Jaipur Engineering College and Research Centre
 Computer Architecture and Organization (6CS4-04)
 Session 2020-21

Computer Architecture \& Organization (6CS4-04)

Computer Science and Engineering Department

Vision of the Department

To become renowned Centre of excellence in computer science and engineering and make competent engineers \& professionals with high ethical values prepared for lifelong learning.

Mission of the Department

- To impart outcome based education for emerging technologies in the field of computer science and engineering.
- To provide opportunities for interaction between academia and industry.
- To provide platform for lifelong learning by accepting the change in technologies.
- To develop aptitude of fulfilling social responsibilities.

Program Outcomes (PO):

- Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

Jaipur Engineering College and Research Centre
 Computer Architecture and Organization (6CS4-04)
 Session 2020-21

- Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Educational Objectives (PEO):

PEO1: To provide students with the fundamentals of Engineering Sciences with more emphasis in computer science and engineering by way of analyzing and exploiting engineering challenges.

PEO2: To train students with good scientific and engineering knowledge so as to comprehend, analyze, design, and create novel products and solutions for the real life problems.

PEO3: To inculcate professional and ethical attitude, effective communication skills, teamwork skills, multidisciplinary approach, entrepreneurial thinking and an ability to relate engineering issues with social issues.

PEO4: To provide students with an academic environment aware of excellence,leadership, written ethical codes and guidelines, and the self-motivated life-long learning needed for a successful professional career.

PEO5: To prepare students to excel in Industry and Higher education by educating Students along with High moral values and Knowledge.

Program Specific Outcome (PSO):

PSO: Ability to interpret and analyze network specific and cyber security issues, automation in real word environment.
PSO2: Ability to Design and Develop Mobile and Web-based applications under realistic constraints.

Jaipur Engineering College and Research Centre
 Computer Architecture and Organization (6CS4-04)
 Session 2020-21

COURSE OUTCOMES: After Completion of the course, Students will be able to:
CO1: Identification of registers, micro-operations and basic computer organizations \& design
CO 2 : Identification of computer architecture and processing
CO3: Introduction and applications of computer arithmetic operations
CO4 : Knowledge of computer Memory organization

Mapping Between CO and PO

CO-PO Mapping												
Computer Architecture 6CS4-04												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Co1: Ability to understand the functional units of the processor and various micro operations.	2	2	2	1	1	1	1	1	1	2	1	3
Co2: Analyze different architectural and organizational design issues that can affect the performance of a computer.	3	3	3	2	2	1	1	1	1	2	1	3
Co3. Examine the airthmetic problems and principles of computer design.	3	2	2	2	2	1	1	1	1	2	1	3
Co4. Describe and examine the concept of cache memory, Virtual memory and I/O organization.	3	2	2	2	1	1	1	1	1	1	1	3

Mapping Between CO and PSO:

CO-PSO Mapping		
Computer Architecture 6CS4-04	PSO1	PSO2
Co1: Ability to understand the functional units of the processor and various micro operations.		
Co2: Analyze different architectural and organizational design issues that can affect the performance of a computer.	1	1
Co3. Examine the airthmetic problems and principles of computer design.	2	1
Co4. Describe and examine the concept of cache memory, Virtual memory and I/O organization.	2	1

Jaipur Engineering College and Research Centre
 Computer Architecture and Organization (6CS4-04)

RAJASTHAN TECHNICAL UNIVERSITY, KOTA
Syllabus
III Year-VI Semester: B.Tech. Computer Science and Engineering
6CS4-04: Computer Architecture and Organization

