

Jaipur Engineering College and

Research Centre, Shri Ram ki Nangal,

via Sitapura RIICO Jaipur- 302 022.

Academic year-

2020-2021

Vision & Mission of the Department

Vision of the Department

To become renowned Centre of excellence in computer science and engineering and make

competent engineers & professionals with high ethical values prepared for lifelong learning.

 Mission of the Department

M1: To impart outcome based education for emerging technologies in the field of computer

science and engineering.

M2: To provide opportunities for interaction between academia and industry.

M3: To provide platform for lifelong learning by accepting the change in technologies

M4: To develop aptitude of fulfilling social responsibilities.

Jaipur Engineering College and

Research Centre, Shri Ram ki Nangal,

via Sitapura RIICO Jaipur- 302 022.

Academic year-

2020-2021

SYLLABUS

Jaipur Engineering College and

Research Centre, Shri Ram ki Nangal,

via Sitapura RIICO Jaipur- 302 022.

Academic year-

2020-2021

PROGRAM OUTCOMES

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent responsibilities

relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with

the engineering community and with society at large, such as, being able to comprehend

Jaipur Engineering College and

Research Centre, Shri Ram ki Nangal,

via Sitapura RIICO Jaipur- 302 022.

Academic year-

2020-2021

and write effective reports and design documentation, make effective presentations, and

give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of

the engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

Jaipur Engineering College and

Research Centre, Shri Ram ki Nangal,

via Sitapura RIICO Jaipur- 302 022.

Academic year-

2020-2021

Jaipur Engineering College and Research Centre

 Department of Computer Science & Engineering

Subject – Big Data Analytics Subject code – 8CS4 - 01

Semester - VIII [L/T/P - 3/0/0]

Course Outcome

CO1. To understand the features, file system and challenges of big data.

CO2. To learn and analyze big data analytics tools like Map Reduce, Hadoop.

CO3. To apply and evaluate Hadoop programming with respect to PIG architecture.

CO4. To create and analyze database with Hive and related tools.

CO- PO Mapping

H=3, M=2, L=1

S
em

ester

S
u
b
ject

C
o
d
e

L
/T

/P

C
O

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

1
0

P
O

1
1

P
O

1
2

V
II

I

 V

B
ig

 D
a
ta

A
n

a
ly

ti
cs

8
C

S
4
 -

 0
1
 L CO1 3 2 2 2 1 1 1 1 1 1 2 3

L CO2 3 3 3 2 2 1 1 1 1 1 2 3

L CO3 3 3 3 2 2 1 1 1 1 2 2 3

L CO4 3 3 3 2 2 2 2 2 2 2 2 3

Jaipur Engineering College and

Research Centre, Shri Ram ki Nangal,

via Sitapura RIICO Jaipur- 302 022.

Academic year-

2020-2021

PROGRAM EDUCATIONAL OBJECTIVES:

1. To provide students with the fundamentals of Engineering Sciences with more

emphasis in Computer Science &Engineering by way of analyzing and exploiting

engineering challenges.

2. To train students with good scientific and engineering knowledge so as to

comprehend, analyze, design, and create novel products and solutions for the real

life problems.

3. To inculcate professional and ethical attitude, effective communication skills,

teamwork skills, multidisciplinary approach, entrepreneurial thinking and an ability

to relate engineering issues with social issues.

4. To provide students with an academic environment aware of excellence, leadership,

written ethical codes and guidelines, and the self motivated life-long learning

needed for a successful professional career.

5. To prepare students to excel in Industry and Higher education by Educating

Students along with High moral values and Knowledge

Jaipur Engineering college and research

centre, Shri Ram ki Nangal, via Sitapura

RIICO Jaipur- 302 022.

Academic Year

2020-2021

J

UNIT-4

Pig: Hadoop Programming
Made Easier

In This Chapter
▶ Looking at the Pig architecture

▶ Seeing the flow in the Pig Latin application flow

▶ Reciting the ABCs of Pig Latin

▶ Distinguishing between local and distributed modes of running Pig scripts

▶ Scripting with Pig Latin

ava MapReduce programs and the Hadoop Distributed File System (HDFS;
) provide you with a powerful distributed

computing framework, but they come with one major drawback — relying on
them limits the use of Hadoop to Java programmers who can think in Map
and Reduce terms when writing programs. More developers, data analysts,
data scientists, and all-around good folks could leverage Hadoop if they had
a way to harness the power of Map and Reduce while hiding some of the Map
and Reduce complexities.

