
Jaipur Engineering College and Research Centre
 Computer Architecture and Organization (6CS4-04)

 Session 2020-21

Computer Architecture & Organization (6CS4-04)

 Computer Science and Engineering Department

Vision of the Department

To become renowned Centre of excellence in computer science and engineering and make

competent engineers & professionals with high ethical values prepared for lifelong learning.

Mission of the Department

● To impart outcome based education for emerging technologies in the field of computer

science and engineering.

● To provide opportunities for interaction between academia and industry.

● To provide platform for lifelong learning by accepting the change in technologies.

● To develop aptitude of fulfilling social responsibilities.

Program Outcomes (PO):

• Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

• Problem analysis: Identify, formulate, research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

• Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with

appropriate consideration for the public health and safety, and the cultural, societal, and

environmental considerations.

• Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

• Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

• The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the professional engineering practice.

• Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

Jaipur Engineering College and Research Centre
 Computer Architecture and Organization (6CS4-04)

 Session 2020-21

• Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

• Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

• Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend

and write effective reports and design documentation, make effective presentations, and

give and receive clear instructions.

• Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary

environments.

• Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

Program Educational Objectives (PEO):

PEO1: To provide students with the fundamentals of Engineering Sciences with more

emphasis in computer science and engineering by way of analyzing and exploiting

engineering challenges.

PEO2: To train students with good scientific and engineering knowledge so as to comprehend,

analyze, design, and create novel products and solutions for the real life problems.

PEO3: To inculcate professional and ethical attitude, effective communication skills,

teamwork skills, multidisciplinary approach, entrepreneurial thinking and an ability to relate

engineering issues with social issues.

PEO4: To provide students with an academic environment aware of excellence,leadership,

written ethical codes and guidelines, and the self-motivated life-long learning needed for a

successful professional career.

PEO5: To prepare students to excel in Industry and Higher education by educating Students

along with High moral values and Knowledge.

Program Specific Outcome (PSO):

PSO: Ability to interpret and analyze network specific and cyber security issues, automation

in real word environment.

PSO2: Ability to Design and Develop Mobile and Web-based applications under realistic

constraints.

Jaipur Engineering College and Research Centre
 Computer Architecture and Organization (6CS4-04)

 Session 2020-21

COURSE OUTCOMES: After Completion of the course, Students will be able to:

CO1: Identification of registers, micro-operations and basic computer organizations & design
CO2: Identification of computer architecture and processing
CO3: Introduction and applications of computer arithmetic operations

CO4 : Knowledge of computer Memory organization

Mapping Between CO and PO

CO-PO Mapping

Computer Architecture 6CS4-04

 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

Co1: Ability to

understand the

functional units of the

processor and various

micro operations. 2 2 2 1 1 1 1 1 1 2 1 3

Co2: Analyze different

architectural and

organizational design

issues that can affect the

performance of a

computer. 3 3 3 2 2 1 1 1 1 2 1 3

Co3. Examine the

airthmetic problems and

principles of computer

design. 3 2 2 2 2 1 1 1 1 2 1 3

Co4. Describe and

examine the concept of

cache memory, Virtual

memory and I/O

organization. 3 2 2 2 1 1 1 1 1 1 1 3

Mapping Between CO and PSO:

CO-PSO Mapping

Computer Architecture 6CS4-04

 PSO1 PSO2

Co1: Ability to understand the functional units of the processor and various micro operations.

1 1

Co2: Analyze different architectural and organizational design issues that can affect the

performance of a computer.
2 1

Co3. Examine the airthmetic problems and principles of computer design.
2 1

Co4. Describe and examine the concept of cache memory, Virtual memory and I/O

organization.

1 1

Jaipur Engineering College and Research Centre
 Computer Architecture and Organization (6CS4-04)

 Session 2020-21

Jaipur Engineering College and Research Centre
 Computer Architecture and Organization (6CS4-04)

 Session 2020-21

 Computer Architecture and Organization (6CS4-04)

LECTURE PLAN:
Unit

No./

Total

Lecture

Reqd. Topics

Lect.

Reqd.

Lect.

No.

