

Jaipur Engineering College and

Research Centre, Shri Ram ki Nangal,

via Sitapura RIICO Jaipur- 302 022.

Academic year-

2020-2021

Vision & Mission of the Department

Vision of the Department

To become renowned Centre of excellence in computer science and engineering and make

competent engineers & professionals with high ethical values prepared for lifelong learning.

 Mission of the Department

M1: To impart outcome based education for emerging technologies in the field of computer

science and engineering.

M2: To provide opportunities for interaction between academia and industry.

M3: To provide platform for lifelong learning by accepting the change in technologies

M4: To develop aptitude of fulfilling social responsibilities.

Jaipur Engineering College and

Research Centre, Shri Ram ki Nangal,

via Sitapura RIICO Jaipur- 302 022.

Academic year-

2020-2021

SYLLABUS

Jaipur Engineering College and

Research Centre, Shri Ram ki Nangal,

via Sitapura RIICO Jaipur- 302 022.

Academic year-

2020-2021

PROGRAM OUTCOMES

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent responsibilities

relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with

the engineering community and with society at large, such as, being able to comprehend

Jaipur Engineering College and

Research Centre, Shri Ram ki Nangal,

via Sitapura RIICO Jaipur- 302 022.

Academic year-

2020-2021

and write effective reports and design documentation, make effective presentations, and

give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of

the engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

Jaipur Engineering College and

Research Centre, Shri Ram ki Nangal,

via Sitapura RIICO Jaipur- 302 022.

Academic year-

2020-2021

Jaipur Engineering College and Research Centre

 Department of Computer Science & Engineering

Subject – Big Data Analytics Subject code – 8CS4 - 01

Semester - VIII [L/T/P - 3/0/0]

Course Outcome

CO1. To understand the features, file system and challenges of big data.

CO2. To learn and analyze big data analytics tools like Map Reduce, Hadoop.

CO3. To apply and evaluate Hadoop programming with respect to PIG architecture.

CO4. To create and analyze database with Hive and related tools.

CO- PO Mapping

H=3, M=2, L=1

S
em

ester

S
u
b
ject

C
o
d
e

L
/T

/P

C
O

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

1
0

P
O

1
1

P
O

1
2

V
II

I

 V

B
ig

 D
a
ta

A
n

a
ly

ti
cs

8
C

S
4
 -

 0
1
 L CO1 3 2 2 2 1 1 1 1 1 1 2 3

L CO2 3 3 3 2 2 1 1 1 1 1 2 3

L CO3 3 3 3 2 2 1 1 1 1 2 2 3

L CO4 3 3 3 2 2 2 2 2 2 2 2 3

Jaipur Engineering College and

Research Centre, Shri Ram ki Nangal,

via Sitapura RIICO Jaipur- 302 022.

Academic year-

2020-2021

PROGRAM EDUCATIONAL OBJECTIVES:

1. To provide students with the fundamentals of Engineering Sciences with more

emphasis in Computer Science &Engineering by way of analyzing and exploiting

engineering challenges.

2. To train students with good scientific and engineering knowledge so as to

comprehend, analyze, design, and create novel products and solutions for the real

life problems.

3. To inculcate professional and ethical attitude, effective communication skills,

teamwork skills, multidisciplinary approach, entrepreneurial thinking and an ability

to relate engineering issues with social issues.

4. To provide students with an academic environment aware of excellence, leadership,

written ethical codes and guidelines, and the self motivated life-long learning

needed for a successful professional career.

5. To prepare students to excel in Industry and Higher education by Educating

Students along with High moral values and Knowledge

Jaipur Engineering college and research

centre, Shri Ram ki Nangal, via Sitapura

RIICO Jaipur- 302 022.

Academic year-______

1 | P a g e

UNIT-3

HADOOP I/O

Serialization

Serialization is the process of turning structured objects into a byte stream for transmission over

a network or for writing to persistent storage. Deserialization is the reverse process of turning a

byte stream back into a series of structured objects. Serialization appears in two quite distinct

areas of distributed data processing: for interprocess communication and for persistent storage. In

Hadoop, interprocess communication between nodes in the system is implemented using remote

procedure calls (RPCs). The RPC protocol uses serialization to render the message into a binary

stream to be sent to the remote node, which then deserializes the binary stream into the original

message.