As with most things in life, where there’s a need, somebody is bound to come
up with an idea meant to fill that need. A growing list of MapReduce abstractions
is now on the market — programming languages and/or tools such as Hive and
Pig, which hide the messy details of MapReduce so that a programmer can con-
centrate on the important work.

Hive, for example, provides a limited SQL-like capability that runs over
MapReduce, thus making said MapReduce more approachable for SQL devel-
opers. Hive also provides a declarative query language (the SQL-like HiveQL),
which allows you to focus on which operation you need to carry out versus
how it is carried out.

Though SQL is the common accepted language for querying structured data,
some developers still prefer writing imperative scripts — scripts that define
a set of operations that change the state of the data — and also want to have
more data processing flexibility than what SQL or HiveQL provides. Again, this

need led the engineers at Yahoo! Research to come up with a product meant
to fulfill that need — and so Pig was born. Pig’s claim to fame was its status as
a programming tool attempting to have the best of both worlds: a declarative
query language inspired by SQL and a low-level procedural programming lan-
guage that can generate MapReduce code. This lowers the bar when it comes
to the level of technical knowledge needed to exploit the power of Hadoop.

By taking a look at some murky computer programming language history, we
can say that Pig was initially developed at Yahoo! in 2006 as part of a research
project tasked with coming up with ways for people using Hadoop to focus
more on analyzing large data sets rather than spending lots of time writing
Java MapReduce programs. The goal here was a familiar one: Allow users to
focus more on what they want to do and less on how it’s done. Not long after,
in 2007, Pig officially became an Apache project. As such, it is included in
most Hadoop distributions.

And its name? That one’s easy to figure out. The Pig programming language
is designed to handle any kind of data tossed its way — structured, semi-
structured, unstructured data, you name it. Pigs, of course, have a reputation
for eating anything they come across. (We suppose they could have called it
Goat — or maybe that name was already taken.) According to the Apache Pig
philosophy, pigs eat anything, live anywhere, are domesticated and can fly to
boot. (Flying Apache Pigs? Now we’ve seen everything.) Pigs “living anywhere”
refers to the fact that Pig is a parallel data processing programming language
and is not committed to any particular parallel framework — including Hadoop.
What makes it a domesticated animal? Well, if “domesticated” means “plays well
with humans,” then it’s definitely the case that Pig prides itself on being easy for
humans to code and maintain. (Hey, it’s easily integrated with other program-
ming languages and it’s extensible. What more could you ask?) Lastly, Pig is
smart and in data processing lingo this means there is an optimizer that figures
out how to do the hard work of figuring out how to get the data quickly. Pig is
not just going to be quick — it’s going to fly. (To see more about the Apache Pig
philosophy, check out http://pig.apache.org/philosophy.)

Admiring the Pig Architecture
“Simple” often means “elegant” when it comes to those architectural drawings
for that new Silicon Valley mansion you have planned for when the money
starts rolling in after you implement Hadoop. The same principle applies to
software architecture. Pig is made up of two (count ‘em, two) components:

✓ The language itself: As proof that programmers have a sense of humor, the
programming language for Pig is known as Pig Latin, a high-level language
that allows you to write data processing and analysis programs.

http://pig.apache.org/philosophy.)

✓ The Pig Latin compiler: The Pig Latin compiler converts the Pig Latin
code into executable code. The executable code is either in the form
of MapReduce jobs or it can spawn a process where a virtual Hadoop
instance is created to run the Pig code on a single node.

The sequence of MapReduce programs enables Pig programs to do data
processing and analysis in parallel, leveraging Hadoop MapReduce and
HDFS. Running the Pig job in the virtual Hadoop instance is a useful
strategy for testing your Pig scripts.

Figure 8-1 shows how Pig relates to the Hadoop ecosystem.

Figure 8-1:
Pig archi-
tecture.

Pig programs can run on MapReduce v1 or MapReduce v2 without any code
changes, regardless of what mode your cluster is running. However, Pig scripts
can also run using the Tez API instead. Apache Tez provides a more efficient
execution framework than MapReduce. YARN enables application frameworks
other than MapReduce (like Tez) to run on Hadoop. Hive can also run against
the Tez framework. See Chapter 7 for more information on YARN and Tez.

