprise, then, that the RITA-compiled flight data includes this information.
One question we had when we first discovered this data set was, “What exactly
is the average flight delay per day?” So we created a query in Listing 13-19 that
produces the average departure delay per day in 2008.

(A) hive (flightdata)> CREATE VIEW avgdepdelay AS
> SELECT DayOfWeek, AVG(DepDelay) FROM

FlightInfo2008 GROUP BY DayOfWeek;

OK

Time taken: 0.121 seconds

(B) hive (flightdata)> SELECT * FROM avgdepdelay;
...

OK

5 12.158036387869656

6 8.645680904903614

7 11.568973392595312

Time taken: 18.6 seconds, Fetched: 7 row(s)

Listing 13-19: Finding the Average Departure Delay per Day in 2008

1 10.269990244459473

2 8.97689712068735

3 8.289761053658728

4 9.772897177836702

Before we explain the steps in this query, we have to say that TGIF, or “Thank
God It’s Friday,” doesn’t apply to everyone. It was no surprise to us that
Friday — Day 5 under the results in Step (B) — had the highest number of
delays.

Anyway, about that query in Step (A): We want to point out that Hive’s Data
Definition Language (DDL) also includes the CREATE VIEW statement, which
can be quite useful. In Hive, views allow a query to be saved but data is not
stored as with the Create Table as Select (CTAS) statement you learned about
earlier in this chapter. When a view is referenced in HiveQL, Hive executes
the query and then uses the results which could be part of a larger query.
This can be very useful to simplify complex queries and break them down
into logical components. Additionally, note the GROUP BY clause, which gath-
ers all the days per week and allows the AVG aggregate function to provide a
consolidated answer per day. This information is useful, of course, but what
if we want to see some individual numbers per day? We consolidate the data
with GROUP BY, and we have the answer we’re looking for, though we’ve lost
information as well. Solving this problem of information loss is where win-
dowing becomes quite handy.

After we answered our question above about average flight delays per day,
we came up with another question about the RITA 2008 flight data that
Apache Hive can answer: “What is the first flight between Airport X and Y?”
Suppose that in addition to this information, you want to know about subse-
quent flights, just in case you’re not a “morning person.” Well, this is a job for
windowing in HiveQL! Listing 13-20 provides you with a query that answers
these questions.

Listing 13-20: Using Aggregate Window Functions on the Flight Data

(A) hive (flightdata)> SELECT f08.Month, f08.DayOfMonth,

cr.description, f08.Origin, f08.Dest,

f08.FlightNum, f08.DepTime, MIN(f08.DepTime)

OVER (PARTITION BY f08.DayOfMonth ORDER BY f08.DepTime)
FROM flightinfo2008 f08 JOIN Carriers cr ON

f08.UniqueCarrier = cr.code

WHERE f08.Origin = 'JFK' AND f08.Dest = 'ORD' AND

f08.Month = 1 AND f08.DepTime != 0;