Unit-I

(10)

1. Objective, scope and outcome of the course. Basic computer data types,

Complements, Fixed point representation, Register Transfer 1 1

2. Micro-operations:

2a. Floating point representation, Register Transfer language 1 2

2b. Register Transfer, Bus and Memory Transfers (Tree-State Bus Buffers,

Memory Transfer) 1 3

2c. Arithmetic Micro-Operations, Logic Micro-Operations 1 4

2d. Shift Micro-Operations, Arithmetic logical shift unit 1 5

3. Basic Computer Organization and Design Instruction codes 1 6

4. Computer registers, computer instructions 1 7

5. Timing and Control, Instruction cycle, 1 8

6. Memory-Reference Instructions, Input-output and interrupt 1 9

7. Complete computer description, Design of Basic computer, design of

Accumulator Unit 1 10

BC-1 Von Neuman Architecture 1 11

Unit-II

(7)

1. Introduction, machine language, Assembly language 1 12

2. Assembler, Program loops 1 13

3. Programming Arithmetic and logic operations 1 14

4. Subroutines and I-O Programming 1 15

5. Control Memory 1 16

6. Address Sequencing 1 17

7. Micro program Example 1 18

8. Design of control unit 1 19

UNIT

III (8)

1. Introduction General Register Organization 1 20

2. Stack Organization, Instruction Format 1 21

3. Addressing Modes, Data transfer and manipulation 1 22

4. Program Control, Reduced Instruction set computer (RISC) pipeline 1 23

5. Vector Processing and Flynn's taxonomy 1 24

6. Parallel processing, pipeline 1 25

7. Arithmetic pipeline, Instruction pipeline 1 26

8. RISC pipeline, Vector Processing and Array Processing 1 27

Unit-

IV (8)

1. Introduction, Addition and subtraction 1 28

2. Multiplication Algorithms (Booth Multiplication Algorithm) 1 29

3. Division Algorithms, Floating Point Arithmetic operations 1 30

4. Decimal Arithmetic Unit, Input-Output Organization 1 31

5. Input-Output Interface, Asynchronous Data Transfer 1 32

6. Modes of Transfer, Priority Interrupt 1 33

7. DMA, Input-Output Processor (IOP) 1 34

Jaipur Engineering College and Research Centre
 Computer Architecture and Organization (6CS4-04)

 Session 2020-21

8. CPU-IOP Communication, Serial communication 1 35

BC-2 Interaction of computer with hardware 1 36

Unit- V

(8)

1. Memory Hierarchy 1 37

2.Main Memory, Auxiliary memory 1 38

3. Associative memory, 1 39

4. Cache Memory, Virtual Memory 1 40

5. Microprocessor: Characteristics of microprocessor 1 41

6. Interconnection Structure 1 42

7. Inter-processer Arbitration, Intercrosses communication and

synchronization 1 43

8. Cache Coherence, Shared Memory Multiprocessor 1 44

BC-3
Different Operating System Architectures and their relation to Computer

System Architectures 1 45

This schedule is tentative and is subject to minimal changes during teaching.

Pradeep Kr. Sharma 1 | P a g e

Computer Organization and Architecture

 Unit – 4

Computer Arithmetic

Integer Representation: (Fixed-point representation):

An eight bit word can be represented the numbers from zero to 255 including

0

0

-

0000000 = 0

0000001 = 1

- - - - - -

1 1111111 = 255

In general if an n-bit sequence of binary digits an-1, an-2 …..a , a ; is interpreted as unsigned 1 0

integer A.
n 1

 A = 2
iai

i 0

Sign magnitude representation:

There are several alternative convention used to represent negative as well as positive integers,

all of which involves treating the most significant (left most) bit in the word as sign bit. If the

sign bit is 0, the number is +ve and if the sign bit is 1, the number is –ve. In n bit word the right

most n-1 bit hold the magnitude of integer.

For an example,

+18 = 00010010

- 18 = 10010010 (sign magnitude)

The general case can be expressed as follows:
n 2

 A = 2
iai if an-1 = 0

i 0

n 2

 = - 2
iai if an-1 =1

i 0

n 2

 A = -2n-1 an-1 + 2iai (Both for +ve and –ve)
i 0

There are several drawbacks to sign-magnitude representation. One is that addition or subtraction

requires consideration of both signs of number and their relative magnitude to carry out the

required operation. Another drawback is that there are two representation of zero. For an

example:

+ 0 = 00000000 10

- 0 = 10000000 this is inconvenient. 10

2 ’s complement representation:

Like sign magnitude representation, 2’s complement representation uses the most significant bit

as sign bit making it easy to test whether the integer is negative or positive. It differs from the

use of sign magnitude representation in the way that the other bits are interpreted. For negation,

take the Boolean complement (1’s complement) of each bit of corresponding positive number,

and then add one to the resulting bit pattern viewed as unsigned integer. Consider n bit integer A

in 2’s complement representation. If A is +ve then the sign bit an-1 is zero. The remaining bits
represent the magnitude of the number.