Going with the Pig Latin
Application Flow

At its core, Pig Latin is a dataflow language, where you define a data stream
and a series of transformations that are applied to the data as it flows
through your application. This is in contrast to a control flow language (like C
or Java), where you write a series of instructions. In control flow languages,
we use constructs like loops and conditional logic (like an if statement). You
won’t find loops and if statements in Pig Latin.

A = LOAD 'data_file.txt';

...

B = GROUP ... ;

...

C= FILTER ...;
...

DUMP B;

..

STORE C INTO 'Results';

If you need some convincing that working with Pig is a significantly easier
row to hoe than having to write Map and Reduce programs, start by taking a
look at some real Pig syntax:

Listing 8-1: Sample Pig Code to illustrate the data processing dataflow

Some of the text in this example actually looks like English, right? Not too
scary, at least at this point. Looking at each line in turn, you can see the basic
flow of a Pig program. (Note that this code can either be part of a script or
issued on the interactive shell called Grunt — we learn more about Grunt in a
few pages.)

1. Load: You first load (LOAD) the data you want to manipulate. As in a

typical MapReduce job, that data is stored in HDFS. For a Pig program to
access the data, you first tell Pig what file or files to use. For that task,
you use the LOAD 'data_file' command.

Here, 'data_file' can specify either an HDFS file or a directory. If
a directory is specified, all files in that directory are loaded into the
program.

If the data is stored in a file format that isn’t natively accessible to Pig,
you can optionally add the USING function to the LOAD statement to
specify a user-defined function that can read in (and interpret) the data.

2. Transform: You run the data through a set of transformations that, way
under the hood and far removed from anything you have to concern
yourself with, are translated into a set of Map and Reduce tasks.

The transformation logic is where all the data manipulation happens.
Here, you can FILTER out rows that aren’t of interest, JOIN two sets
of data files, GROUP data to build aggregations, ORDER results, and do
much, much more.

3. Dump: Finally, you dump (DUMP) the results to the screen

or

Store (STORE) the results in a file somewhere.

You would typically use the DUMP command to send the output to the
screen when you debug your programs. When your program goes into
production, you simply change the DUMP call to a STORE call so that any
results from running your programs are stored in a file for further pro-
cessing or analysis.

Working through the ABCs of Pig Latin
Pig Latin is the language for Pig programs. Pig translates the Pig Latin script
into MapReduce jobs that can be executed within Hadoop cluster. When
coming up with Pig Latin, the development team followed three key design
principles:

✓ Keep it simple. Pig Latin provides a streamlined method for interacting
with Java MapReduce. It’s an abstraction, in other words, that simplifies
the creation of parallel programs on the Hadoop cluster for data flows
and analysis. Complex tasks may require a series of interrelated data
transformations — such series are encoded as data flow sequences.

Writing data transformation and flows as Pig Latin scripts instead of
Java MapReduce programs makes these programs easier to write, under-
stand, and maintain because a) you don’t have to write the job in Java,
b) you don’t have to think in terms of MapReduce, and c) you don’t
need to come up with custom code to support rich data types. Pig Latin
provides a simpler language to exploit your Hadoop cluster, thus making
it easier for more people to leverage the power of Hadoop and become
productive sooner.

✓ Make it smart. You may recall that the Pig Latin Compiler does the work
of transforming a Pig Latin program into a series of Java MapReduce
jobs. The trick is to make sure that the compiler can optimize the execu-
tion of these Java MapReduce jobs automatically, allowing the user to
focus on semantics rather than on how to optimize and access the data.

For you SQL types out there, this discussion will sound familiar. SQL
is set up as a declarative query that you use to access structured data
stored in an RDBMS. The RDBMS engine first translates the query to
a data access method and then looks at the statistics and generates a
series of data access approaches. The cost-based optimizer chooses the
most efficient approach for execution.