In general, an RPC serialization format is:

Compact

A compact format makes the best use of network bandwidth, which is the most scarce resource in

a data center.

Fast

Interprocess communication forms the backbone for a distributed system, so it is essential that

there is as little performance overhead as possible for the serialization and deserialization

process.

Extensible

Protocols change over time to meet new requirements, so it should be straightforward to evolve

the protocol in a controlled manner for clients and servers.

Interoperable

For some systems, it is desirable to be able to support clients that are written in different

languages to the server, so the format needs to be designed to make this possible.

Hadoop uses its own serialization format, Writables, which is certainly compact and fast, but

not so easy to extend or use from languages other than Java.

The Writable Interface

The Writable interface defines two methods: one for writing its state to a DataOutput binary

stream by using write(), and one for reading its state from a DataInput binary stream by using

readFields()as below:

package org.apache.hadoop.io;

import java.io.DataOutput;

import java.io.DataInput; import

java.io.IOException; public

interface Writable

{

Jaipur Engineering college and research

centre, Shri Ram ki Nangal, via Sitapura

RIICO Jaipur- 302 022.

Academic year-______

2 | P a g e

void write(DataOutput out) throws IOException;

void readFields(DataInput in) throws IOException;

}

We will use IntWritable, a wrapper for a Java int. We can create one and set its value using

the set() method: IntWritable writable = new IntWritable();

writable.set(163);

Equivalently, we can use the constructor that takes the integer value:

IntWritable writable = new IntWritable(163);

To examine the serialized form of the IntWritable, we write a small helper method that

wraps a java.io.ByteArrayOutputStream in a java.io.DataOutputStream to capture the bytes in

the serialized stream:

public static byte[] serialize(Writable writable) throws IOException

{

ByteArrayOutputStream out = new

ByteArrayOutputStream(); DataOutputStream

dataOut = new DataOutputStream(out);

writable.write(dataOut);

dataOut.close();

return out.toByteArray();

}

An integer is written using four bytes

byte[] bytes = serialize(writable);

assertThat(bytes.length, is(4));

The bytes are written in big-endian order and we can see their hexadecimal representation by

using a method on Hadoop’s StringUtils:

assertThat(StringUtils.byteToHexString(bytes), is("000000a3"));

Let’s try deserialization. Again, we create a helper method to read a Writable object from a byte

array:

public static byte[] deserialize(Writable writable, byte[] bytes) throws IOException

{

ByteArrayInputStream in = new ByteArrayInputStream(bytes);

DataInputStream dataIn = new DataInputStream(in);

writable.readFields(dataIn);

 dataIn.close();

 return bytes;

 }

Jaipur Engineering college and research

centre, Shri Ram ki Nangal, via Sitapura

RIICO Jaipur- 302 022.

Academic year-______

3 | P a g e

We construct a new, value-less, IntWritable, then call deserialize() to read from the output

data that we just wrote. Then we check that its value, retrieved using the get() method, is the

original value, 163:

IntWritable newWritable = new IntWritable();

deserialize(newWritable, bytes);

assertThat(newWritable.get(), is(163));

WritableComparable and comparators

IntWritable implements the WritableComparable interface, which is just a subinterface of the

Writable and java.lang.Comparable interfaces:

package org.apache.hadoop.io;

public interface WritableComparable<T> extends Writable, Comparable<T>

{

}

Comparison of types is crucial for MapReduce, where there is a sorting phase during which keys

are compared with one another. One optimization that Hadoop provides is the RawComparator

extension of Java’s Comparator:

package org.apache.hadoop.io; import java.util.Comparator;

public interface RawComparator<T> extends Comparator<T>

{

public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2);

}

In the above example, the comparator for IntWritables implements the raw compare() method

by reading an integer from each of the byte arrays b1 and b2 and comparing them directly, from

the given start positions (s1 and s2) and lengths (l1 and l2). This interface permits implementors

to compare records read from a stream without deserializing them into objects, thereby avoiding

any overhead of object creation.