1

Pradeep Kr. Sharma 2 | P a g e

Computer Organization and Architecture Computer Arithmetic

n 2

 A = 2
iai for A ≥ 0

i 0

The number zero is identified as +ve and therefore has zero sign bit and magnitude of all 0’s. We

can see that the range of +ve integer that may be represented is from 0 (all the magnitude bits
are zero) through 2n-1-1 (all of the magnitude bits are 1).

Now for –ve number integer A, the sign bit a is 1. The range of –ve integer that can be n-1

represented is from -1 to -2n-1
n 2

 2 ’s complement, A = -2n-1 an-1 + 2
iai

i 0

Defines the twos complement of representation of both positive and negative number.

For an example:

+18 = 00010010

1

2

’s complement = 11101101

’s complement = 11101110 = -18

4.1
4.2

Addition Algorithm

Subtraction Algorithm

1

0

1

001 = -7

101 = +5

110 =-2

1100 = -4

0100 = +4

10000 = 0

0011 = 3

0100= 4

0111= 7
(a) (-7)+(+5) (b) (-4)+(4) (c) (+3)+(+4)

1

1

1

100 = -4

111 = -1

1011 = -5

0101 =5

0100 =4

1001=overflow

1001 = -7

1010 = -6

10011 = overflow
(d) (-4)+(-1) (e) (+5)+(+4) (f) (-7)+(-6)

The first four examples illustrate successful operation if the result of the operation is +ve then we

get +ve number in ordinary binary notation. If the result of the operation is –ve we get negative

number in twos complement form. Note that in some instants there is carry bit beyond the end of

what which is ignored. On any addition the result may larger then can be held in word size being

use. This condition is called over flow. When overflow occur ALU must signal this fact so that

no attempt is made to use the result. To detect overflow the following rule observed. If two

numbers are added, and they are both +ve or both –ve; then overflow occurs if and only if the

result has the opposite sign.

The data path and hardware elements needed to accomplish addition and subtraction is shown in

figure below. The central element is binary adder, which is presented two numbers for addition

and produces a sum and an overflow indication. The binary adder treats the two numbers as

unsigned integers. For addition, the two numbers are presented to the adder from two registers A

and B. The result may be stored in one of these registers or in the third. The overflow indication

is stored in a 1-bit overflow flag V (where 1 = overflow and 0 = no overflow). For subtraction,

the subtrahend (B register) is passed through a 2’s complement unit so that its 2’s complement is

presented to the adder (a – b = a + (-b)).

Pradeep Kr. Sharma 3 | P a g e

Computer Organization and Architecture Computer Arithmetic

B Register A Register

Complement

Switch

B
7

XOR

V

n bit Adder

B8

/ Z S C n bit

B7

Check for Zero

Fig: Block diagram of hardware for addition / subtraction

 4.3 Multiplication Algorithm

The multiplier and multiplicand bits are loaded into two registers Q and M. A third register A is

initially set to zero. C is the 1-bit register which holds the carry bit resulting from addition. Now,

the control logic reads the bits of the multiplier one at a time. If Q0 is 1, the multiplicand is added
to the register A and is stored back in register A with C bit used for carry. Then all the bits of

CAQ are shifted to the right 1 bit so that C bit goes to A , A goes to Q and Q is lost. If Q is n-1 0 n-1 0 0

0 , no addition is performed just do the shift. The process is repeated for each bit of the original

multiplier. The resulting 2n bit product is contained in the QA register.

Fig: Block diagram of multiplication

3

Pradeep Kr. Sharma 4 | P a g e

Computer Organization and Architecture Computer Arithmetic

There are three types of operation for multiplication.

 It should be determined whether a multiplier bit is 1 or 0 so that it can designate the

partial product. If the multiplier bit is 0, the partial product is zero; if the multiplier bit is

, the multiplicand is partial product. 1

It should shift partial product.