✓ Don’t limit development. Make Pig extensible so that developers can
add functions to address their particular business problems.

records = LOAD '2013_subset.csv' USING PigStorage(',') AS

(Year,Month,DayofMonth,DayOfWeek,DepTime,CRSDep

Time,ArrTime,CRSArrTime,UniqueCarrier,FlightNum

,TailNum,ActualElapsedTime,CRSElapsedTime,AirTi

me,ArrDelay,DepDelay,Origin,Dest,Distance:int,T

axiIn,TaxiOut,Cancelled,CancellationCode,Divert

ed,CarrierDelay,WeatherDelay,NASDelay,SecurityD

elay,LateAircraftDelay);

milage_recs = GROUP records ALL;

tot_miles = FOREACH milage_recs GENERATE

SUM(records.Distance);

DUMP tot_miles;

Traditional RDBMS data warehouses make use of the ETL data processing
pattern, where you extract data from outside sources, transform it to fit your
operational needs, and then load it into the end target, whether it’s an opera-
tional data store, a data warehouse, or another variant of database. However,
with big data, you typically want to reduce the amount of data you have
moving about, so you end up bringing the processing to the data itself. The
language for Pig data flows, therefore, takes a pass on the old ETL approach,
and goes with ELT instead: Extract the data from your various sources, load it
into HDFS, and then transform it as necessary to prepare the data for further
analysis.

Uncovering Pig Latin structures
To see how Pig Latin is put together, check out the following (bare-bones,
training wheel) program for playing around in Hadoop. (To save time and
money — hey, coming up with great examples can cost a pretty penny! — we’ll
reuse the Flight Data scenario from Chapter 6.) Compare and Contrast is often
a good way to learn something new, so go ahead and review the problem we’re
solving in Chapter 6, and take a look at the code in Listings 6-3, 6-4, and 6-5.

The problem we’re trying to solve involves calculating the total number of
flights flown by every carrier. Following is the Pig Latin script we’ll use to
answer this question.

Listing 8-2: Pig script calculating the total miles flown

Before we walk through the code, here are a few high-level observations:
The Pig script is a lot smaller than the MapReduce application you’d need
to accomplish the same task — the Pig script only has 4 lines of code! Yes,
that first line is rather long, but it’s pretty simple, since we’re just listing

the names of the columns in the data set. And not only is the code shorter,
but it’s even semi-human readable. Just look at the key words in the script:
LOADs the data, does a GROUP, calculates a SUM and finally DUMPs out an
answer. You’ll remember that one reason why SQL is so awesome is because
it’s a declarative query language, meaning you express queries on what you
want the result to be, not how it is executed. Pig can be equally cool because
it also gives you that declarative aspect and you don’t have to tell it how to
actually do it and in particular how to do the MapReduce stuff.

Ready for your walkthrough? As you make your way through the code, take
note of these principles:

✓ Most Pig scripts start with the LOAD statement to read data from HDFS.
In this case, we’re loading data from a .csv file. Pig has a data model it
uses, so next we need to map the file’s data model to the Pig data mode.
This is accomplished with the help of the USING statement. (More
on the Pig data model in the next section.) We then specify that it is a
comma-delimited file with the PigStorage(',') statement followed
by the AS statement defining the name of each of the columns.

✓ Aggregations are commonly used in Pig to summarize data sets. The
GROUP statement is used to aggregate the records into a single record
mileage_recs. The ALL statement is used to aggregate all tuples into a
single group. Note that some statements — including the following SUM
statement — requires a preceding GROUP ALL statement for global sums.

✓ FOREACH . . . GENERATE statements are used here to transform
columns data. In this case, we want to count the miles traveled in the
records_Distance column. The SUM statement computes the sum
of the record_Distance column into a single-column collection
total_miles.

✓ The DUMP operator is used to execute the Pig Latin statement and dis-
play the results on the screen. DUMP is used in interactive mode, which
means that the statements are executable immediately and the results
are not saved. Typically, you will either use the DUMP or STORE opera-
tors at the end of your Pig script.

Looking at Pig data types and syntax
Pig’s data types make up the data model for how Pig thinks of the structure of
the data it is processing. With Pig, the data model gets defined when the data
is loaded. Any data you load into Pig from disk is going to have a particular
schema and structure. Pig needs to understand that structure, so when you
do the loading, the data automatically goes through a mapping.

Luckily for you, the Pig data model is rich enough to handle most anything
thrown its way, including table-like structures and nested hierarchical data
structures. In general terms, though, Pig data types can be broken into two
categories: scalar types and complex types. Scalar types contain a single
value, whereas complex types contain other types, such as the Tuple, Bag,
and Map types listed below.