WritableComparator is a general-purpose implementation of RawComparator for

WritableComparable classes. It provides two main functions. First, it provides a default

implementation of the raw compare() method that deserializes the objects to be compared from the

stream and invokes the object compare() method. Second, it acts as a factory for RawComparator

instances.

For example, to obtain a comparator for IntWritable, we just use:

RawComparator<IntWritable> comparator =

WritableComparator.get(IntWritable.class);

Jaipur Engineering college and research

centre, Shri Ram ki Nangal, via Sitapura

RIICO Jaipur- 302 022.

Academic year-______

4 | P a g e

The comparator can be used to compare two IntWritable objects:

IntWritable w1 = new IntWritable(163);

IntWritable w2 = new IntWritable(67);

assertThat(comparator.compare(w1, w2),

greaterThan(0));

or their serialized representations:

byte[] b1 = serialize(w1); byte[] b2 = serialize(w2);

assertThat(comparator.compare(b1, 0, b1.length,

b2, 0, b2.length), greaterThan(0));

Writable Classes

Hadoop comes with a large selection of Writable classes in the org.apache.hadoop.io package.

They form the class hierarchy shown in Figure 1.

Jaipur Engineering college and research

centre, Shri Ram ki Nangal, via Sitapura

RIICO Jaipur- 302 022.

Academic year-______

5 | P a g e

Figure 1. Writable class hierarchy

Writable wrappers for Java primitives

There are Writable wrappers for all the Java primitive types except char (which can be stored in an

IntWritable) as shown in Table 1. All have a get() and a set() method for retrieving and storing

the wrapped value.

Java Primitive Writable Implementation Serialized size (bytes)

boolean BooleanWritable 1

byte ByteWritable 1

short ShortWritable 2

int IntWritable 4

 VIntWritable 1-5

Jaipur Engineering college and research

centre, Shri Ram ki Nangal, via Sitapura

RIICO Jaipur- 302 022.

Academic year-______

6 | P a g e

Table 1. Writable wrapper classes for java primitives

When encoding integers, there is a choice between the fixed-length formats (IntWritable and

LongWritable) and the variable-length formats (VIntWritable and VLongWritable). The

variable-length formats use only a single byte to encode the value if it is small enough (between

–112 and 127, inclusive); otherwise, they use the first byte to indicate whether the value is

positive or negative, and how many bytes follow.

For example, 163 requires two bytes:

byte[] data = serialize(new VIntWritable(163));

assertThat(StringUtils.byteToHexString(data), is("8fa3"));

How do you choose between a fixed-length and a variable-length encoding? Fixedlength

encodings are good when the distribution of values is fairly uniform across the whole value space,

such as a (well-designed) hash function. Most numeric variables tend to have non uniform

distributions, and on average the variable-length encoding will save space. Another advantage

of variable-length encodings is that you can switch from VIntWritable to VLongWritable

because their encodings are actually the same. So by choosing a variable-length representation,

you have room to grow without committing to an 8-byte long representation from the beginning.

Text

Text is a Writable for UTF-8 sequences. It can be thought of as the Writable equivalent of

java.lang.String. The Text class uses an int (with a variable-length encoding) to store the number

of bytes in the string encoding, so the maximum value is 2 GB.

Indexing

Because of its emphasis on using standard UTF-8, there are some differences between Text and

the Java String class. Here is an example to demonstrate the use of the charAt() method:

Text t = new Text("hadoop");

assertThat(t.getLength(), is(6));

assertThat(t.getBytes().length,

is(6)); assertThat(t.charAt(2),

is((int) 'd')); assertThat("Out of

bounds", t.charAt(100), is(-1));

Notice that charAt() returns an int representing a Unicode code point, unlike the String variant

that returns a char. Text also has a find() method, which is analogous to String’s indexOf():

Text t = new Text("hadoop");

assertThat("Find a substring",

float FloatWritable 4

long LongWritable 8

 VLongWritable 1-9

double DoubleWritable 8

Jaipur Engineering college and research

centre, Shri Ram ki Nangal, via Sitapura

RIICO Jaipur- 302 022.