It should add partial product.

Unsigned Binary Multiplication

011 Multiplicand 11

X 1101 Multiplier 13

011

000

011

1011

1

1

0 Partial Product

1

+

1 0001111 Product (143)

Start

M Multiplicand, Q Multiplier

C, A 0, Count No. of bits of Q

Is

Q0 = 1
?

Yes No
A A + M

Right Shift C, A, Q

Count Count - 1

Is

Count = 0

?

No

Yes

Stop Result in AQ

Fig. : Flowchart of Unsigned Binary Multiplication

4

Pradeep Kr. Sharma 5 | P a g e

Computer Organization and Architecture Computer Arithmetic

Example: Multiply 15 X 11 using unsigned binary method

C A Q M Count Remarks

0 0000 1011 1111 4 Initialization

0

0

1111

0111

1011

1101

-

-

-

3

Add (A A + M)

Logical Right Shift C, A, Q

1

0

0110

1011

1101

0110

-

-

-

2

Add (A A + M)

Logical Right Shift C, A, Q

0 0101 1011 - 1 Logical Right Shift C, A, Q

1

0

0100

1010

1011

0101

-

-

-

0

Add (A A + M)

Logical Right Shift C, A, Q

7 5 2 0
Result = 1010 0101 = 2 + 2 + 2 + 2 = 165

Alternate Method of Unsigned Binary Multiplication

Start

X Multiplicand, Y Multiplier

Sum 0, Count No. of bits of Y

Is

Y0 = 1
?

Yes No
Sum Sum + X

Left Shift X, Right

Shift Y

Count Count - 1

Is

Count = 0

?

No

Yes

Stop Result in Sum

Fig: Unsigned Binary Multiplication Alternate method

Pradeep Kr. Sharma 6 | P a g e

Computer Organization and Architecture Computer Arithmetic

Algorithm:

Step 1: Clear the sum (accumulator A). Place the multiplicand in X and multiplier in Y.

Step 2: Test Y if it is 1, add content of X to the accumulator A. 0 ;

Step 3: Logical Shift the content of X left one position and content of Y right one position.

Step 4: Check for completion; if not completed, go to step 2.

Example: Multiply 7 X 6

Sum X Y Count Remarks

0

0

0

1

00000 000111 110 3 Initialization

00000

01110

01010

001110

011100

111000

011

001

000

2

1

0

Left shift X, Right Shift Y

Sum Sum + X,

Left shift X, Right Shift Y

Sum Sum + X,

Left shift X, Right Shift Y

5 3 1
Result = 101010 = 2 + 2 + 2 = 42

Signed Multiplication (Booth Algorithm) – 2’s Complement Multiplication

Multiplier and multiplicand are placed in Q and M register respectively. There is also one bit

register placed logically to the right of the least significant bit Q0 of the Q register and designated
as Q . The result of multiplication will appear in A and Q resister. A and Q are initialized to -1 -1

zero if two bits (Q and Q) are the same (11 or 00) then all the bits of A, Q and Q registers are 0 -1 -1

shifted to the right 1 bit. If the two bits differ then the multiplicand is added to or subtracted from

the A register depending on weather the two bits are 01 or 10. Following the addition or

subtraction the arithmetic right shift occurs. When count reaches to zero, result resides into AQ
in the form of signed integer [-2n-1*an-1 + 2 *a + …………… + 2 *a + 2 *a]. n-2 1 0

n-2 1 0

Pradeep Kr. Sharma 7 | P a g e

Computer Organization and Architecture Computer Arithmetic

Start

Initialize A 0, Q 0, -1

M Multiplicand, Q Multiplier,

Count No. of bits of Q

Is
Q0Q-1

?

= 01 = 10
A A - M A A + M

=
=

11
00

Arithmetic Shift Right
A, Q, Q-1

Count Count - 1

Is
Count = 0

?