	dit: 3 Max. Marks: 150(IA:3 End Term Exa	[E:120) Hours
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Computer Data Representation: Basic computer data types, Complements, Fixed point representation, Register Transfer and Micro-operations: Floating point representation, Register Transfer language, Register Transfer, Bus and Memory Transfers (Tree-State Bus Buffers, Memory Transfer), Arithmetic Micro-Operations, Logic Micro-Operations, Shift Micro-Operations, Arithmetic logical shift unit. Basic Computer Organization and DesignInstruction codes, Computer registers, computer instructions, Timing and Control, Instruction cycle, Memory-Reference Instructions, Input-output and interrupt, Complete computer description, Design of Basic computer, design of Accumulator Unit.	10
3	Programming The Basic Computer: Introduction, Machine Language, Assembly Language, assembler, Program loops, Programming Arithmetic and logic operations, subroutines, I-O Programming. Micro programmed Control: Control Memory, Address sequencing, Micro program Example, design of control Unit	7
4	Central Processing Unit: Introduction, General Register Organization, Stack Organization, Instruction format, Addressing Modes, data transfer and manipulation, Program Control, Reduced Instruction Set Computer (RISC)Pipeline And Vector Processing, Flynn's taxonomy, Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction, Pipeline, RISC Pipeline, Vector Processing, Array Processors	8
5	Computer Arithmetic: Introduction, Addition and subtraction, Multiplication Algorithms (Booth Multiplication Algorithm), Division Algorithms, Floating Point Arithmetic operations, Decimal Arithmetic Unit. Input-Output Organization, Input-Output Interface, Asynchronous Data Transfer, Modes Of Transfer, Priority Interrupt, DMA, Input-Output Processor (IOP), CPUIOP Communication, Serial communication.	8
6	Memory Organization: Memory Hierarchy, Main Memory, Auxiliary Memory, Associative Memory, Cache Memory, Virtual Memory. Multipreocessors: Characteristics of Interconnection Structures, Inter-processor Arbitration, Inter- processor Communication and Synchronization, Cache Coherence, Shared Memory Multiprocessors.	8
	Total	42

Syllabus of $3^{\text {rd }}$ Year B. Tech. (CS) for students admitted in Session 2017-18 onwards. Page 5

Jaipur Engineering College and Research Centre

Computer Architecture and Organization (6CS4-04)

Session 2020-21

Computer Architecture and Organization (6CS4-04)

LECTURE PLAN:

Unit No./ Total Lecture Reqd.	Topics	Lect. Reqd.	$\begin{array}{\|c} \hline \text { Lect. } \\ \text { No. } \\ \hline \end{array}$
Unit-I (10)	1. Objective, scope and outcome of the course. Basic computer data types, Complements, Fixed point representation, Register Transfer	1	1
	2. Micro-operations:		
	2a. Floating point representation, Register Transfer language	1	2
	2b. Register Transfer, Bus and Memory Transfers (Tree-State Bus Buffers, Memory Transfer)	1	3
	2c. Arithmetic Micro-Operations, Logic Micro-Operations	1	4
	2d. Shift Micro-Operations, Arithmetic logical shift unit	1	5
	3. Basic Computer Organization and Design Instruction codes	1	6
	4. Computer registers, computer instructions	1	7
	5. Timing and Control, Instruction cycle,	1	8
	6. Memory-Reference Instructions, Input-output and interrupt	1	9
	7. Complete computer description, Design of Basic computer, design of Accumulator Unit	1	10
BC-1	Von Neuman Architecture	1	11
Unit-II (7)	1. Introduction, machine language, Assembly language	1	12
	2. Assembler, Program loops	1	13
	3. Programming Arithmetic and logic operations	1	14
	4. Subroutines and I-O Programming	1	15
	5. Control Memory	1	16
	6. Address Sequencing	1	17
	7. Micro program Example	1	18
	8. Design of control unit	1	19
$\begin{aligned} & \text { UNIT } \\ & \text { III (8) } \end{aligned}$	1. Introduction General Register Organization	1	20
	2. Stack Organization, Instruction Format	1	21
	3. Addressing Modes, Data transfer and manipulation	1	22
	4. Program Control, Reduced Instruction set computer (RISC) pipeline	1	23
	5. Vector Processing and Flynn's taxonomy	1	24
	6. Parallel processing, pipeline	1	25
	7. Arithmetic pipeline, Instruction pipeline	1	26
	8. RISC pipeline, Vector Processing and Array Processing	1	27
Unit-IV (8)	1. Introduction, Addition and subtraction	1	28
	2. Multiplication Algorithms (Booth Multiplication Algorithm)	1	29
	3. Division Algorithms, Floating Point Arithmetic operations	1	30
	4. Decimal Arithmetic Unit, Input-Output Organization	1	31
	5. Input-Output Interface, Asynchronous Data Transfer	1	32
	6. Modes of Transfer, Priority Interrupt	1	33
	7. DMA, Input-Output Processor (IOP)	1	34