Academic year-______

7 | P a g e

t.find("do"), is(2));

assertThat("Finds first 'o'",

t.find("o"), is(3));

assertThat("Finds 'o' from position 4 or later",

t.find("o", 4), is(4)); assertThat("No match",

t.find("pig"), is(-1));

Unicode:

When we start using characters that are encoded with more than a single byte, the differences

between Text and String become clear. Consider the Unicode characters shown in Table 2.

Table 2. Unicode characters

All but the last character in the table, U+10400, can be expressed using a single Java char.

U+10400 is a supplementary character and is represented by two Java chars, known as a

surrogate pair. The following example show the differences between String and Text when

processing a string of the four characters from Table 2.

Example . Tests showing the differences between the String and Text classes

public class

StringTextComparisonTest

{ @Test

public void string() throws

UnsupportedEncodingException { String s =

"\u0041\u00DF\u6771\uD801\uDC00";

assertThat(s.length(), is(5));

assertThat(s.getBytes("UTF-

8").length, is(10));

assertThat(s.indexOf("\u0041"),

is(0));

assertThat(s.indexOf("\u00DF"),

is(1));

assertThat(s.indexOf("\u6771"),

is(2));

Jaipur Engineering college and research

centre, Shri Ram ki Nangal, via Sitapura

RIICO Jaipur- 302 022.

Academic year-______

8 | P a g e

assertThat(s.indexOf("\uD801\u

DC00"), is(3));

assertThat(s.charAt(0),

is('\u0041'));

assertThat(s.charAt(1),

is('\u00DF'));

assertThat(s.charAt(2),

is('\u6771'));

assertThat(s.charAt(3),

is('\uD801'));

assertThat(s.charAt(4),

is('\uDC00'));

assertThat(s.codePointAt(0),

is(0x0041));

assertThat(s.codePointAt(1),

is(0x00DF));

assertThat(s.codePointAt(2),

is(0x6771));

assertThat(s.codePointAt(3),

is(0x10400));

}

@Test

public void text() {

Text t = new

Text("\u0041\u00DF\u6771\uD801\uDC00");

assertThat(t.getLength(), is(10));

assertThat(t.find("\u0041"), is(0));

assertThat(t.find("\u00DF"), is(1));

assertThat(t.find("\u6771"), is(3));

assertThat(t.find("\uD801\uDC00"), is(6));

assertThat(t.charAt(0), is(0x0041));

assertThat(t.charAt(1), is(0x00DF));

assertThat(t.charAt(3), is(0x6771));

assertThat(t.charAt(6), is(0x10400));

}

}

The test confirms that the length of a String is the number of char code units it contains (5, one

from each of the first three characters in the string, and a surrogate pair from the last), whereas

the length of a Text object is the number of bytes in its UTF-8 encoding (10 = 1+2+3+4).

Similarly, the indexOf() method in String returns an index in char code units, and find() for Text

is a byte offset.

The charAt() method in String returns the char code unit for the given index, which in the case

of a surrogate pair will not represent a whole Unicode character. The codePointAt() method,

Jaipur Engineering college and research

centre, Shri Ram ki Nangal, via Sitapura

RIICO Jaipur- 302 022.

Academic year-______

9 | P a g e

indexed by char code unit, is needed to retrieve a single Unicode character represented as an int.

In fact, the charAt() method in Text is more like the codePointAt() method than its namesake in

String. The only difference is that it is indexed by byte offset.

Iteration

Iterating over the Unicode characters in Text is complicated by the use of byte offsets for

indexing, since you can’t just increment the index. Turn the Text object into a

java.nio.ByteBuffer, then repeatedly call the bytesToCodePoint() static method on Text with the

buffer. This method extracts the next code point as an int and updates the position in the buffer.

The end of the string is detected when bytesToCodePoint() returns –1. See the following

example.