Pig Latin has these four types in its data model:

✓ Atom: An atom is any single value, such as a string or a number —
‘Diego’, for example. Pig’s atomic values are scalar types that appear
in most programming languages — int, long, float, double,
chararray, and bytearray, for example. See Figure 8-2 to see sample
atom types.

✓ Tuple: A tuple is a record that consists of a sequence of fields. Each field
can be of any type — ‘Diego’, ‘Gomez’, or 6, for example. Think of a tuple
as a row in a table.

✓ Bag: A bag is a collection of non-unique tuples. The schema of the bag is
flexible — each tuple in the collection can contain an arbitrary number
of fields, and each field can be of any type.

✓ Map: A map is a collection of key value pairs. Any type can be stored in
the value, and the key needs to be unique. The key of a map must be a
chararray and the value can be of any type.

Figure 8-2 offers some fine examples of Tuple, Bag, and Map data types, as well.

Figure 8-2:
Sample Pig
Data Types

The value of all these types can also be null. The semantics for null are
similar to those used in SQL. The concept of null in Pig means that the value is
unknown. Nulls can show up in the data in cases where values are unreadable or
unrecognizable — for example, if you were to use a wrong data type in the LOAD
statement. Null could be used as a placeholder until data is added or as a value
for a field that is optional.

Pig Latin has a simple syntax with powerful semantics you’ll use to carry out
two primary operations: access and transform data. If you compare the Pig
implementation for calculating miles traveled by airline (Listing 8-1) with the
Java MapReduce implementations (Listings 6-1, 6-2, and 6-3), they both come
up with the same result but the Pig implementation has a lot less code and is
easier to understand.

In a Hadoop context, accessing data means allowing developers to load, store,
and stream data, whereas transforming data means taking advantage of Pig’s
ability to group, join, combine, split, filter, and sort data. Table 8-1 gives an
overview of the operators associated with each operation.

Table 8-1 Pig Latin Operators

Operation Operator Explanation

Data Access LOAD/STORE Read and Write data to file system

 DUMP Write output to standard output (stdout)

 STREAM Send all records through external binary

 FOREACH Apply expression to each record and
output one or more records

 FILTER Apply predicate and remove records that
don’t meet condition

 GROUP/
COGROUP

Aggregate records with the same key from
one or more inputs

 JOIN Join two or more records based on a
condition

Transformations CROSS Cartesian product of two or more inputs

 ORDER Sort records based on key

 DISTINCT Remove duplicate records

 UNION Merge two data sets

 SPLIT Divide data into two or more bags based
on predicate

 LIMIT subset the number of records

Pig also provides a few operators that are helpful for debugging and trouble-
shooting, as shown in Table 8-2:

Table 8-2 Operators for Debugging and Troubleshooting

Operation Operator Description

Debug DESCRIBE Return the schema of a relation.

 DUMP Dump the contents of a relation to the screen.

 EXPLAIN Display the MapReduce execution plans.

Part of the paradigm shift of Hadoop is that you apply your schema at Read
instead of Load. According to the old way of doing things — the RDBMS
way — when you load data into your database system, you must load it into
a well-defined set of tables. Hadoop allows you to store all that raw data
upfront and apply the schema at Read. With Pig, you do this during the load-
ing of the data, with the help of the LOAD operator. Back in Listing 8-2, we
used the LOAD operator to read the flight data from a file.

The optional USING statement defines how to map the data structure within
the file to the Pig data model — in this case, the PigStorage () data struc-
ture, which parses delimited text files. (This part of the USING statement is
often referred to as a LOAD Func and works in a fashion similar to a custom
deserializer.) The optional AS clause defines a schema for the data that is
being mapped. If you don’t use an AS clause, you’re basically telling the
default LOAD Func to expect a plain text file that is tab delimited. With no
schema provided, the fields must be referenced by position because no name
is defined.

Using AS clauses means that you have a schema in place at read-time for
your text files, which allows users to get started quickly and provides agile
schema modeling and flexibility so that you can add more data to your
analytics.

The LOAD operator operates on the principle of lazy evaluation, also referred
to as call-by-need. Now lazy doesn’t sound particularly praiseworthy, but all it
means is that you delay the evaluation of an expression until you really need
it. In the context of our Pig example, that means that after the LOAD statement
is executed, no data is moved — nothing gets shunted around — until a statement
to write data is encountered. You can have a Pig script that is a page long filled
with complex transformations, but nothing gets executed until the DUMP or
STORE statement is encountered.