No

Yes

Stop Result in AQ

Fig.: Flowchart of Signed Binary Numbers (using 2’s Complement, Booth Method)

Example: Multiply 9 X -3 = -27 using Booth Algorithm

+3 = 00011, -3 = 11101 (2’s complement of +3)

A Q Q-1 Add (M) Count Remarks Sub (M +1)

0 0000 11101 0 01001 10111 5 Initialization

1

1

0111

1011

11101

11110

0

1

-

-

-

-

-

4

Sub (A A - M) as Q Q = 10

Arithmetic Shift Right A, Q, Q-1
0 -1

0

0

0100

0010

11110

01111

1

0

-

-

-

-

-

3

Add (A A + M) as Q Q = 01

Arithmetic Shift Right A, Q, Q-1
0 -1

1

1

1001

1100

01111

10111

0

1

-

-

-

-

-

2

Sub (A A - M) as Q Q = 10

Arithmetic Shift Right A, Q, Q-1
0 -1

1

1

1110

1111

01011 1 -

-

-

-

1 Arithmetic Shift Right A, Q, Q-1
as Q Q = 11 0 -1

00101 1 0 Arithmetic Shift Right A, Q, Q-1
as Q Q = 11 0 -1

9 8 7 6 5 2 0
Result in AQ = 11111 00101 = -2 +2 +2 +2 +2 +2 +2 = -512+256+128+64+32+4+1 = -27

Pradeep Kr. Sharma 8 | P a g e

Computer Organization and Architecture Computer Arithmetic

 4.4 Division Algorithm

Division is somewhat more than multiplication but is based on the same general principles. The

operation involves repetitive shifting and addition or subtraction.

First, the bits of the dividend are examined from left to right, until the set of bits examined

represents a number greater than or equal to the divisor; this is referred to as the divisor being

able to divide the number. Until this event occurs, 0s are placed in the quotient from left to right.

When the event occurs, a 1 is placed in the quotient and the divisor is subtracted from the partial

dividend. The result is referred to as a partial remainder. The division follows a cyclic pattern.

At each cycle, additional bits from the dividend are appended to the partial remainder until the

result is greater than or equal to the divisor. The divisor is subtracted from this number to

produce a new partial remainder. The process continues until all the bits of the dividend are

exhausted.

Shift Left

An An-1 ………… A0 Qn-1 ………… Q0

Add / Subtract
Control Unit

N+1 Bit

Adder

0 Mn-1 ………… M0 Divisor

Fig.: Block Diagram of Division Operation

8

Pradeep Kr. Sharma 9 | P a g e

Computer Organization and Architecture Computer Arithmetic

Restoring Division (Unsigned Binary Division)

Algorithm:

Step 1: Initialize A, Q and M registers to zero, dividend and divisor respectively and counter to n

where n is the number of bits in the dividend.

Step 2: Shift A, Q left one binary position.

Step 3: Subtract M from A placing answer back in A. If sign of A is 1, set Q0 to zero and add M
back to A (restore A). If sign of A is 0, set Q0 to 1.

Step 4: Decrease counter; if counter > 0, repeat process from step 2 else stop the process. The

final remainder will be in A and quotient will be in Q.

Pradeep Kr. Sharma 10 | P a g e

Computer Organization and Architecture Computer Arithmetic

Example: Divide 15 (1111) by 4 (0100)

A Q M Count Remarks M +1

0 0000 1111 00100 11100 4 Initialization

0

1

0

0001

1101

0001

111□

111□

1110

-

-

-

-

-

-

-

-

3

Shift Left A, Q

Sub (A A – M)

Q0 0, Add (A A + M)

0

1

0

0011

1111

0011

110□

110□

1100

-

-

-

-

-

-

-

-

2

Shift Left A, Q

Sub (A A – M)

Q0 0, Add (A A + M)

0

0

0

0111

0011

0011

100□

100□

1001

-

-

-

-

-

-

-

-

1

Shift Left A, Q

Sub (A A – M)

Set Q0 1

0

0

0

0111

0011

0011

001□

001□

0011

-

-

-

-

-

-

-

-

0

Shift Left A, Q

Sub (A A – M)

Set Q0 1

Quotient in Q = 0011 = 3

Remainder in A = 00011 = 3

Non – Restoring Division (Signed Binary Division)

Algorithm

Step 1: Initialize A, Q and M registers to zero, dividend and divisor respectively and count to

number of bits in dividend.

Step 2: Check sign of A;

If A < 0 i.e. bn-1 is 1

a. Shift A, Q left one binary position.

b. Add content of M to A and store back in A.

If A ≥ 0 i.e. bn-1 is 0

a. Shift A, Q left one binary position.

b. Subtract content of M to A and store back in A.