1 1 American Airlines Inc. JFK ORD 1323 833 641

1 1 JetBlue Airways JFK ORD 907 929 641

1 1 Comair Inc. JFK ORD 5083 945 641

1 1 Comair Inc. JFK ORD 5634 1215 641

1 1 JetBlue Airways JFK ORD 915 1352 641

1 1 American Airlines Inc. JFK ORD 1323 833 641

1 1 JetBlue Airways JFK ORD 907 929 641

1 1 Comair Inc. JFK ORD 5083 945 641

1 1 Comair Inc. JFK ORD 5634 1215 641

1 1 JetBlue Airways JFK ORD 915 1352 641

1 1 American Airlines Inc. JFK ORD 1815 1610 641

1 1 JetBlue Airways JFK ORD 917 1735 641

1 1 Comair Inc. JFK ORD 5469 1749 641

1 1 Comair Inc. JFK ORD 5492 2000 641

1 1 JetBlue Airways JFK ORD 919 2102 641

1 31 JetBlue Airways JFK ORD 919 48 48

1 31 JetBlue Airways JFK ORD 903 635 48

1 31 Comair Inc. JFK ORD 5447 650 48

1 31 American Airlines Inc. JFK ORD 1323 840 48

1 31 JetBlue Airways JFK ORD 907 921 48

1 31 JetBlue Airways JFK ORD 917 1859 48

In Step (A), we’ve replaced the GROUP BY clause with the OVER clause where
we specify the PARTITION or window over which we want the MIN aggregate
function to operate. We’ve also included the ORDER BY clause so that we can
see those subsequent flights after the first one. As you can see from the list-
ing, on January 31, JetBlue has a nice, early flight at 12:48 a.m. — we’ll opt for
a later one, at 6:35 a.m. Early-riser issues aside, note that we have retained
the information in the query output that would have been lost if we had chosen
to use a GROUP BY clause again. This capability alone makes windowing
a powerful feature, and there’s more. Along with windowing in the
Hive 0.11 release, the community provided some analytics functions that
you can use in conjunction with windowing. Also at your disposal are these
functions: RANK, ROW_NUMBER, DENSE_RANK, CUME_DIST, PERCENT_RANK,
and NTILE. Finally, don’t miss the use of JOIN in Listing 13-20: It’s a real-life,

...

OK

1 1 JetBlue Airways JFK ORD 903 641 641

practical example of an inner join in which we join the FlightInfo2008
table with the Carriers table to get the airline name — rather than the
cryptic code found in the FlightInfo2008 table.

At the beginning of this chapter, we make the point that Hive is a key com-
ponent of EDW augmentation. By importing, transforming, and analyzing the
RITA flight data, we demonstrate how an EDW augmentation workflow might
take shape. If data in your RDBMS or EDW can be enhanced by this flight data,
Hive is the enabling technology to augment your existing IT system. Similarly,
data from your RDBMS or EDW could have been exported to Apache Hive
(perhaps using Apache Sqoop, as discussed in Chapter 13) and joined with
this new flight data.

Other key HiveQL features
If this chapter is to be complete, we cannot leave a few other HiveQL features
unmentioned. The following list summarizes them for you:

✓ Security: Apache Hive provides a security subsystem that can be quite
helpful in preventing accidental data corruption or compromise among
trusted members of workgroups. However, as of this writing, the Hive
Language Manual clearly states that the Hive Security subsystem isn’t
designed to prevent nefarious users from compromising a Hive system.
Hive security can be established for individual users, groups, and admin-
istrative roles. Hive provides privileges that can be granted or revoked
to users, groups, or administrative roles. The Hive 0.10 release improved
security in multi-user environments by providing authorization to the
metastore, and future Hive releases will provide increasing integration
with the Hadoop security framework. Kerberos is emerging as the tech-
nology of choice for securing Apache Hadoop.

✓ Multi-User Locking: Hive supports multi-user warehouse access when
configured with Apache Zookeeper. Without this support, one user
may read a table at the same time another user is deleting that table —
which is, obviously, unacceptable. (For more information on Apache
Zookeeper, see Chapter 12.) Multi-user access is enabled via configura-
tion variables in the hive-site.xml file. Once configured, Hive implicitly
acquires locks through Zookeeper for certain table operations. Users
can also explicitly manage locks in the Hive CLI. Locks and associated
configuration properties/variables are described in the Hive Language
Manual.

✓ Compression: Data compression can not only save space on the HDFS
but also improve performance by reducing the overall size of input/
output operations. Additionally, compression between the Hadoop

mappers and reducers can improve performance, because less data is
passed between nodes in the cluster. Hive supports intermediate com-
pression between the mappers and reducers as well as table output
compression. Hive also understands how to ingest compressed data
into the warehouse. Files compressed with Gzip or Bzip2 can be read by
Hive’s LOAD DATA command.

✓ Functions: HiveQL provides a rich set of built-in operators, built-in func-
tions, built-in aggregate functions, and built-in table-generating func-
tions. Several examples in this chapter use built-in operators as well
as built-in aggregate functions (AVG, MIN, and COUNT, for example). To
list all built-in functions for any particular Hive release, use the SHOW
FUNCTIONS HiveQL command. You can also retrieve information about a
built-in function by using the HiveQL commands DESCRIBE FUNCTION
function_name and DESCRIBE FUNCTION EXTENDED function_
name. Using the EXTENDED keyword sometimes returns usage examples
for the specified built-in function. Additionally, Hive allows users to
create their own functions, called user-defined functions, or UDFs. Using
Hive’s Java-based UDF framework, you can create additional functions,
including aggregates and table-generating functions. This feature is one
of the reasons that Hive can function as an ETL tool.