Example . Iterating over the characters in a Text object

public class TextIterator

{

public static void main(String[] args)

{

Text t = new

Text("\u0041\u00DF\u6771\uD801\uDC00");

ByteBuffer buf = ByteBuffer.wrap(t.getBytes(), 0,

t.getLength()); int cp;

while (buf.hasRemaining() && (cp = Text.bytesToCodePoint(buf)) != -1)

{

System.out.println(Integer.toHexString(cp));

}

}

}

Running the program prints the code points for the four characters in the string:

% hadoop TextIterator

41

df

6771

10400

Another difference with String is that Text is mutable. We can reuse a Text instance by calling

one of the set() methods on it. For example:

Text t = new

Text("hadoop");

t.set("pig");

assertThat(t.getLength

Jaipur Engineering college and research

centre, Shri Ram ki Nangal, via Sitapura

RIICO Jaipur- 302 022.

Academic year-______

10 | P a g e

(), is(3));

assertThat(t.getBytes()

.length, is(3));

Resorting to String Text doesn’t have as rich an API for manipulating strings as java.lang.String,

so in many cases, you need to convert the Text object to a String. This is done in the usual way,

using the toString() method:

assertThat(new Text("hadoop").toString(), is("hadoop"));

BytesWritable

BytesWritable is a wrapper for an array of binary data. Its serialized format is an integer field (4

bytes) that specifies the number of bytes to follow, followed by the bytes themselves. For

example, the byte array of length two with values 3 and 5 is serialized as a 4-byte integer

(00000002) followed by the two bytes from the array (03 and 05):

BytesWritable b = new BytesWritable(new

byte[] { 3, 5 }); byte[] bytes = serialize(b);

assertThat(StringUtils.byteToHexString(bytes),

is("000000020305")); BytesWritable is mutable, and its value may be

changed by calling its set() method.

NullWritable

NullWritable is a special type of Writable, as it has a zero-length serialization. No bytes are

written to, or read from, the stream. It is used as a placeholder; for example, in MapReduce, a

key or a value can be declared as a NullWritable when you don’t need to use that position—it

effectively stores a constant empty value. NullWritable can also be useful as a key in

SequenceFile when you want to store a list of values, as opposed to key-value pairs.

ObjectWritable and GenericWritable

ObjectWritable is a general-purpose wrapper for the following: Java primitives, String, enum,

Writable, null, or arrays of any of these types.

GenericWritable is useful when a field can be of more than one type: for example, if the values
in a SequenceFile have multiple types, then you can declare the value type as an GenericWritable

and wrap each type in an GenericWritable.

Writable collections

There are six Writable collection types in the org.apache.hadoop.io package: Array Writable,

ArrayPrimitiveWritable, TwoDArrayWritable, MapWritable, SortedMapWritable, and

EnumSetWritable.

ArrayWritable and TwoDArrayWritable are Writable implementations for arrays and two-

dimensional arrays (array of arrays) of Writable instances. All the elements of an ArrayWritable

or a TwoDArrayWritable must be instances of the same class, which is specified at construction,

as follows:

Jaipur Engineering college and research

centre, Shri Ram ki Nangal, via Sitapura

RIICO Jaipur- 302 022.

Academic year-______

11 | P a g e

ArrayWritable writable = new ArrayWritable(Text.class);

In contexts where the Writable is defined by type, such as in SequenceFile keys or values, or as

input to MapReduce in general, you need to subclass ArrayWritable (or TwoDArrayWritable, as

appropriate) to set the type statically. For example:

public class TextArrayWritable extends ArrayWritable

{

public TextArrayWritable()

{

super(Text.class);

}

}

ArrayWritable and TwoDArrayWritable both have get() and set() methods, as well as a

toArray() method, which creates a shallow copy of the array.

ArrayPrimitiveWritable is a wrapper for arrays of Java primitives. The component type is

detected when you call set(), so there is no need to subclass to set the type.