Step 3: If sign of A is 0, set Q to 1 else set Q to 0. 0 0

Step 4: Decrease counter. If counter > 0, repeat process from step 2 else go to step 5.

Step 5: If A ≥ 0 i.e. positive, content of A is remainder else add content of M to A to get the

remainder. The quotient will be in Q.

Pradeep Kr. Sharma 11 | P a g e

Computer Organization and Architecture Computer Arithmetic

Start

Initialize: A 0, M Divisor,

Q Dividend, Count No. of bits of Q

Is

A < 0

?

Yes No
Left Shift AQ Left Shift AQ

A A + M A A - M

Is

A < 0

?

No Yes
Q0 1 Q0 0

Count Count - 1

Is

Count > 0

?

Yes

No

Is

A > 0

?

Yes No
A A + M

Quotient in Q

Remainder in A
Stop

Pradeep Kr. Sharma 12 | P a g e

Computer Organization and Architecture Computer Arithmetic

Example: Divide 1110 (14) by 0011 (3) using non-restoring division.

A Q M Count Remarks M +1

0 0000 1110 00011 11101 4 Initialization

0

1

1

0001

1110

1110

110□

110□

1100

-

-

-

-

-

-

-

-

3

Shift Left A, Q

Sub (A A – M)

Set Q0 to 0

1

0

0

1101

0000

0000

100□

100□

1001

-

-

-

-

-

-

-

-

2

Shift Left A, Q

Add (A A + M)

Set Q0 to 1

0

1

1

0001

1110

1110

001□

001□

0010

-

-

-

-

-

-

-

-

1

Shift Left A, Q

Sub (A A – M)

Set Q0 to 0

1

1

1

0

1100

1111

1111

0010

010□

010□

0100

0100

-

-

-

-

-

-

-

-

-

-

0

-

Shift Left A, Q

Add (A A + M)

Set Q0 to 0

Add (A A + M)

Quotient in Q = 0011 = 3

Remainder in A = 00010 = 2

Pradeep Kr. Sharma 13 | P a g e

Computer Organization and Architecture Computer Arithmetic

Floating Point Representation

The floating point representation of the number has two parts. The first part represents a signed

fixed point numbers called mantissa or significand. The second part designates the position of

the decimal (or binary) point and is called exponent. For example, the decimal no + 6132.789 is

represented in floating point with fraction and exponent as follows.

Fraction

0.6132789

Exponent

+04 +
+ 4

This representation is equivalent to the scientific notation +0.6132789 × 10

± E
The floating point is always interpreted to represent a number in the following form ±M × R .

Only the mantissa M and the exponent E are physically represented in the register (including

their sign). The radix R and the radix point position of the mantissa are always assumed.

A floating point binary no is represented in similar manner except that it uses base 2 for the

exponent.

For example, the binary no +1001.11 is represented with 8 bit fraction and 0 bit exponent as

follows.

0 .1001110 × 2100

Fraction

1001110
Exponent

000100 0

The fraction has zero in the leftmost position to denote positive. The floating point number is
E +4

equivalent to M × 2 = +(0.1001110) × 2 2

Floating Point Arithmetic

The basic operations for floating point arithmetic are

Floating point number Arithmetic Operations
XE XE-YE YE

X = Xs × B

Y = Ys × B

X + Y = (Xs × B

X - Y = (Xs × B

+ Ys) × B

- Ys) × B
YE XE-YE YE

XE+YE
X * Y = (Xs × Ys) × B

XE-YE
X / Y = (Xs / Ys) × B

There are four basic operations for floating point arithmetic. For addition and subtraction, it is

necessary to ensure that both operands have the same exponent values. This may require shifting

the radix point on one of the operands to achieve alignment. Multiplication and division are

straighter forward.

A floating point operation may produce one of these conditions:

Exponent Overflow: A positive exponent exceeds the maximum possible exponent value.

Exponent Underflow: A negative exponent which is less than the minimum possible

value.

Significand Overflow: The addition of two significands of the same sign may carry in a

carry out of the most significant bit.

Significand underflow: In the process of aligning significands, digits may flow off the

right end of the significand.