Evaluating Local and Distributed
Modes of Running Pig scripts

Before you can run your first Pig script, you need to have a handle on how
Pig programs can be packaged with the Pig server.

Pig has two modes for running scripts, as shown in Figure 8-3:

✓ Local mode: All scripts are run on a single machine without requir-
ing Hadoop MapReduce and HDFS. This can be useful for developing
and testing Pig logic. If you’re using a small set of data to develope or
test your code, then local mode could be faster than going through the
MapReduce infrastructure.

Local mode doesn’t require Hadoop. When you run in Local mode, the
Pig program runs in the context of a local Java Virtual Machine, and data
access is via the local file system of a single machine. Local mode is actu-
ally a local simulation of MapReduce in Hadoop’s LocalJobRunner class.

✓ MapReduce mode (also known as Hadoop mode): Pig is executed on
the Hadoop cluster. In this case, the Pig script gets converted into a
series of MapReduce jobs that are then run on the Hadoop cluster.

Figure 8-3:
Pig modes

If you have a terabyte of data that you want to perform operations on and you
want to interactively develop a program, you may soon find things slowing
down considerably, and you may start growing your storage. Local mode allows
you to work with a subset of your data in a more interactive manner so that you
can figure out the logic (and work out the bugs) of your Pig program. After you
have things set up as you want them and your operations are running smoothly,
you can then run the script against the full data set using MapReduce mode.

Checking Out the Pig Script Interfaces
Pig programs can be packaged in three different ways:

✓ Script: This method is nothing more than a file containing Pig Latin com-
mands, identified by the .pig suffix (FlightData.pig, for example).
Ending your Pig program with the .pig extension is a convention but
not required. The commands are interpreted by the Pig Latin compiler
and executed in the order determined by the Pig optimizer.

✓ Grunt: Grunt acts as a command interpreter where you can interactively
enter Pig Latin at the Grunt command line and immediately see the
response. This method is helpful for prototyping during initial develop-
ment and with what-if scenarios.

✓ Embedded: Pig Latin statements can be executed within Java, Python,
or JavaScript programs.

Pig scripts, Grunt shell Pig commands, and embedded Pig programs can run
in either Local mode or MapReduce mode.

The Grunt shell provides an interactive shell to submit Pig commands or run
Pig scripts. To start the Grunt shell in Interactive mode, just submit the com-
mand pig at your shell.

To specify whether a script or Grunt shell is executed locally or in Hadoop
mode just specify it in the –x flag to the pig command. The following is an
example of how you’d specify running your Pig script in local mode:

 pig -x local milesPerCarrier.pig

Here’s how you’d run the Pig script in Hadoop mode, which is the default if
you don’t specify the flag:

 pig -x mapreduce milesPerCarrier.pig

By default, when you specify the pig command without any parameters, it
starts the Grunt shell in Hadoop mode. If you want to start the Grunt shell in
local mode just add the –x local flag to the command. Here is an example:

 pig -x local

Scripting with Pig Latin
Hadoop is a rich and quickly evolving ecosystem with a growing set of new
applications. Rather than try to keep up with all the requirements for new
capabilities, Pig is designed to be extensible via user-defined functions, also
known as UDFs. UDFs can be written in a number of programming languages,
including Java, Python, and JavaScript. Developers are also posting and shar-
ing a growing collection of UDFs online. (Look for Piggy Bank and DataFu, to
name just two examples of such online collections.) Some of the Pig UDFs
that are part of these repositories are LOAD/STORE functions (XML, for exam-
ple), date time functions, text, math, and stats functions.

Pig can also be embedded in host languages such as Java, Python, and JavaScript,
which allows you to integrate Pig with your existing applications. It also helps
overcome limitations in the Pig language. One of the most commonly referenced
limitations is that Pig doesn’t support control flow statements: if/else, while
loop, for loop, and condition statements. Pig natively supports data flow,
but needs to be embedded within another language to provide control flow. There
are tradeoffs, however of embedding Pig in a control-flow language. For example
if a Pig statement is embedded in a loop, every time the loop iterates and runs the
Pig statement, this causes a separate MapReduce job to run.