MapWritable and SortedMapWritable are implementations of

java.util.Map<Writable,Writable> and java.util.SortedMap<WritableComparable, Writable>,

respectively. Here’s a demonstration of using a MapWritable with different types for keys and

values:

MapWritable src = new

MapWritable(); src.put(new

IntWritable(1), new

Text("cat"));

src.put(new VIntWritable(2), new

LongWritable(163)); MapWritable dest =

new MapWritable();

WritableUtils.cloneInto(dest, src);

assertThat((Text) dest.get(new IntWritable(1)), is(new

Text("cat"))); assertThat((LongWritable) dest.get(new

VIntWritable(2)), is(new LongWritable(163)));

Conspicuous by their absence are Writable collection implementations for sets and lists. A

general set can be emulated by using a MapWritable (or a SortedMapWritable for a sorted set),

with NullWritable values. There is also EnumSetWritable for sets of enum types. For lists of

a single type of Writable, ArrayWritable is adequate, but to store different types of Writable in

a single list, you can use GenericWritable to wrap the elements in an ArrayWritable.

Implementing a Custom Writable

Jaipur Engineering college and research

centre, Shri Ram ki Nangal, via Sitapura

RIICO Jaipur- 302 022.

Academic year-______

12 | P a g e

Hadoop comes with a useful set of Writable implementations that serve most purposes; however,

on occasion, you may need to write your own custom implementation. nWith a custom Writable,

you have full control over the binary representation and the sort order. Because Writables are at

the heart of the MapReduce data path, tuning the binary representation can have a significant

effect on performance. To demonstrate how to create a custom Writable, we shall write an

implementation that represents a pair of strings, called TextPair. The basic implementation is

shown in following Example.

Example . A Writable implementation that stores a pair of Text objects

import java.io.*;

import org.apache.hadoop.io.*;

public class TextPair implements WritableComparable<TextPair>

{

private Text first;

private Text second;

public TextPair() {

set(new Text(), new Text());

}

public TextPair(String first, String second)

{

set(new Text(first), new Text(second));

}

public TextPair(Text first, Text second)

{

set(first, second);

}

public void set(Text first, Text second)

{

this.first = first; this.second = second;

}

public Text getFirst()

{

return first;

}

public Text getSecond()

{

return second;

}

@Override

public void write(DataOutput out) throws IOException

{

Jaipur Engineering college and research

centre, Shri Ram ki Nangal, via Sitapura

RIICO Jaipur- 302 022.

Academic year-______

13 | P a g e

first.write(out);

second.write(out);

}

@Override

public void readFields(DataInput in) throws IOException

{

first.readFields(i

n);

second.readFiel

ds(in);

}

@Override

public int hashCode()

{

return first.hashCode() * 163 + second.hashCode();

}

@Override

public boolean equals(Object o)

{

if (o instanceof TextPair) {

TextPair tp = (TextPair) o;

return first.equals(tp.first) && second.equals(tp.second);

}

return false;

}

@Override

public String toString()

{

return first + "\t" + second;

}

@Override

public int compareTo(TextPair tp)

{

int cmp =

first.compareTo(tp.f

irst); if (cmp != 0) {

return cmp;

}

return second.compareTo(tp.second);
}

}

The first part of the implementation is straightforward: there are two Text instance

variables, first and second, and associated constructors, getters, and setters. All Writable

Jaipur Engineering college and research

centre, Shri Ram ki Nangal, via Sitapura

RIICO Jaipur- 302 022.

Academic year-______

14 | P a g e

implementations must have a default constructor so that the MapReduce framework can

instantiate them, then populate their fields by calling readFields().

TextPair’s write() method serializes each Text object in turn to the output stream, by

delegating to the Text objects themselves. Similarly, readFields() deserializes the bytes from the

input stream by delegating to each Text object. The DataOutput and DataInput interfaces have

a rich set of methods for serializing and deserializing Java Primitives.

Just as you would for any value object you write in Java, you should override the

hashCode(), equals(), and toString() methods from java.lang.Object. The hash Code() method is

used by the HashPartitioner (the default partitioner in MapReduce) to choose a reduce partition,

so you should make sure that you write a good hash function that mixes well to ensure reduce

partitions are of a similar size.

If you ever plan to use your custom Writable with TextOutputFormat, then you must

implement its toString() method. TextOutputFormat calls toString() on keys and values for their

output representation. For TextPair, we write the underlying Text objects as strings separated by

a tab character.