Jaipur Engineering College and Research Centre
Computer Architecture and Organization (6CS4-04)
Session 2020-21

	8. CPU-IOP Communication, Serial communication	1	35
BC-2	Interaction of computer with hardware	1	36
	1. Memory Hierarchy	1	37
	2.Main Memory, Auxiliary memory	1	38
	3. Associative memory,	1	39
	4. Cache Memory, Virtual Memory	1	40
	5. Microprocessor: Characteristics of microprocessor	1	41
	6. Interconnection Structure	1	42
	7. Inter-processer Arbitration, Intercrosses communication and synchronization	1	43
	8. Cache Coherence, Shared Memory Multiprocessor	1	44
BC-3	Different Operating System Architectures and their relation to Computer System Architectures	1	45

This schedule is tentative and is subject to minimal changes during teaching.

Unit - 4
 Computer Arithmetic

Integer Representation: (Fixed-point representation):

An eight bit word can be represented the numbers from zero to 255 including
$00000000=0$
$00000001=1$
$11111111=255$
In general if an n-bit sequence of binary digits $a_{n-1}, a_{n-2} \ldots . . a_{1}, a_{0}$; is interpreted as unsigned integer A.
$\mathrm{A}=\sum_{i=0}^{n-1} 2^{\mathrm{i}^{\mathrm{a}}} \mathrm{a}_{\mathrm{i}}$

Sign magnitude representation:

There are several alternative convention used to represent negative as well as positive integers, all of which involves treating the most significant (left most) bit in the word as sign bit. If the sign bit is 0 , the number is +ve and if the sign bit is 1 , the number is -ve . In n bit word the right most $\mathrm{n}-1$ bit hold the magnitude of integer.
For an example,
$+18=00010010$
$-18=10010010$ (sign magnitude)
The general case can be expressed as follows:

$$
\begin{aligned}
\mathrm{A} & =\sum_{i=0}^{n-2} 2^{\mathrm{i} \mathrm{a}_{\mathrm{i}}} \quad \text { if } \mathrm{a}_{\mathrm{n}-1}=0 \\
& =-\sum_{i=0}^{n-2} 2^{\mathrm{i} \mathrm{a}_{\mathrm{i}}} \quad \text { if } \mathrm{a}_{\mathrm{n}-1}=1 \\
\mathrm{~A} & =-2^{\mathrm{n}-1} \mathrm{a}_{\mathrm{n}-1}+\sum_{i=0}^{n-2} 2^{\mathrm{i} \mathrm{a}_{\mathrm{i}}} \quad \text { (Both for }+\mathrm{ve} \text { and }-\mathrm{ve} \text {) }
\end{aligned}
$$

There are several drawbacks to sign-magnitude representation. One is that addition or subtraction requires consideration of both signs of number and their relative magnitude to carry out the required operation. Another drawback is that there are two representation of zero. For an example:
$+0_{10}=00000000$
$-0_{10}=10000000$ this is inconvenient.

2's complement representation:

Like sign magnitude representation, 2's complement representation uses the most significant bit as sign bit making it easy to test whether the integer is negative or positive. It differs from the use of sign magnitude representation in the way that the other bits are interpreted. For negation, take the Boolean complement (1 's complement) of each bit of corresponding positive number, and then add one to the resulting bit pattern viewed as unsigned integer. Consider n bit integer A in 2 's complement representation. If A is $+v e$ then the sign bit a_{n-1} is zero. The remaining bits represent the magnitude of the number.
$\mathrm{A}=\sum_{i=0}^{n-2} 2^{\mathrm{i}} \mathrm{a}_{\mathrm{i}} \quad$ for $\mathrm{A} \geq 0$
The number zero is identified as + ve and therefore has zero sign bit and magnitude of all 0 's. We can see that the range of + ve integer that may be represented is from 0 (all the magnitude bits are zero) through $2^{\mathrm{n}-1}-1$ (all of the magnitude bits are 1).
Now for -ve number integer A, the sign bit $\mathrm{a}_{\mathrm{n}-1}$ is 1 . The range of -ve integer that can be
represented is from -1 to $-2^{\mathrm{n}-1}$
2's complement, $\mathrm{A}=-2^{\mathrm{n}-1} \mathrm{a}_{\mathrm{n}-1}+\sum_{i=0}^{n-2} 2^{\mathrm{i}} \mathrm{a}_{\mathrm{i}}$
Defines the twos complement of representation of both positive and negative number.
For an example:
$+18=00010010$
1's complement = 11101101
2 's complement $=11101110=-18$