Pradeep Kr. Sharma 14 | P a g e

Computer Organization and Architecture Computer Arithmetic

Floating Point Addition and Subtraction

In floating point arithmetic, addition and subtraction are more complex than multiplication and

division. This is because of the need for alignment. There are four phases for the algorithm for

floating point addition and subtraction.

1

2

. Check for zeros:

Because addition and subtraction are identical except for a sign change, the process

begins by changing the sign of the subtrahend if it is a subtraction operation. Next; if one

is zero, second is result.

. Align the Significands:

Alignment may be achieved by shifting either the smaller number to the right (increasing

exponent) or shifting the large number to the left (decreasing exponent).

. Addition or subtraction of the significands:

The aligned significands are then operated as required.

. Normalization of the result:

3

4

Normalization consists of shifting significand digits left until the most significant bit is

nonzero.

Example: Addition
1 10

X = 0.10001 * 2
Y = 0.101 * 21 00

Since E < E , Adjust Y Y X

Y = 0.00101 * 2 * 2010 = 0.00101 * 2110 100

So, E = E = E = 110 Z X Y

Now, M = M + M = 0.10001 + 0.00101 = 0.10110 Z X Y

Hence, Z = MZ * 2 = 0.10110 * 2110 EZ

Example: Subtraction
1 10

X = 0.10001 * 2
Y = 0.101 * 21 00

Since E < E , Adjust Y Y X

Y = 0.00101 * 2 * 2010 = 0.00101 * 2110 100

So, E = E = E = 110 Z X Y

Now, M = M - M = 0.10001 - 0.00101 = 0.01100 Z X Y

Z = MZ * 2EZ = 0.01100 * 2 (Un-Normalized) 110

Hence, Z = 0.1100 * 2 * 2-001 = 0.1100 * 2101 110

Pradeep Kr. Sharma 15 | P a g e

Computer Organization and Architecture Computer Arithmetic

Start

Is

X == 0

?

Z Y

Stop

Is

Y == 0

?

Z X

Adjust X such that:

E = E = E

EX < EY Check

the exponent

?

EY < EX Adjust Y such that:

E = E = E Z X Y Z X Y

EY = EX

Adjust the Mantissa

M = M ± M
Y

Z X

Form the floating

point number

Z = MZ * 2EZ

Is
No

½ ≤ MZ < 1 Post Normalize

?

Yes

Stop

Pradeep Kr. Sharma 16 | P a g e

Computer Organization and Architecture Computer Arithmetic

Floating Point Multiplication

The multiplication can be subdivided into 4 parts.

1

2

3

4

. Check for zeroes.

. Add the exponents.

. Multiply mantissa.

. Normalize the product.

Example:

X = 0.101 * 2

Y = 0.1001 * 2

As we know, Z = X * Y = (M * M) * 2

Z = (0.101 * 0.1001) * 2

1 10
0.1001

-010
* 0.101

(EX + EY)
1001 X Y

(110-010)
0000*

+1001**

101101 = 0.0101101

1 00
=

=

0.0101101 * 2
0.101101 * 20 (Normalized) 11

Pradeep Kr. Sharma 17 | P a g e

Computer Organization and Architecture Computer Arithmetic

Floating Point Division

The division algorithm can be subdivided into 5 parts

1

2

3

4

5

. Check for zeroes.

. Initial registers and evaluates the sign.

. Align the dividend.

. Subtract the exponent.

. Divide the mantissa.

Pradeep Kr. Sharma 18 | P a g e

Computer Organization and Architecture Computer Arithmetic

Example:

X = 0.101 * 2

Y = 0.1001 * 2

As we know, Z = X / Y = (M / M) * 2

1 10

-010

(EX – EY)
X Y

M / M = 0.101 / 0.1001 = (1/2 + 1/8) / (1/2 + 1/16) = 1.11 = 1.00011 X Y

0 .11 * 2 = 0.22 0

.22 * 2 = 0.44 0

.44 * 2 = 0.88 0

.88 * 2 = 1.76 1

.76 * 2 = 1.52 1

0

0

0

0

E – E = 110 + 010 = 1000 X Y

Now, Z = MZ * 2 = 1.00011 * 21000 = 0.100011 * 21001

.5 Logical Operation

Gate Level Logical Components

EZ

4

Pradeep Kr. Sharma 19 | P a g e

Computer Organization and Architecture Computer Arithmetic

Composite Logic Gates