TextPair is an implementation of WritableComparable, so it provides an implementation

of the compareTo() method that imposes the ordering you would expect: it sorts by the first

string followed by the second.

Implementing a RawComparator for speed

In the above example, when TextPair is being used as a key in MapReduce, it will have

to be deserialized into an object for the compareTo() method to be invoked. since TextPair is

the concatenation of two Text objects, and the binary representation of a Text object is a

variable-length integer containing the number of bytes in the UTF-8 representation of the string,

followed by the UTF-8 bytes themselves. The trick is to read the initial length, so we know how

long the first Text object’s byte representation is; then we can delegate to Text’s

RawComparator, and invoke it with the appropriate offsets for the first or second string.

Consider the following example for more details.

Example 4-8. A RawComparator for comparing TextPair byte representations

public static class Comparator extends WritableComparator

{

private static final Text.Comparator TEXT_COMPARATOR = new

Text.Comparator(); public Comparator()

{

super(TextPair.class);

}

@Override

public int compare(byte[]

b1, int s1, int l1, byte[] b2,

int s2, int l2)

{

Jaipur Engineering college and research

centre, Shri Ram ki Nangal, via Sitapura

RIICO Jaipur- 302 022.

Academic year-______

15 | P a g e

try

{

int firstL1 = WritableUtils.decodeVIntSize(b1[s1]) +

readVInt(b1, s1); int firstL2 =

WritableUtils.decodeVIntSize(b2[s2]) + readVInt(b2,

s2);

int cmp = TEXT_COMPARATOR.compare(b1, s1, firstL1, b2, s2, firstL2);

if (cmp != 0)
{

return cmp;

}

return TEXT_COMPARATOR.compare(b1, s1 +

firstL1, l1 - firstL1, b2, s2 + firstL2, l2 - firstL2);

}

catch (IOException e)

{

throw new IllegalArgumentException(e);

}

}

}

Static

{

WritableComparator.define(TextPair.class, new Comparator());

}

We actually subclass WritableComparator rather than implement RawComparator directly,

since it provides some convenience methods and default implementations. The subtle part of this

code is calculating firstL1 and firstL2, the lengths of the first Text field in each byte stream. Each

is made up of the length of the variable- length integer (returned by decodeVIntSize() on

WritableUtils) and the value it is encoding (returned by readVInt()).

The static block registers the raw comparator so that whenever MapReduce sees the TextPair

class, it knows to use the raw comparator as its default comparator.

Custom comparators

As we can see with TextPair, writing raw comparators takes some care, since you have to deal

with details at the byte level. Custom comparators should also be written to be RawComparators,

if possible. These are comparators that implement a different sort order to the natural sort order

defined by the default comparator. The following Example a comparator for TextPair, called

FirstComparator, that considers only the first string of the pair. Note that we override the

compare() method that takes objects so both compare() methods have the same semantics.

Example . A custom RawComparator for comparing the first field of TextPair byte

representations

Jaipur Engineering college and research

centre, Shri Ram ki Nangal, via Sitapura

RIICO Jaipur- 302 022.

Academic year-______

16 | P a g e

public static class FirstComparator extends WritableComparator

{

private static final Text.Comparator TEXT_COMPARATOR = new

Text.Comparator(); public FirstComparator() {

super(TextPair.class);

}

@Override

public int compare(byte[]

b1, int s1, int l1, byte[] b2,

int s2, int l2)

{

try

{

int firstL1 = WritableUtils.decodeVIntSize(b1[s1]) + readVInt(b1, s1);

 int firstL2 = WritableUtils.decodeVIntSize(b2[s2]) +

readVInt(b2, s2);

 return TEXT_COMPARATOR.compare(b1, s1, firstL1,

b2, s2, firstL2);

}

catch (IOException e)

{

throw new IllegalArgumentException(e);

}

}

@Override

public int compare(WritableComparable a, WritableComparable b)

{

if (a instanceof TextPair && b instanceof TextPair)

{

return ((TextPair) a).first.compareTo(((TextPair) b).first);

}

return super.compare(a, b);

}

}