4.1 Addition Algorithm

4.2 Subtraction Algorithm

$1001=-7$	$1100=-4$	$0011=3$
$\frac{0101=+5}{1110=-2}$	$\underline{0100=+4}$	
$10000=0$ (a) $(-7)+(+5)$	$\underline{0100=4}$ (b) (-4)+(4)	$0111=7$ (c) $(+3)+(+4)$
$1100=-4$	$0101=5$	$1001=-7$
$\frac{1111=-1}{11011=-5}$	$\underline{0100=4}$	
$1001=$ overflow (d) $(-4)+(-1)$	$\underline{1010=-6} 10011=$ overflow (e) $(+5)+(+4)$	(f) $(-7)+(-6)$

The first four examples illustrate successful operation if the result of the operation is + ve then we get +ve number in ordinary binary notation. If the result of the operation is -ve we get negative number in twos complement form. Note that in some instants there is carry bit beyond the end of what which is ignored. On any addition the result may larger then can be held in word size being use. This condition is called over flow. When overflow occur ALU must signal this fact so that no attempt is made to use the result. To detect overflow the following rule observed. If two numbers are added, and they are both +ve or both -ve; then overflow occurs if and only if the result has the opposite sign.

The data path and hardware elements needed to accomplish addition and subtraction is shown in figure below. The central element is binary adder, which is presented two numbers for addition and produces a sum and an overflow indication. The binary adder treats the two numbers as unsigned integers. For addition, the two numbers are presented to the adder from two registers A and B. The result may be stored in one of these registers or in the third. The overflow indication is stored in a 1 -bit overflow flag V (where $1=$ overflow and $0=$ no overflow). For subtraction, the subtrahend (B register) is passed through a 2's complement unit so that its 2 's complement is presented to the adder $(a-b=a+(-b))$.

Fig: Block diagram of hardware for addition / subtraction

4.3 Multiplication Algorithm

The multiplier and multiplicand bits are loaded into two registers Q and M . A third register A is initially set to zero. C is the 1-bit register which holds the carry bit resulting from addition. Now, the control logic reads the bits of the multiplier one at a time. If Q_{0} is 1 , the multiplicand is added to the register A and is stored back in register A with C bit used for carry. Then all the bits of CAQ are shifted to the right 1 bit so that C bit goes to A_{n-1}, A_{0} goes to Q_{n-1} and Q_{0} is lost. If Q_{0} is 0 , no addition is performed just do the shift. The process is repeated for each bit of the original multiplier. The resulting 2 n bit product is contained in the QA register.

Fig: Block diagram of multiplication

There are three types of operation for multiplication.

- It should be determined whether a multiplier bit is 1 or 0 so that it can designate the partial product. If the multiplier bit is 0 , the partial product is zero; if the multiplier bit is 1 , the multiplicand is partial product.
- It should shift partial product.
- It should add partial product.

Unsigned Binary Multiplication

1011 Multiplicand 11
X $\underline{1101}$ Multiplier 13
1011
0000 Partial Product
1011
$+\underline{1011}$
10001111 Product (143)

Fig. : Flowchart of Unsigned Binary Multiplication

Example: Multiply 15×11 using unsigned binary method

C	A	Q	M	Count	Remarks	
0	0000	1011	1111	4	Initialization	
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1111 \\ & 0111 \end{aligned}$	$\begin{aligned} & 1011 \\ & 1101 \end{aligned}$		3	Add ($\mathrm{A} \\| \mathrm{A}+\mathrm{M}$) Logical Right Shift C, A, Q	
$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0110 \\ & 1011 \end{aligned}$	$\begin{aligned} & 1101 \\ & 0110 \end{aligned}$		2	Add ($\mathrm{A} \square \mathrm{A}+\mathrm{M}$) Logical Right Shift C, A, Q	
0	0101	1011	-	1	Logical Right Shift C, A, Q	
1 0	$\begin{aligned} & 0100 \\ & 1010 \end{aligned}$	$\begin{aligned} & 1011 \\ & 0101 \end{aligned}$	-	$\overline{0}$	$\begin{gathered} \text { Add (A } \quad \mathrm{A}+\mathrm{M}) \\ \text { Logical Right Shift C, A, Q } \end{gathered}$	

Result $=10100101=2^{7}+2^{5}+2^{2}+2^{0}=165$

Alternate Method of Unsigned Binary Multiplication

Start

7

Fig: Unsigned Binary Multiplication Alternate method

Algorithm:

Step 1: Clear the sum (accumulator A). Place the multiplicand in X and multiplier in Y.
Step 2: Test Y_{0}; if it is 1 , add content of X to the accumulator A.
Step 3: Logical Shift the content of X left one position and content of Y right one position.
Step 4: Check for completion; if not completed, go to step 2.
Example: Multiply 7 X 6

Sum	\mathbf{X}	Y	Count	Remarks
000000	000111	110	3	Initialization
000000	001110	$01 \mathbf{1}$	2	Left shift X, Right Shift Y
001110	011100	001	1	Sum Left shift X, Right Shift Y
101010	111000	000	0	Sum Sum + X, Left shift X, Right Shift Y

Result $=101010=2^{5}+2^{3}+2^{1}=42$

Signed Multiplication (Booth Algorithm) - 2's Complement Multiplication

Multiplier and multiplicand are placed in Q and M register respectively. There is also one bit register placed logically to the right of the least significant bit Q_{0} of the Q register and designated as Q_{-1}. The result of multiplication will appear in A and Q resister. A and Q_{-1} are initialized to zero if two bits $\left(\mathrm{Q}_{0}\right.$ and $\left.\mathrm{Q}_{-1}\right)$ are the same (11 or 00) then all the bits of A, Q and Q_{-1} registers are shifted to the right 1 bit. If the two bits differ then the multiplicand is added to or subtracted from the A register depending on weather the two bits are 01 or 10 . Following the addition or subtraction the arithmetic right shift occurs. When count reaches to zero, result resides into AQ in the form of signed integer $\left[-2^{n-1 *} a_{n-1}+2^{n-2 *} a_{n-2}+\ldots \ldots \ldots \ldots \ldots+2^{1 *} a_{1}+2^{0 *} a_{0}\right]$.

Fig.: Flowchart of Signed Binary Numbers (using 2's Complement, Booth Method)
Example: Multiply 9 X $-3=-27$ using Booth Algorithm $+3=00011,-3=11101$ (2 's complement of +3)

A	Q	Q-1	Add (M)	Sub $(\bar{M}+\mathbf{1})$	Count	Remarks
00000	$1110 \mathbf{1}$	$\mathbf{0}$	01001	10111	5	Initialization

Result in $\mathrm{AQ}=1111100101=-2^{9}+2^{8}+2^{7}+2^{6}+2^{5}+2^{2}+2^{0}=-512+256+128+64+32+4+1=-27$

4.4 Division Algorithm

Division is somewhat more than multiplication but is based on the same general principles. The operation involves repetitive shifting and addition or subtraction.

First, the bits of the dividend are examined from left to right, until the set of bits examined represents a number greater than or equal to the divisor; this is referred to as the divisor being able to divide the number. Until this event occurs, 0 s are placed in the quotient from left to right. When the event occurs, a 1 is placed in the quotient and the divisor is subtracted from the partial dividend. The result is referred to as a partial remainder. The division follows a cyclic pattern. At each cycle, additional bits from the dividend are appended to the partial remainder until the result is greater than or equal to the divisor. The divisor is subtracted from this number to produce a new partial remainder. The process continues until all the bits of the dividend are exhausted.

Fig.: Block Diagram of Division Operation

Restoring Division (Unsigned Binary Division)

Algorithm:

Step 1: Initialize A, Q and M registers to zero, dividend and divisor respectively and counter to n where n is the number of bits in the dividend.
Step 2: Shift A, Q left one binary position.
Step 3: Subtract M from A placing answer back in A. If sign of A is 1 , set Q_{0} to zero and add M back to A (restore A). If sign of A is 0 , set Q_{0} to 1 .
Step 4: Decrease counter; if counter > 0, repeat process from step 2 else stop the process. The final remainder will be in A and quotient will be in Q .

Example: Divide 15 (1111) by 4 (0100)

A	Q	M	$\bar{M}+1$	Count	Remarks
00000	1111	00100	11100	4	Initialization
00001	111ロ	-	-	-	Shift Left A, Q
11101	111ם	-	-	-	$\operatorname{Sub}(\mathrm{A}\rfloor \mathrm{A}-\mathrm{M})$
00001	1110	-	-	3	$\mathrm{Q}_{0} \downarrow$ 0, Add (A$\rfloor \mathrm{A}+\mathrm{M}$)
00011	110■	-	-	-	Shift Left A, Q
11111	110ם	-	-	-	Sub (A $ل \mathrm{~A}-\mathrm{M})$
00011	1100	-	-	2	$\mathrm{Q}_{0} \downarrow 0, \operatorname{Add}(\mathrm{~A} \quad \mathrm{~A}+\mathrm{M})$
00111	100■	-	-	-	Shift Left A, Q
00011	100■	-	-	-	Sub (A \downarrow A - M)
00011	1001	-	-	1	Set $\mathrm{Q}_{0} \downarrow 1$
00111	001ロ	-	-	-	Shift Left A, Q
00011	001ם	-	-	-	Sub (A \downarrow A - M)
00011	0011	-	-	0	Set $\mathrm{Q}_{0} \downarrow 1$

Quotient in $\mathrm{Q}=0011=3$
Remainder in $\mathrm{A}=00011=3$

Non - Restoring Division (Signed Binary Division)

Algorithm
Step 1: Initialize A, Q and M registers to zero, dividend and divisor respectively and count to number of bits in dividend.
Step 2: Check sign of A;
If $\mathrm{A}<0$ i.e. $\mathrm{b}_{\mathrm{n}-1}$ is 1
a. Shift A, Q left one binary position.
b. Add content of M to A and store back in A.

If $\mathrm{A} \geq 0$ i.e. $\mathrm{b}_{\mathrm{n}-1}$ is 0
a. Shift A, Q left one binary position.
b. Subtract content of M to A and store back in A.

Step 3: If sign of A is 0 , set Q_{0} to 1 else set Q_{0} to 0 .
Step 4: Decrease counter. If counter >0, repeat process from step 2 else go to step 5.
Step 5: If $A \geq 0$ i.e. positive, content of A is remainder else add content of M to A to get the remainder. The quotient will be in Q .

Example: Divide 1110 (14) by 0011 (3) using non-restoring division.

A	Q	M	$M+1$	Count	Remarks
00000	1110	00011	11101	4	Initialization
00001 11110 11110	$\begin{aligned} & 110 \square \\ & 110 \square \\ & 1100 \end{aligned}$	-	-	3	$\begin{gathered} \text { Shift Left A, Q } \\ \text { Sub }(A \backslash A-M) \\ \text { Set } Q_{0} \text { to } 0 \end{gathered}$
11101 00000 00000	$\begin{aligned} & 100 \square \\ & 100 \square \\ & 1001 \end{aligned}$	-		2	$\begin{gathered} \text { Shift Left A, Q } \\ \text { Add }(\mathrm{A}\rfloor \mathrm{A}+\mathrm{M}) \\ \text { Set } \mathrm{Q}_{0} \text { to } 1 \end{gathered}$
$\begin{aligned} & 00001 \\ & 11110 \\ & \mathbf{1} 1110 \end{aligned}$	$\begin{aligned} & 001 \square \\ & 001 \square \\ & 001 \square \end{aligned}$	-	-	$\begin{aligned} & - \\ & \overline{1} \end{aligned}$	$\begin{gathered} \text { Shift Left A, Q } \\ \text { Sub }(A\rfloor A-M) \\ \text { Set } Q_{0} \text { to } 0 \end{gathered}$
$\begin{aligned} & 11100 \\ & 11111 \\ & 11111 \end{aligned}$	$\begin{aligned} & \hline 010 \square \\ & 010 \square \\ & 010 \square \end{aligned}$	-	-	0	Shift Left A, Q Add ($\mathrm{A} \square \mathrm{A}+\mathrm{M}$) Set Q_{0} to 0
00010	0100	-	-	-	Add ($\mathrm{A} \square \mathrm{A}+\mathrm{M}$)

Quotient in $\mathrm{Q}=0011=3$
Remainder in $\mathrm{A}=00010=2$

Floating Point Representation

The floating point representation of the number has two parts. The first part represents a signed fixed point numbers called mantissa or significand. The second part designates the position of the decimal (or binary) point and is called exponent. For example, the decimal no +6132.789 is represented in floating point with fraction and exponent as follows.

Fraction	Exponent
+0.6132789	+04

This representation is equivalent to the scientific notation $+0.6132789 \times 10^{+4}$
The floating point is always interpreted to represent a number in the following form $\pm M \times R^{ \pm E}$. Only the mantissa M and the exponent E are physically represented in the register (including their sign). The radix R and the radix point position of the mantissa are always assumed.

A floating point binary no is represented in similar manner except that it uses base 2 for the exponent.
For example, the binary no +1001.11 is represented with 8 bit fraction and 0 bit exponent as follows.
0.1001110×2^{100}
Fraction Exponent
01001110000100
The fraction has zero in the leftmost position to denote positive. The floating point number is equivalent to $\mathrm{M} \times 2^{\mathrm{E}}=+(0.1001110)_{2} \times 2^{+4}$

Floating Point Arithmetic

The basic operations for floating point arithmetic are
Floating point number Arithmetic Operations
$\begin{array}{ll}\mathrm{X}=\mathrm{Xs} \times \mathrm{B}^{\mathrm{XE}} & \mathrm{X}+\mathrm{Y}=\left(\mathrm{Xs} \times \mathrm{B}^{\mathrm{XE}-\mathrm{YE}}+\mathrm{Ys}\right) \times \mathrm{B}^{\mathrm{YE}} \\ \mathrm{Y}=\mathrm{Ys} \times \mathrm{B}^{\mathrm{YE}} & \mathrm{X}-\mathrm{Y}=\left(\mathrm{Xs} \times \mathrm{B}^{\mathrm{XE}-\mathrm{YE}}-\mathrm{Ys}\right) \times \mathrm{B}^{\mathrm{YE}} \\ & \mathrm{X} * \mathrm{Y}=(\mathrm{Xs} \times \mathrm{Ys}) \times \mathrm{B}^{\mathrm{XE}+\mathrm{YE}} \\ & \mathrm{X} / \mathrm{Y}=(\mathrm{Xs} / \mathrm{Ys}) \times \mathrm{B}^{\mathrm{XE}-\mathrm{YE}}\end{array}$
There are four basic operations for floating point arithmetic. For addition and subtraction, it is necessary to ensure that both operands have the same exponent values. This may require shifting the radix point on one of the operands to achieve alignment. Multiplication and division are straighter forward.
A floating point operation may produce one of these conditions:

- Exponent Overflow: A positive exponent exceeds the maximum possible exponent value.
- Exponent Underflow: A negative exponent which is less than the minimum possible value.
- Significand Overflow: The addition of two significands of the same sign may carry in a carry out of the most significant bit.
- Significand underflow: In the process of aligning significands, digits may flow off the right end of the significand.

Floating Point Addition and Subtraction

In floating point arithmetic, addition and subtraction are more complex than multiplication and division. This is because of the need for alignment. There are four phases for the algorithm for floating point addition and subtraction.

1. Check for zeros:

Because addition and subtraction are identical except for a sign change, the process begins by changing the sign of the subtrahend if it is a subtraction operation. Next; if one is zero, second is result.
2. Align the Significands:

Alignment may be achieved by shifting either the smaller number to the right (increasing exponent) or shifting the large number to the left (decreasing exponent).
3. Addition or subtraction of the significands:

The aligned significands are then operated as required.
4. Normalization of the result:

Normalization consists of shifting significand digits left until the most significant bit is nonzero.

Example: Addition
$\mathrm{X}=0.10001 * 2^{110}$
$\mathrm{Y}=0.101 * 2^{100}$
Since $\mathrm{E}_{\mathrm{Y}}<\mathrm{E}_{\mathrm{X}}$, Adjust Y
$\mathrm{Y}=0.00101 * 2^{100} * 2^{010}=0.00101 * 2^{110}$
So, $E_{Z}=E_{X}=E_{Y}=110$
Now, $\mathrm{M}_{\mathrm{Z}}=\mathrm{M}_{\mathrm{X}}+\mathrm{M}_{\mathrm{Y}}=0.10001+0.00101=0.10110$
Hence, $Z=M_{Z} * 2^{\mathrm{EZ}}=0.10110 * 2^{110}$

Example: Subtraction
$\mathrm{X}=0.10001 * 2^{110}$
$\mathrm{Y}=0.101 * 2^{100}$
Since $E_{Y}<E_{X}$, Adjust Y

$$
\mathrm{Y}=0.00101 * 2^{100} * 2^{010}=0.00101 * 2^{110}
$$

So, $E_{Z}=E_{X}=E_{Y}=110$
Now, $\mathrm{M}_{\mathrm{Z}}=\mathrm{M}_{\mathrm{X}}-\mathrm{M}_{\mathrm{Y}}=0.10001-0.00101=0.01100$
$\mathrm{Z}=\mathrm{M}_{\mathrm{Z}} * 2^{\mathrm{EZ}}=0.01100 * 2{ }^{110}($ Un-Normalized $)$
Hence, $Z=0.1100 * 2^{110} * 2^{-001}=0.1100 * 2^{101}$

Floating Point Multiplication
The multiplication can be subdivided into 4 parts.

1. Check for zeroes.
2. Add the exponents.
3. Multiply mantissa.
4. Normalize the product.

Floating Point Division

The division algorithm can be subdivided into 5 parts

1. Check for zeroes.
2. Initial registers and evaluates the sign.
3. Align the dividend.
4. Subtract the exponent.
5. Divide the mantissa.

Example:

$\mathrm{X}=0.101 * 2^{110}$
$\mathrm{Y}=0.1001 * 2^{-010}$
As we know, $\mathrm{Z}=\mathrm{X} / \mathrm{Y}=\left(\mathrm{M}_{\mathrm{X}} / \mathrm{M}_{\mathrm{Y}}\right) * 2^{(\mathrm{EX}-\mathrm{EY})}$
$\mathrm{M}_{\mathrm{X}} / \mathrm{M}_{\mathrm{Y}}=0.101 / 0.1001=(1 / 2+1 / 8) /(1 / 2+1 / 16)=1.11=1.00011$
$0.11 * 2=0.22 \rightarrow 0$
$0.22 * 2=0.44 \rightarrow 0$
$0.44 * 2=0.88 \rightarrow 0$
$0.88 * 2=1.76 \rightarrow 1$
$0.76 * 2=1.52 \rightarrow 1$
$\mathrm{E}_{X}-\mathrm{E}_{Y}=110+010=1000$
Now, $Z=M_{Z} * 2^{\mathrm{EZ}}=1.00011 * 2^{1000}=0.100011 * 2^{1001}$

4.5 Logical Operation

Gate Level Logical Components
Name Symbol
VHDLEquation
Truth Table
AND
$B=X \quad X<=A$ and B

A	B	X
0	0	0
0	1	0
1	0	0
1	1	1

OR
$A \longrightarrow X \quad X<=A$ or B

A	B	X
0	0	0
0	1	1
1	0	1
1	1	1

NOT
$A-D O-x \quad x<=\operatorname{not} A$

A	X
0	1
1	0

Composite Logic Gates			
Name	Symbol	VHDLEquation	Truth Table
NAND	${ }_{B}^{A}=\square 0-x$	$X<=\operatorname{not}(A$ and B)	$\begin{array}{lll} A & B & X \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}$
NOR	${ }_{B}^{A} \Longrightarrow 0-x$	$X<=\operatorname{not}(\mathrm{A}$ or B)	$\begin{array}{lll} A & B & X \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{array}$
XOR	$\frac{A}{B} \leadsto-x$	$\mathrm{X}<=\mathrm{A}$ xor B	$\begin{array}{lll} \mathrm{A} & \mathrm{~B} & \mathrm{X} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}$

